Genomic Classification of Protein-Coding Gene Families* Erich M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis Elegans
HIGHLIGHTED ARTICLE | INVESTIGATION A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis elegans William Dodd,*,1 Lanlan Tang,*,1 Jean-Christophe Lone,† Keon Wimberly,* Cheng-Wei Wu,* Claudia Consalvo,* Joni E. Wright,* Nathalie Pujol,†,2 and Keith P. Choe*,2 *Department of Biology, University of Florida, Gainesville, Florida 32611 and †Aix Marseille University, CNRS, INSERM, CIML, Marseille, France ORCID ID: 0000-0001-8889-3197 (N.P.) ABSTRACT Extracellular matrix barriers and inducible cytoprotective genes form successive lines of defense against chemical and microbial environmental stressors. The barrier in nematodes is a collagenous extracellular matrix called the cuticle. In Caenorhabditis elegans, disruption of some cuticle collagen genes activates osmolyte and antimicrobial response genes. Physical damage to the epidermis also activates antimicrobial responses. Here, we assayed the effect of knocking down genes required for cuticle and epidermal integrity on diverse cellular stress responses. We found that disruption of specific bands of collagen, called annular furrows, coactivates detoxification, hyperosmotic, and antimicrobial response genes, but not other stress responses. Disruption of other cuticle structures and epidermal integrity does not have the same effect. Several transcription factors act downstream of furrow loss. SKN-1/ Nrf and ELT-3/GATA are required for detoxification, SKN-1/Nrf is partially required for the osmolyte response, and STA-2/Stat and ELT- 3/GATA for antimicrobial gene expression. Our results are consistent with a cuticle-associated damage sensor that coordinates de- toxification, hyperosmotic, and antimicrobial responses through overlapping, but distinct, downstream signaling. KEYWORDS damage sensor; collagen; detoxification; osmotic stress; antimicrobial response XTRACELLULAR matrices (ECMs) are ubiquitous features Internal and epidermal tissues secrete ECMs as mechanical Eof animal tissues composed of secreted fibrous proteins support. -
A Transparent Window Into Biology: a Primer on Caenorhabditis Elegans* Ann K
A Transparent window into biology: A primer on Caenorhabditis elegans* Ann K. Corsi1§, Bruce Wightman2§, and Martin Chalfie3§ 1Biology Department, The Catholic University of America, Washington, DC 20064 2Biology Department, Muhlenberg College, Allentown, PA 18104 3Department of Biological Sciences, Columbia University, New York, NY 10027 Table of Contents 1. Introduction ............................................................................................................................2 2. C. elegans basics .....................................................................................................................4 2.1. Growth and maintenance ................................................................................................ 4 2.2. Sexual forms and their importance .................................................................................... 5 2.3. Life cycle ....................................................................................................................7 3. C. elegans genetics ...................................................................................................................8 4. Why choose C. elegans? ......................................................................................................... 10 5. C. elegans tissues ................................................................................................................... 11 5.1. Epidermis: a model for extracellular matrix production, wound healing, and cell fusion ............ 12 5.2. Muscles—controlling -
Molecular Markers of Serine Protease Evolution
The EMBO Journal Vol. 20 No. 12 pp. 3036±3045, 2001 Molecular markers of serine protease evolution Maxwell M.Krem and Enrico Di Cera1 ment and specialization of the catalytic architecture should correspond to signi®cant evolutionary transitions in the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St Louis, history of protease clans. Evolutionary markers encoun- MO 63110-1093, USA tered in the sequences contributing to the catalytic apparatus would thus give an account of the history of 1Corresponding author e-mail: [email protected] an enzyme family or clan and provide for comparative analysis with other families and clans. Therefore, the use The evolutionary history of serine proteases can be of sequence markers associated with active site structure accounted for by highly conserved amino acids that generates a model for protease evolution with broad form crucial structural and chemical elements of applicability and potential for extension to other classes of the catalytic apparatus. These residues display non- enzymes. random dichotomies in either amino acid choice or The ®rst report of a sequence marker associated with serine codon usage and serve as discrete markers for active site chemistry was the observation that both AGY tracking changes in the active site environment and and TCN codons were used to encode active site serines in supporting structures. These markers categorize a variety of enzyme families (Brenner, 1988). Since serine proteases of the chymotrypsin-like, subtilisin- AGY®TCN interconversion is an uncommon event, it like and a/b-hydrolase fold clans according to phylo- was reasoned that enzymes within the same family genetic lineages, and indicate the relative ages and utilizing different active site codons belonged to different order of appearance of those lineages. -
Web Resources for C. Elegans Studies* §
Web resources for C. elegans studies* § Raymond Lee , Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Table of Contents 1. Introduction ............................................................................................................................1 2. Portal and knowledge environment .............................................................................................. 2 2.1. WormBase ...................................................................................................................2 2.2. Caenorhabditis elegans WWW Server ..............................................................................3 3. Literature search ...................................................................................................................... 4 3.1. Textpresso ................................................................................................................... 4 3.2. NCBI PubMed ..............................................................................................................5 3.3. Caenorhabditis elegans WWW Server Worm Literature Index ............................................... 5 4. Gene function .........................................................................................................................6 4.1. WormBase Gene Summary ............................................................................................. 6 4.2. NCBI AceView ........................................................................................................... -
