Finding the Spaces for Change: a Power Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Finding the Spaces for Change: a Power Analysis Finding the Spaces for Change: A Power Analysis John Gaventa* 1 Introduction governance’ challenge our traditional categories of Around the world, new spaces and opportunities are the rulers and the ruled, the policymakers and the emerging for citizen engagement in policy processes, public. The use of terms such as ‘partnership’ and from local to global levels. Policy instruments, legal ‘shared ownership’ by large, powerful actors like the frameworks and support programmes for promoting World Bank and the International Monetary Fund them abound. Yet, despite the widespread rhetorical (IMF) invite engagement on a ‘level playing field’ but acceptance, it is also becoming clear that simply obscures inequalities of resources and power. The creating new institutional arrangements will not adoption by multinational corporate actors of necessarily result in greater inclusion or pro-poor notions of ‘corporate citizenship’, blurs traditional ‘us’ policy change. Rather, much depends on the nature and ‘them’ distinctions between economic power of the power relations which surround and imbue holders and those who might negatively be affected these new, potentially more democratic, spaces. by their corporate practices. And in the midst of all of this changing language and discourse, rapid Critical questions are to be asked. Does this new processes of globalisation challenge ideas of terrain represent a real shift in power? Does it really ‘community’ and the ‘nation-state’, reconfiguring the open up spaces where participation and citizen voice spatial dynamics of power, and changing the can have an influence? Will increased engagement assumptions about the entry points for citizen within them risk simply re-legitimating the status action. quo, or will it contribute to transforming patterns of exclusion and social injustice and to challenging All of these changes point to the need for activists, power relationships? In a world where the local and researchers, policymakers and donors who are the global are so interrelated, where patterns of concerned about development and change to turn governance and decision making are changing so our attention to how to analyse and understand the quickly, how can those seeking pro-poor change changing configurations of power. If we want to decide where best to put their efforts and what change power relationships, e.g. to make them more strategies do they use? inclusive, just or pro-poor, we must understand more about where and how to engage. This article shares Whether concerned with participation and inclusion, one approach to power analysis; an approach which realising rights or changing policies, more and more has come to be known as the ‘power cube’ and development actors seeking change are also provides some reflections and examples of how this becoming aware of the need to engage with and approach has been applied in differing contexts. understand this phenomenon called power. Yet simultaneously, the nature and expressions of power 2 Reflecting on power analysis are also rapidly changing. The very spread and Though everyone possesses and is affected by power, adoption by powerful actors of the language and the meanings of power – and how to understand it discourse of participation and inclusion confuses – are diverse and often contentious (as the articles in boundaries of who has authority and who does not, this IDS Bulletin illustrate). Some see power as held who should be on the ‘inside’ and who is on the by actors, some of whom are powerful while others ‘outside’ of decision-making and policymaking are relatively powerless. Others see it as more arenas. Changing governance arrangements, which pervasive, embodied in a web of relationships and call for ‘co-governance’ and ‘participatory discourses which affect everyone, but which no IDS Bulletin Volume 37 Number 6 November 2006 © Institute of Development Studies 23 single actor holds. Some see power as a ‘zero-sum’ grassroots empowerment, the Highlander Center concept – to gain power for one set of actors means based in southern USA. Much of our approach that others must give up some power. Since rarely involved finding ways to strengthen the capacity of do the powerful give up their power easily, this often ordinary citizens and to analyse and challenge the involves conflict and ‘power struggles’. Others see inequalities of power which affected their lives. power as more fluid and accumulative. Power is not a finite resource; it can be used, shared or created by After joining the Institute for Development Studies actors and their networks in many multiple ways. (IDS) in the mid-1990s, I continued to work on Some see power as a ‘negative’ trait – to hold processes of citizen participation and engagement in power is to exercise control over others. Others see other parts of the world. In the international power to be about capacity and agency to be development field, I discovered a host of approaches wielded for positive action. for participation in research and learning, advocacy and community mobilisation, poverty assessments Power is often used with other descriptive words. and policy processes, local governance and Power ‘over’ refers to the ability of the powerful to decentralisation, and rights-based and citizenship- affect the actions and thought of the powerless. The building approaches. At the same time, with their power ‘to’ is important for the capacity to act; to increasing acceptance in mainstream