Investigating the Roles of NEDD4.2S and Nef in the Release and Replication of HIV-1: a Dissertation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Open Dogan Phdthesis Final.Pdf
The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues. -
RNF11 at the Crossroads of Protein Ubiquitination
biomolecules Review RNF11 at the Crossroads of Protein Ubiquitination Anna Mattioni, Luisa Castagnoli and Elena Santonico * Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy; [email protected] (A.M.); [email protected] (L.C.) * Correspondence: [email protected] Received: 29 September 2020; Accepted: 8 November 2020; Published: 11 November 2020 Abstract: RNF11 (Ring Finger Protein 11) is a 154 amino-acid long protein that contains a RING-H2 domain, whose sequence has remained substantially unchanged throughout vertebrate evolution. RNF11 has drawn attention as a modulator of protein degradation by HECT E3 ligases. Indeed, the large number of substrates that are regulated by HECT ligases, such as ITCH, SMURF1/2, WWP1/2, and NEDD4, and their role in turning off the signaling by ubiquitin-mediated degradation, candidates RNF11 as the master regulator of a plethora of signaling pathways. Starting from the analysis of the primary sequence motifs and from the list of RNF11 protein partners, we summarize the evidence implicating RNF11 as an important player in modulating ubiquitin-regulated processes that are involved in transforming growth factor beta (TGF-β), nuclear factor-κB (NF-κB), and Epidermal Growth Factor (EGF) signaling pathways. This connection appears to be particularly significant, since RNF11 is overexpressed in several tumors, even though its role as tumor growth inhibitor or promoter is still controversial. The review highlights the different facets and peculiarities of this unconventional small RING-E3 ligase and its implication in tumorigenesis, invasion, neuroinflammation, and cancer metastasis. Keywords: Ring Finger Protein 11; HECT ligases; ubiquitination 1. -
Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation -
The E3 Ubiquitin Ligase HECW1 Targets Thyroid Transcription Factor 1
Cellular Signalling 58 (2019) 91–98 Contents lists available at ScienceDirect Cellular Signalling journal homepage: www.elsevier.com/locate/cellsig The E3 ubiquitin ligase HECW1 targets thyroid transcription factor 1 (TTF1/ NKX2.1) for its degradation in the ubiquitin-proteasome system T ⁎ Jia Liua,c, Su Dongb,c, Lian Lic, Heather Wangc, Jing Zhaoc, Yutong Zhaoc, a Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, China b Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China c Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA ARTICLE INFO ABSTRACT Keywords: Thyroid transcription factor 1 (TTF1/NKX2.1), is a nuclear protein member of the NKX2 family of homeodomain TTF1 transcription factors. It plays a critical role in regulation of multiple organ functions by promoting gene ex- HECW1 pression, such as thyroid hormone in thyroid and surfactant proteins in the lung. However, molecular regulation Ubiquitination of TTF1 has not been well investigated, especially regarding its protein degradation. Here we show that protein Proteasomal degradation kinase C agonist, phorbol esters (PMA), reduces TTF1 protein levels in time- and dose-dependent manners, without altering TTF1 mRNA levels. TTF1 is ubiquitinated and degraded in the proteasome in response to PMA, suggesting that PMA induces TTF1 degradation in the ubiquitin-proteasome system. Furthermore, we demon- strate that an E3 ubiquitin ligase, named HECT, C2 and WW domain containing E3 ubiquitin protein ligase 1 (HECW1), targets TTF1 for its ubiquitination and degradation, while downregulation of HECW1 attenuates PMA- induced TTF1 ubiquitination and degradation. A lysine residue lys151 was identified as the ubiquitin acceptor site within the TTF1. -
Genetics of Congenital Heart Diseases
PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Moradi Marjaneh First name: Mahdi Other name/s: Abbreviation for degree as given in the University calendar: PhD School: St Vincent's Clinical School Faculty: Medicine Title: Genetics of Congenital Heart Diseases Abstract 350 words maximum: (PLEASE TYPE) Development of the cardiac atrial septum involves complex morphogenetic processes including programmed cell growth and death. Secundum atrial s eptal d efect ( ASDII) an d p atent f oramen o vale ( PFO) ar e co mmon at rial s eptal an omalies as sociated with n umerous p athologies including s troke. D ata from studies i n hum ans a nd mouse s uggest t hat P FO a nd A SDII e xist i n a n a natomical c ontinuum of septal dysmorphogenesis with a common genetic basis. Analysis of quantitative trait loci (QTL) and genome technology form a powerful approach to understand genetic complexity underpinning common disease. A previous study o f inbred mice mapped QTL for quantitative anatomical atrial s eptal p arameters correlating with PFO, including flap valve length (FVL) and foramen ovale width (FOW). Here, we explore an advanced intercross line (AIL) for confirmation and fine mapping of t hese Q TL. An A IL be tween pa rental s trains QSi5 a nd 129T2/SvEms, s howing e xtreme va lues f or F VL a nd PFO, w as established ov er 1 4 g enerations. L inkage a nalysis us ing 141 s ingle nuc leotide p olymorphism m arkers f ocused on 6 s ignificant a nd on e suggestive QTL regions for FVL or FOW found previously, and we also sought QTL for heart weight (HW) normalized to body weight (BW). -