Biased Signaling of G Protein Coupled Receptors (Gpcrs): Molecular Determinants of GPCR/Transducer Selectivity and Therapeutic Potential
Pharmacology & Therapeutics 200 (2019) 148–178 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential Mohammad Seyedabadi a,b, Mohammad Hossein Ghahremani c, Paul R. Albert d,⁎ a Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran b Education Development Center, Bushehr University of Medical Sciences, Iran c Department of Toxicology–Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Iran d Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada article info abstract Available online 8 May 2019 G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Origi- nally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins Keywords: that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCR GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between Gprotein cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein trans- β-arrestin ducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Selectivity Biased Signaling Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral fac- Therapeutic Potential tors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated ‘biased signaling’. In this regard, receptor sequence alignment and mutagenesis have helped to iden- tify key receptor domains for receptor/transducer specificity. -
TGF-Β Signaling in C. Elegans * Tina L
TGF-β signaling in C. elegans * Tina L. Gumienny1 and Cathy Savage-Dunn2§ 1Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843 USA 2Department of Biology, Queens College, and the Graduate School and University Center, City University of New York, Flushing, NY 11367 USA Table of Contents 1. Overview ...............................................................................................................................2 2. DBL-1 pathway .......................................................................................................................4 2.1. Body size regulation ...................................................................................................... 5 2.2. Male tail development .................................................................................................... 6 2.3. Innate immunity ............................................................................................................ 6 2.4. Aging and longevity ...................................................................................................... 7 2.5. Mesodermal patterning ................................................................................................... 8 2.6. Chemosensation and neuronal function .............................................................................. 8 2.7. Ligand, receptors, and their modulators ............................................................................. 8 2.8. Intracellular -
Bioinformatic Protein Family Characterisation
Linköping studies in science and technology Dissertation No. 1343 Bioinformatic protein family characterisation Joel Hedlund Department of Physics, Chemistry and Biology Linköping, 2010 1 The front cover shows a tree diagram of the relations between proteins in the MDR superfamily (papers III–IV), excluding non-eukaryotic sequences as well as four fifths of the remainder for clarity. In total, 518 out of the 16667 known members are shown, and 1.5 cm in the dendrogram represents 10 % sequence differences. The bottom bar diagram shows conservation in these sequences using the CScore algorithm from the MSAView program (papers II and V), with infrequent insertions omitted for brevity. This example illustrates the size and complexity of the MDR superfamily, and it also serves as an illuminating example of the intricacies of the field of bioinformatics as a whole, where, after scaling down and removing layer after layer of complexity, there is still always ample size and complexity left to go around. The back cover shows a schematic view of the three-dimensional structure of human class III alcohol dehydrogenase, indicating the positions of the zinc ion and NAD cofactors, as well as the Rossmann fold cofactor binding domain (red) and the GroES-like folding core of the catalytic domain (green). This thesis was typeset using LYX. Inkscape was used for figure layout. During the course of research underlying this thesis, Joel Hedlund was enrolled in Forum Scientium, a multidisciplinary doctoral programme at Linköping University, Sweden. Copyright © 2010 Joel Hedlund, unless otherwise noted. All rights reserved. Joel Hedlund Bioinformatic protein family characterisation ISBN: 978-91-7393-297-4 ISSN: 0345-7524 Linköping studies in science and technology, dissertation No. -
Molecular Evolution Inferences from the C. Elegans Genome* Asher D
Molecular evolution inferences from the C. elegans genome* Asher D. Cutter§, Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada Table of Contents 1. Introduction ............................................................................................................................1 2. Mutation ................................................................................................................................2 3. Recombination ........................................................................................................................ 3 4. Natural Selection ..................................................................................................................... 4 5. Genetic Drift ...........................................................................................................................6 6. Population dynamics ................................................................................................................ 7 7. Summary ...............................................................................................................................7 8. Acknowledgements .................................................................................................................. 8 9. References ..............................................................................................................................8 Abstract An understanding of evolution at the molecular level requires the simultaneous -