development exercise agency and to realise the potential of rights, discourse, many of these approaches risked citizenship or voice. Power ‘within’ often refers to becoming techniques which did not pay sufficient gaining the sense of self-identity, confidence and attention to the power relations within and awareness that is a precondition for action. Power surrounding their use. Increasingly, the work of the ‘with’ refers to the synergy which can emerge through Participation Group at IDS and many of our partnerships and collaboration with others, or through associates began to look for approaches which put processes of collective action and alliance building.1 an understanding of power back in the centre of our understanding of the concepts and practices of My own view of power was shaped by my own participation. history of engaging with power relations in a particular context. As a young graduate in political My own work focused mainly on the intersection of science, I began working with grassroots citizens in a power with processes of citizen engagement in remote mining valley of one of the poorest parts of governance at the local, national and global levels. the USA in their efforts to claim political, economic Work with Anne Marie Goetz asked questions about and social rights vis-à-vis government and a London- the most important spaces in which citizens could based corporate mine owner. The conventional views effectively engage, and how to move citizen voice of democracy and power in the USA which I had from access, to presence, to influence (Goetz and learned in my studies failed to explain the reality I Gaventa 2001). Work with other colleagues encountered. Though violations of democratic rights, examined how citizens participated in policy spaces enormous inequalities in wealth and appalling surrounding poverty reduction, and concluded with a environmental living conditions were to be found call for moving from ‘from policy to power’ (Brock et everywhere, there was little visible conflict or action al. 2004). Through the Development Research for change. Centre on Citizenship, Participation and Accountability, I worked and learned with a research There was something about power which had led team, led by Andrea Cornwall and Vera Coehlo, not only to defeat where voices had been raised, but which was examining the spaces and dynamics of also, somehow, over time, the voices had been citizen participation (Cornwall and Coehlo 2004; silenced altogether.2 Much of my work then shifted 2006). Some work, through LogoLink,3 focused on to how citizens recovered a sense of their capacity to citizen participation at the local level. Other work act, and how they mobilised to get their issues heard focused on global citizen action (Edwards and and responded to in the public agenda. For almost Gaventa 2001). In all of these areas, the issues of 20 years, from the mid-1970s to the mid-1990s, power and its links with processes of citizen while also teaching and researching at the University engagement, participation and deepening forms of of Tennessee, I was practically engaged with a non- democracy were always lurking somewhere close to governmental organisation (NGO) working for the surface. 24 Gaventa Finding the Spaces for Change: A Power Analysis Figure 1 The ‘power cube': the levels, spaces and forms of power LEVELS Global National FORMS Local Invisible Closed Hidden Invited Visible Claimed/ SPACES Created Increasingly, we began to search for approaches within developing countries, and to encourage self- which could make the implicit power perspective reflection on the power which they as donor agencies more explicit, and which would help to examine the exercise (Development Research Centre 2003). I have interrelationships of the forms of power which we shared it in a workshop on political capacity building were encountering in different political spaces and with NGOs in Indonesia, especially to analyse and settings. Building on my previous work based on the reflect on the ways in which they move from working ‘three dimensions’ of power developed
Recommended publications
  • The Observability of the Fibonacci and the Lucas Cubes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 255 (2002) 55–63 www.elsevier.com/locate/disc The observability of the Fibonacci and the Lucas cubes Ernesto DedÃo∗;1, Damiano Torri1, Norma Zagaglia Salvi1 Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy Received 5 April 1999; received inrevised form 31 July 2000; accepted 8 January2001 Abstract The Fibonacci cube n is the graph whose vertices are binary strings of length n without two consecutive 1’s and two vertices are adjacent when their Hamming distance is exactly 1. If the binary strings do not contain two consecutive 1’s nora1intheÿrst and in the last position, we obtainthe Lucas cube Ln. We prove that the observability of n and Ln is n, where the observability of a graph G is the minimum number of colors to be assigned to the edges of G so that the coloring is proper and the vertices are distinguished by their color sets. c 2002 Elsevier Science B.V. All rights reserved. MSC: 05C15; 05A15 Keywords: Fibonacci cube; Fibonacci number; Lucas number; Observability 1. Introduction A Fibonacci string of order n is a binary string of length n without two con- secutive ones. Let and ÿ be binary strings; then ÿ denotes the string obtained by concatenating and ÿ. More generally, if S is a set of strings, then Sÿ = {ÿ: ∈ S}. If Cn denotes the set of the Fibonacci strings of order n, then Cn+2 =0Cn+1 +10Cn and |Cn| = Fn, where Fn is the nth Fibonacci number.