Identification of Candidate Genes and Pathways Associated with Obesity
animals Article Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis Sunirmal Sheet y, Srikanth Krishnamoorthy y , Jihye Cha, Soyoung Choi and Bong-Hwan Choi * Animal Genome & Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea; [email protected] (S.S.); [email protected] (S.K.); [email protected] (J.C.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +82-10-8143-5164 These authors contributed equally. y Received: 10 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Simple Summary: Obesity is a serious health issue and is increasing at an alarming rate in several dog breeds, but there is limited information on the genetic mechanism underlying it. Moreover, there have been very few reports on genetic markers associated with canine obesity. These studies were limited to the use of a single breed in the association study. In this study, we have performed a GWAS and supplemented it with gene-set enrichment and pathway-based analyses to identify causative loci and genes associated with canine obesity in 18 different dog breeds. From the GWAS, the significant markers associated with obesity-related traits including body weight (CACNA1B, C22orf39, U6, MYH14, PTPN2, SEH1L) and blood sugar (PRSS55, GRIK2), were identified. Furthermore, the gene-set enrichment and pathway-based analysis (GESA) highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) which were found to be shared among all the traits. -
AL SERAIHI, a Phd Final 010519
The Genetics of Familial Leukaemia and Myelodysplasia __________________ Ahad Fahad H Al Seraihi A thesis submitted for the Degree of Doctor of Philosophy (PhD) at Queen Mary University of London January 2019 Centre for Haemato-Oncology Barts Cancer Institute Charterhouse Square London, UK EC1M 6BQ Statement of Originality Statement of Originality I, Ahad Fahad H Al Seraihi, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged below and my contribution indicated. Previously published material is also acknowledged below. I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. Signature: Date: 30th January 2019 2 Details of Collaborations and Publications Details of Collaborations: Targeted deep sequencing detailed in Chapter 3 was carried out at King’s College Hospital NHS Foundation Trust, London, UK, in the laboratory for Molecular Haemato- Oncology led by Dr Nicholas Lea and bioinformatics analysis was performed by Dr Steven Best. -
Sex-Differential DNA Methylation and Associated Regulation Networks in Human Brain Implicated in the Sex-Biased Risks of Psychiatric Disorders
Molecular Psychiatry https://doi.org/10.1038/s41380-019-0416-2 ARTICLE Sex-differential DNA methylation and associated regulation networks in human brain implicated in the sex-biased risks of psychiatric disorders 1,2 1,2 1 2 3 4 4 4 Yan Xia ● Rujia Dai ● Kangli Wang ● Chuan Jiao ● Chunling Zhang ● Yuchen Xu ● Honglei Li ● Xi Jing ● 1 1,5 2 6 1,2,7 1,2,8 Yu Chen ● Yi Jiang ● Richard F. Kopp ● Gina Giase ● Chao Chen ● Chunyu Liu Received: 8 November 2018 / Revised: 18 March 2019 / Accepted: 22 March 2019 © Springer Nature Limited 2019 Abstract Many psychiatric disorders are characterized by a strong sex difference, but the mechanisms behind sex-bias are not fully understood. DNA methylation plays important roles in regulating gene expression, ultimately impacting sexually different characteristics of the human brain. Most previous literature focused on DNA methylation alone without considering the regulatory network and its contribution to sex-bias of psychiatric disorders. Since DNA methylation acts in a complex regulatory network to connect genetic and environmental factors with high-order brain functions, we investigated the 1234567890();,: 1234567890();,: regulatory networks associated with different DNA methylation and assessed their contribution to the risks of psychiatric disorders. We compiled data from 1408 postmortem brain samples in 3 collections to identify sex-differentially methylated positions (DMPs) and regions (DMRs). We identified and replicated thousands of DMPs and DMRs. The DMR genes were enriched in neuronal related pathways. We extended the regulatory networks related to sex-differential methylation and psychiatric disorders by integrating methylation quantitative trait loci (meQTLs), gene expression, and protein–protein interaction data. -
High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies
Manuscript High rate of recurrent de novo mutations in developmental and epileptic encephalopathies Fadi F. Hamdan1, Candace Myers2, Patrick Cossette3,4, Philippe Lemay1, Dan Spiegelman5, Alexandre Dionne Laporte5, Christina Nassif1, Ousmane Diallo5, Jean Monlong6,7, Maxime Cadieux-Dion3,8,9, Sylvia Dobrzeniecka3, Caroline Meloche3, Kyle Retterer10, Megan T. Cho10, Jill A. Rosenfeld11, Weimin Bi11,12, Christine Massicotte1, Marguerite Miguet1, Ledia Brunga13, Brigid M. Regan14, Kelly Mo14, Cory Tam14, Amy Schneider15, Georgie Hollingsworth15, DDD Study16, David R. FitzPatrick17, Alan Donaldson18, Natalie Canham19, Edward Blair20, Bronwyn Kerr21, Andrew E. Fry22, Rhys H. Thomas23, Joss Shelagh24, Jane A. Hurst25, Helen Brittain25, Moira Blyth26, Robert Roger Lebel27, Erica H. Gerkes28, Laura Davis-Keppen29, Quinn Stein30, Wendy K. Chung31, Sara J. Dorison32, Paul J. Benke33, Emily Fassi34, Nicole Corsten-Janssen28, Erik-Jan Kamsteeg35, Frederic T. Mau-Them36,37, Ange-Line Bruel36,37, Alain Verloes38, Katrin Õunap39, Monica H Wojcik40, Dara V.F. Albert41, Sunita Venkateswaran42, Tyson Ware43, Dean Jones44, Yu-Chi Liu45,46,, Shekeeb S. Mohammad47, Peyman Bizargity11, Carlos A. Bacino11,48, Vincenzo Leuzzi49, Simone Martinelli50, Bruno Dallapiccola51, Marco Tartaglia51, Lubov Blumkin52, Klaas J. Wierenga53, Gabriela Purcarin53, James J. O'Byrne54, Sylvia Stockler54, Anna Lehman55, Boris Keren56,57, Marie-Christine Nougues58, Cyril Mignot56,57, Stéphane Auvin59,60, Caroline Nava56,57, Susan M. Hiatt61, Martina Bebin62, Yunru Shao11, Fernando Scaglia11, Seema R. Lalani11, Richard E. Frye63,64, Imad T. Jarjour65, Stéphanie Jacques66, Renee- Myriam Boucher67, Emilie Riou68, Myriam Srour69,70, Lionel Carmant1,4,71, Anne Lortie4,71, Philippe Major4,71, Paola Diadori4,71, François Dubeau5, Guy D’Anjou4,71, Guillaume Bourque6,7, Samuel F. Berkovic15, Lynette G. -
Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades. -
Characterization of the E3 Ligase Dhecw, a Novel Member of The
PhD degree in Molecular Medicine (curriculum in Molecular Oncology) European School of Molecular Medicine (SEMM), University of Milan and University of Naples “Federico II” Settore disciplinare: bio/10 Characterization of the E3 ligase dHecw, a novel member of the Drosophila melanogaster Nedd4 family Fajner Valentina Fondazione IFOM, Milan Matricola n. R10751 Supervisor: Dr. Polo Simona Fondazione IFOM, Milan Anno accademico 2017-2018 TABLE OF CONTENTS LIST OF ABBREVIATIONS ..................................................................................................................................... 6 FIGURE INDEX ............................................................................................................................................................ 8 TABLE INDEX ........................................................................................................................................................... 10 ABSTRACT ................................................................................................................................................................. 11 INTRODUCTION ...................................................................................................................................................... 13 1. The multifunctional role of Ubiquitin .............................................................................................. 13 1.1 E3 ligases: catalysts and matchmakers of the Ubiquitin cascade ........................................ 16 1.1.1 RING -
Allele-Specific Disparity in Breast Cancer Fatemeh Kaveh1, Hege Edvardsen1, Anne-Lise Børresen-Dale1,2, Vessela N Kristensen1,2,3* and Hiroko K Solvang1,4
Kaveh et al. BMC Medical Genomics 2011, 4:85 http://www.biomedcentral.com/1755-8794/4/85 RESEARCHARTICLE Open Access Allele-specific disparity in breast cancer Fatemeh Kaveh1, Hege Edvardsen1, Anne-Lise Børresen-Dale1,2, Vessela N Kristensen1,2,3* and Hiroko K Solvang1,4 Abstract Background: In a cancer cell the number of copies of a locus may vary due to amplification and deletion and these variations are denoted as copy number alterations (CNAs). We focus on the disparity of CNAs in tumour samples, which were compared to those in blood in order to identify the directional loss of heterozygosity. Methods: We propose a numerical algorithm and apply it to data from the Illumina 109K-SNP array on 112 samples from breast cancer patients. B-allele frequency (BAF) and log R ratio (LRR) of Illumina were used to estimate Euclidian distances. For each locus, we compared genotypes in blood and tumour for subset of samples being heterozygous in blood. We identified loci showing preferential disparity from heterozygous toward either the A/B-allele homozygous (allelic disparity). The chi-squared and Cochran-Armitage trend tests were used to examine whether there is an association between high levels of disparity in single nucleotide polymorphisms (SNPs) and molecular, clinical and tumour-related parameters. To identify pathways and network functions over-represented within the resulting gene sets, we used Ingenuity Pathway Analysis (IPA). Results: To identify loci with a high level of disparity, we selected SNPs 1) with a substantial degree of disparity and 2) with substantial frequency (at least 50% of the samples heterozygous for the respective locus).