The Biology of Strongyloides Spp.* Mark E
The biology of Strongyloides spp.* Mark E. Viney1§ and James B. Lok2 1School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK 2Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6008, USA Table of Contents 1. Strongyloides is a genus of parasitic nematodes ............................................................................. 1 2. Strongyloides infection of humans ............................................................................................... 2 3. Strongyloides in the wild ...........................................................................................................2 4. Phylogeny, morphology and taxonomy ........................................................................................ 4 5. The life-cycle ..........................................................................................................................6 6. Sex determination and genetics of the life-cycle ............................................................................. 8 7. Controlling the life-cycle ........................................................................................................... 9 8. Maintaining the life-cycle ........................................................................................................ 10 9. The parasitic phase of the life-cycle ........................................................................................... 10 10. Life-cycle plasticity ............................................................................................................. -
Protein Structure and Function from Sequence to Function (I)
BCHS 6229 ProteinProtein StructureStructure andand FunctionFunction Lecture 6 (Oct 27, 2011) From Sequence to Function (I): - Protein Profiling - Case Studies in Structural & Functional Genomics 1 From Sequence to Function in the age of Genomics How to predict functions for 1000s proteins? 1. “Conventional” sequence pattern 2. “Fold similarity - Structural genomics 3. Clustering microarray experiments 4. Data integration 2 From Sequence to Function in the age of Genomics •Genomics is making an increasing contribution to the study of protein structure function. •Sequence and structural comparison can usually give only limited information, however, and comprehensively characterizing the protein function of an uncharacterized protein in a cell or organism will always require additional experimental investigations on the purified proteins in vitro as well as cell biological and mutational studies in vivo. 3 From Sequence to Function in the age of Genomics •Proteomics Understand Proteins, through analyzing populations Structure (motions, packing,folds) Function Evolution Integration of information Structures - Sequences - Microarrays 4 Regulation of flagellar genes in C. jejuni Carrillo CD et al. J Biol Chem (2004) 279(19):20327-38. 5 Time and distance scales in functional genomics Time Process Example System Example Detection Methods Distance Interdisciplinary approaches are essential to determine the functions of gene products. 6 Sequence alignment and comparison General principle of alignments: Two homologous sequences derived from the same ancestral sequence will have at least some identical residues at the corresponding positions in the sequence; if corresponding positions in the sequence are aligned, the degree of matching should be statistically significant compared with that of two randomly chosen unrelated sequences. -
Natural Variation and Population Genetics of Caenorhabditis Elegans* §
Natural variation and population genetics of Caenorhabditis elegans* § Antoine Barrière and Marie-Anne Félix , Institut Jacques Monod, CNRS - Universities of Paris, 75251 Paris cedex 05, France Table of Contents 1. Molecular polymorphisms and population genetics ......................................................................... 2 1.1. Low molecular diversity of C. elegans ...............................................................................2 1.2. Population structure and geographic differentiation .............................................................. 7 1.3. Comparison with C. briggsae and C. remanei .....................................................................8 1.4. Outcrossing versus selfing in C. elegans ............................................................................9 2. Phenotypic diversity ............................................................................................................... 11 2.1. Phenotypic change upon mutation accumulation ................................................................ 11 2.2. Polymorphic phenotypes ............................................................................................... 11 2.3. Genetic analysis of a natural phenotypic variation .............................................................. 14 3. References ............................................................................................................................ 16 Abstract C. elegans presents a low level of molecular diversity, which may be explained -
The C. Elegans Eggshell* Kathryn K
The C. elegans eggshell* Kathryn K. Stein1,2 and Andy Golden1,§ 1Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA 2Translational Genomics Research Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA Table of Contents 1. Overview of the structure of the C. elegans eggshell ....................................................................... 2 2. Timeline for eggshell formation .................................................................................................. 3 3. Layer one: the vitelline layer ...................................................................................................... 4 4. Layer two: the chitin layer ......................................................................................................... 4 4.1. CHS-1 .........................................................................................................................5 4.2. GNA-2 ........................................................................................................................6 4.3. EGG-1, EGG-2 ............................................................................................................. 6 4.4. EGG-3, EGG-4, EGG-5 .................................................................................................. 6 4.5. SPE-11 ........................................................................................................................7