    [Show full text]
  • On Hardy's Apology Numbers
    ON HARDY’S APOLOGY NUMBERS HENK KOPPELAAR AND PEYMAN NASEHPOUR Abstract. Twelve well known ‘Recreational’ numbers are generalized and classified in three generalized types Hardy, Dudeney, and Wells. A novel proof method to limit the search for the numbers is exemplified for each of the types. Combinatorial operators are defined to ease programming the search. 0. Introduction “Recreational Mathematics” is a broad term that covers many different areas including games, puzzles, magic, art, and more [31]. Some may have the impres- sion that topics discussed in recreational mathematics in general and recreational number theory, in particular, are only for entertainment and may not have an ap- plication in mathematics, engineering, or science. As for the mathematics, even the simplest operation in this paper, i.e. the sum of digits function, has application outside number theory in the domain of combinatorics [13, 26, 27, 28, 34] and in a seemingly unrelated mathematical knowledge domain: topology [21, 23, 15]. Pa- pers about generalizations of the sum of digits function are discussed by Stolarsky [38]. It also is a surprise to see that another topic of this paper, i.e. Armstrong numbers, has applications in “data security” [16]. In number theory, functions are usually non-continuous. This inhibits solving equations, for instance, by application of the contraction mapping principle because the latter is normally for continuous functions. Based on this argument, questions about solving number-theoretic equations ramify to the following: (1) Are there any solutions to an equation? (2) If there are any solutions to an equation, then are finitely many solutions? (3) Can all solutions be found in theory? (4) Can one in practice compute a full list of solutions? arXiv:2008.08187v1 [math.NT] 18 Aug 2020 The main purpose of this paper is to investigate these constructive (or algorith- mic) problems by the fixed points of some special functions of the form f : N N.
    [Show full text]
  • Figurate Numbers
    Figurate Numbers by George Jelliss June 2008 with additions November 2008 Visualisation of Numbers The visual representation of the number of elements in a set by an array of small counters or other standard tally marks is still seen in the symbols on dominoes or playing cards, and in Roman numerals. The word "calculus" originally meant a small pebble used to calculate. Bear with me while we begin with a few elementary observations. Any number, n greater than 1, can be represented by a linear arrangement of n counters. The cases of 1 or 0 counters can be regarded as trivial or degenerate linear arrangements. The counters that make up a number m can alternatively be grouped in pairs instead of ones, and we find there are two cases, m = 2.n or 2.n + 1 (where the dot denotes multiplication). Numbers of these two forms are of course known as even and odd respectively. An even number is the sum of two equal numbers, n+n = 2.n. An odd number is the sum of two successive numbers 2.n + 1 = n + (n+1). The even and odd numbers alternate. Figure 1. Representation of numbers by rows of counters, and of even and odd numbers by various, mainly symmetric, formations. The right-angled (L-shaped) formation of the odd numbers is known as a gnomon. These do not of course exhaust the possibilities. 1 2 3 4 5 6 7 8 9 n 2 4 6 8 10 12 14 2.n 1 3 5 7 9 11 13 15 2.n + 1 Triples, Quadruples and Other Forms Generalising the divison into even and odd numbers, the counters making up a number can of course also be grouped in threes or fours or indeed any nonzero number k.
    [Show full text]
  • Fibonacci's Perfect Spiral
    Middle School Fibonacci's Perfect Spiral This l esson was created to combine math history, math, critical thinking, and art. Students will l earn about Fibonacci, the code he created, and how the Fibonacci sequence relates to real l ife and the perfect spiral. Students will practice drawing perfect spirals and l earn how patterns are a mathematical concept that surrounds us i n real l ife. This l esson i s designed to take 3 to 4 class periods of 45 minutes each, depending on the students’ focus and depth of detail i n the assignments. Common Core CCSS.MATH.CONTENT.HSF.IF.A.3 Recognize that Standards: sequences are functions, sometimes defined recursively, whose domain i s a subset of the i ntegers. For example, the Fibonacci sequence i s defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n­1) for n ≥ 1. CCSS.MATH.CONTENT.7.EE.B.4 Use variables to represent quantities i n a real­world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. CCSS.MATH.CONTENT.7.G.A.1 Solve problems involving scale drawings of geometric figures, i ncluding computing actual l engths and areas from a scale drawing and reproducing a scale drawing at a different scale. CCSS.MATH.CONTENT.7.G.A.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. CCSS.MATH.CONTENT.8.G.A.2 Understand that a two­dimensional figure i s congruent to another i f the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
    [Show full text]
  • Student Task Statements (8.7.B.3)
    GRADE 8 MATHEMATICS BY NAME DATE PERIOD Unit 7, Lesson 3: Powers of Powers of 10 Let's look at powers of powers of 10. 3.1: Big Cube What is the volume of a giant cube that measures 10,000 km on each side? 3.2: Taking Powers of Powers of 10 1. a. Complete the table to explore patterns in the exponents when raising a power of 10 to a power. You may skip a single box in the table, but if you do, be prepared to explain why you skipped it. expression expanded single power of 10 b. If you chose to skip one entry in the table, which entry did you skip? Why? 2. Use the patterns you found in the table to rewrite as an equivalent expression with a single exponent, like . GRADE 8 MATHEMATICS BY NAME DATE PERIOD 3. If you took the amount of oil consumed in 2 months in 2013 worldwide, you could make a cube of oil that measures meters on each side. How many cubic meters of oil is this? Do you think this would be enough to fill a pond, a lake, or an ocean? 3.3: How Do the Rules Work? Andre and Elena want to write with a single exponent. • Andre says, “When you multiply powers with the same base, it just means you add the exponents, so .” • Elena says, “ is multiplied by itself 3 times, so .” Do you agree with either of them? Explain your reasoning. Are you ready for more? . How many other whole numbers can you raise to a power and get 4,096? Explain or show your reasoning.
    [Show full text]
  • 2018 Summer High School Program Placement Exam for Level B NAME
    2018 Summer High School Program Placement Exam for Level B NAME: Multiple Choice: Indicate your answer in the box to the right of each question. 1 1. Which of the following is closest to 2 ? 2 7 9 10 23 (A) 3 (B) 13 (C) 19 (D) 21 (E) 48 2. If 42x = 4 and 4−5y = 32, then what is the value of (−4)x−y? 1 1 (A) −4 (B) −2 (C) − 4 (D) 4 (E) 4 3. On an analog clock, how many times do the hour and minute hands coincide between 11:30am on Monday and 11:30am on Tuesday? (A) 12 (B) 13 (C) 22 (D) 23 (E) 24 4. If −1 ≤ a ≤ 2 and −2 ≤ b ≤ 3, find the minimum value of ab. (A) −6 (B) −5 (C) −4 (D) −3 (E) −2 5. A fair coin is tossed 5 times. What is the probability that it will land tails at least half the time? 3 5 1 11 13 (A) 16 (B) 16 (C) 2 (D) 16 (E) 16 6. Let f(x) = j5 − 2xj. If the domain of f(x) is (−3; 3], what is the range of f(x)? (A) [−1; 11) (B) [0; 11) (C) [2; 8) (D) [1; 11) (E) None of these 7. When (a+b)2018 +(a−b)2018 is fully expanded and all the like terms are combined, how many terms are there? (A) 1008 (B) 1009 (C) 1010 (D) 2018 (E) 2019 8. How many factors does 10! have? (A) 64 (B) 80 (C) 120 (D) 240 (E) 270 9.
    [Show full text]
  • Solve the Rubik's Cube Using Proc
    Solve the Rubik’s Cube using Proc IML Jeremy Hamm Cancer Surveillance & Outcomes (CSO) Population Oncology BC Cancer Agency Overview Rubik’s Cube basics Translating the cube into linear algebra Steps to solving the cube using proc IML Proc IML examples The Rubik’s Cube 3x3x3 cube invented in 1974 by Hungarian Erno Rubik – Most popular in the 80’s – Still has popularity with speed-cubers 43x1018 permutations of the Rubik’s Cube – Quintillion Interested in discovering moves that lead to permutations of interest – or generalized permutations Generalized permutations can help solve the puzzle The Rubik’s Cube Made up of Edges and corners Pieces can permute – Squares called facets Edges can flip Corners can rotate Rubik’s Cube Basics Each move can be defined as a combination of Basic Movement Generators – each face rotated a quarter turn clockwise Eg. – Movement of front face ¼ turn clockwise is labeled as move F – ¼ turn counter clockwise is F-1 – 2 quarter turns would be F*F or F2 Relation to Linear Algebra The Rubik’s cube can represented by a Vector, numbering each facet 1-48 (excl centres). Permutations occur through matrix algebra where the basic movements are represented by Matrices Ax=b Relation to Linear Algebra Certain facets are connected and will always move together Facets will always move in a predictable fashion – Can be written as: F= (17,19,24,22) (18,21,23,20) (6,25,43,16) (7,28,42,13) (8,30,41,11) Relation to Linear Algebra Therefore, if you can keep track of which numbers are edges and which are corners, you can use a program such as SAS to mathematically determine moves which are useful in solving the puzzle – Moves that only permute or flip a few pieces at a time such that it is easy to predict what will happen Useful Group Theory Notes: – All moves of the Rubik’s cube are cyclical where the order is the number of moves needed to return to the original Eg.
    [Show full text]
  • The Mathematical Beauty of Triangular Numbers
    2015 HAWAII UNIVERSITY INTERNATIONAL CONFERENCES S.T.E.A.M. & EDUCATION JUNE 13 - 15, 2015 ALA MOANA HOTEL, HONOLULU, HAWAII S.T.E.A.M & EDUCATION PUBLICATION: ISSN 2333-4916 (CD-ROM) ISSN 2333-4908 (ONLINE) THE MATHEMATICAL BEAUTY OF TRIANGULAR NUMBERS MULATU, LEMMA & ET AL SAVANNAH STATE UNIVERSITY, GEORGIA DEPARTMENT OF MATHEMATICS The Mathematical Beauty Of Triangular Numbers Mulatu Lemma, Jonathan Lambright and Brittany Epps Savannah State University Savannah, GA 31404 USA Hawaii University International Conference Abstract: The triangular numbers are formed by partial sum of the series 1+2+3+4+5+6+7….+n [2]. In other words, triangular numbers are those counting numbers that can be written as Tn = 1+2+3+…+ n. So, T1= 1 T2= 1+2=3 T3= 1+2+3=6 T4= 1+2+3+4=10 T5= 1+2+3+4+5=15 T6= 1+2+3+4+5+6= 21 T7= 1+2+3+4+5+6+7= 28 T8= 1+2+3+4+5+6+7+8= 36 T9=1+2+3+4+5+6+7+8+9=45 T10 =1+2+3+4+5+6+7+8+9+10=55 In this paper we investigate some important properties of triangular numbers. Some important results dealing with the mathematical concept of triangular numbers will be proved. We try our best to give short and readable proofs. Most of the results are supplemented with examples. Key Words: Triangular numbers , Perfect square, Pascal Triangles, and perfect numbers. 1. Introduction : The sequence 1, 3, 6, 10, 15, …, n(n + 1)/2, … shows up in many places of mathematics[1] .
    [Show full text]
  • Florentin Smarandache
    FLORENTIN SMARANDACHE SEQUENCES OF NUMBERS INVOLVED IN UNSOLVED PROBLEMS 1 141 1 1 1 8 1 1 8 40 8 1 1 8 1 1 1 1 12 1 1 12 108 12 1 1 12 108 540 108 12 1 1 12 108 12 1 1 12 1 1 1 1 16 1 1 16 208 16 1 1 16 208 1872 208 16 1 1 16 208 1872 9360 1872 208 16 1 1 16 208 1872 208 16 1 1 16 208 16 1 1 16 1 1 2006 Introduction Over 300 sequences and many unsolved problems and conjectures related to them are presented herein. These notions, definitions, unsolved problems, questions, theorems corollaries, formulae, conjectures, examples, mathematical criteria, etc. ( on integer sequences, numbers, quotients, residues, exponents, sieves, pseudo-primes/squares/cubes/factorials, almost primes, mobile periodicals, functions, tables, prime/square/factorial bases, generalized factorials, generalized palindromes, etc. ) have been extracted from the Archives of American Mathematics (University of Texas at Austin) and Arizona State University (Tempe): "The Florentin Smarandache papers" special collections, University of Craiova Library, and Arhivele Statului (Filiala Vâlcea, Romania). It is based on the old article “Properties of Numbers” (1975), updated many times. Special thanks to C. Dumitrescu & V. Seleacu from the University of Craiova (see their edited book "Some Notions and Questions in Number Theory", Erhus Univ. Press, Glendale, 1994), M. Perez, J. Castillo, M. Bencze, L. Tutescu, E, Burton who helped in collecting and editing this material. The Author 1 Sequences of Numbers Involved in Unsolved Problems Here it is a long list of sequences, functions, unsolved problems, conjectures, theorems, relationships, operations, etc.
    [Show full text]
  • The TI-30X IIS Calculator and Exponents
    The TI-30X IIS Calculator and Exponents 2nd ARROWS ^ 2 x PARENTHESIS Squaring a number can be done easily using a x2 key. Cubing a number or raising it to any power can be achieved by using ^ key followed by number 3. Ø Squaring: input the number and then x2 =, 42 is found by inputting: 4 x2 = You screen will look like: 42 16 ➢ Cubing or raising a number to the third power: input the number and then ^3 =, 43 is found by inputting: 4 ^3 = You screen will look like: 4^3 64 ➢ Raising a number to a power greater than 3: input the number and then ^ (the power desired) =, (-3)4 is found by inputting: ( (-)3 ) ^ 4 = You screen will look like: (-3)^4 81 Note: if you did not put the -3 in parentheses, the orders of operation raises the 3 to the fourth power and then makes it negative, hence the answer will be -81. Be careful that you always put negative numbers in parentheses when raising them to powers. ➢ You can also take values to fractional exponents: 82/3 can be found by inputting: 8 ^ (2 ÷3) = You screen will look like: 8 ^ (2 / 3) 4 Taking a root can be done easily using √ option, which is achieved by pressing 2nd x2. Any other root (n-root), can be calculated by pressing (the root desired) 2nd ^. 2 ➢ Square root: √ the number =, is found by inputting: 2nd x 36 = You screen will look like: √(36 6 ➢ Cube root: ∛the number =, is found by inputting: 3 2nd ^ 64 = You screen will look like: 3 x√64 4 ➢ Taking a root higher than a cube root: (the root desired) 2nd ^ (the value) =, is found by inputting: 4 2nd ^ 1296 = You screen will look like: 4 x√1296 6 Since the root symbol works like a grouping symbol, there is no need to use parentheses for negative values.
    [Show full text]
  • Noncrossing Partitions Rodica Simion ∗ Department of Mathematics, the George Washington University, Washington, DC 20052, USA
    View metadata, citation and similar papers at core.ac.ukDiscrete Mathematics 217 (2000) 367–409 brought to you by CORE www.elsevier.com/locate/disc provided by Elsevier - Publisher Connector Noncrossing partitions Rodica Simion ∗ Department of Mathematics, The George Washington University, Washington, DC 20052, USA Received 8 September 1998; revised 5 November 1998; accepted 11 June 1999 Abstract In a 1972 paper, Germain Kreweras investigated noncrossing partitions under the reÿnement order relation. His paper set the stage both for a wealth of further enumerative results, and for new connections between noncrossing partitions, the combinatorics of partially ordered sets, and algebraic combinatorics. Without attempting to give an exhaustive account, this article illustrates aspects of enumerative and algebraic combinatorics supported by the lattice of noncrossing par- titions, re ecting developments since Germain Kreweras’ paper. The sample of topics includes instances when noncrossing partitions arise in the context of algebraic combinatorics, geometric combinatorics, in relation to topological problems, questions in probability theory and mathe- matical biology. c 2000 Elsevier Science B.V. All rights reserved. RÃesumÃe Dans un article paru en 1972, Germain Kreweras ÿt uneetude à des partitions noncroisÃees en tant qu’ensemble ordonnÃe. Cet article crÃea le cadre ou, depuis lors, on a dÃeveloppÃe une multitude de rÃesultats supplÃementaires ainsi que des nouveaux liens entre les partitions noncroisÃees, la combinatoire des ensembles ordonnÃes et la combinatoire algÃebrique. Sans ta ˆcher d’en donner un traitement au complet, l’article prÃesent exempliÿe quelques aspectsenumà à eratifs et de combi- natoire algÃebrique ou interviennent les partitions noncroisÃees. Ceux-ci mettent enevidence à des dÃeveloppements survenus depuis la publication de l’article de Germain Kreweras et qui portent sur des problÂemes en combinatoire algÃebrique et gÃeomÃetrique, ainsi que sur des questions reliÃees a la topologie, aux probabilitÃes eta  la biologie mathÃematique.
    [Show full text]
  • MTJPAM Lucas Cube Vs Zeckendorf's Lucas Code
    Montes Taurus J. Pure Appl. Math. 3 (2), 47–50, 2021 MTJPAM ISSN: 2687-4814 Lucas Cube vs Zeckendorf’s Lucas Code Sadjia Abbad ID a, Hacene` Belbachir ID b, Ryma Ould-Mohamed ID c aUSTHB, Faculty of Mathematics, RECITS Laboratory, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, Algeria. Saad Dahlab University, BP 270, Route de Soumaa, Blida, Algeria bUSTHB, Faculty of Mathematics, RECITS Laboratory, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, Algeria cUSTHB, Faculty of Mathematics, RECITS Laboratory, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, Algeria. University of Algiers 1, 2 Rue Didouche Mourad, Alger Ctre 16000, Algiers, Algeria Abstract The theorem of Zeckendorf states that every positive integer n can be uniquely decomposed as a sum of non consecutive Lucas P numbers in the form n = i biLi, where bi 2 f0; 1g and satisfy b0b2 = 0. The Lucas string is a binary string that do not contain two consecutive 1’s in a circular way. In this note, we derive a bijection between the set of Zeckendorf’s Lucas codes and the set of vertices of the Lucas’ strings. Keywords: Fibonacci numbers, Lucas numbers, Fibonacci cube, Lucas cube 2010 MSC: 11B39, 05C99 1. Introduction The Fibonacci numbers (Fn)n≥0 given by F0 = 0; F1 = 1 and Fn+1 = Fn + Fn−1; n ≥ 1; constitute a basis element of the binary Fibonacci numeration system, see for instance [11]. Every integer 0 ≤ N < Fn+1 has a unique binary representation a2a3 ··· an, such that Xn N = aiFi; i=2 with ai 2 f0; 1g and aiai+1 = 0; for 2 ≤ i ≤ n − 1: The binary string a2 ··· an is called a Zeckendorf’s Fibonacci code.
    [Show full text]