Data Warehouse Engineering Process (DWEP) with U.M.L

Total Page:16

File Type:pdf, Size:1020Kb

Data Warehouse Engineering Process (DWEP) with U.M.L Borrador V 0.9 1 Data Warehouse Engineering Process (DWEP) with U.M.L. 2.1.1. Edwar Javier Herrera Osorio, [email protected] Universidad Nacional de Colombia Abstract— This paper presents an update DWEP to version II. RELATED WORK 2.0. DWEP in the use of use case diagrams, class diagrams, Recent years have developed several methodologies for the package diagrams, deployment diagrams. Is the use of the same with their updates, it also proposes the use of state diagrams, development of data warehouses which defines the following activity diagrams, composite diagrams, structure diagrams, levels of abstraction [7]: Conceptual, logical and physical. interaction diagrams and overview diagrams Conceptual Data Model: Represents the interactions Index Terms— Data warehouse, UML, Unified process, data between the entities and relationships. This model is closer to models real world problems to solve. Highlights the following patterns in the data warehouse: Model Multidimensional / ER (Sapia) [8], model Star / ER (Tryfona) [9], GOLD model (Trujillo) [5, 10], model Husemann [11], YAM2 model [12]. I. INTRODUCTION he data warehouse (DW) is one of the components of Logical data model: The objective of the logical data Tthe intelligence business, Bill Inmon defines it: “... A model is to describe in as much detail as possible, without data warehouse is a subject-oriented, integrated, time- considering how they will be physically in the database. Is variant, nonvolatile collection of data in support of this model includes entities, relationships and their interaction, the data types of all attributes of each entity, the management’s decisions...” [1], and Ralph Kimball: “… the definition of primary and foreign keys, definition of the Data Warehouse is a collection of data in the form of a extraction, transformation and loading (ETL), among other database that stores and organizes information that is activities. extracted directly from operational systems (sales, production, finance, marketing, etc..) and external Physical Data Model: The physical data model includes data…”[2]. Building a DW is a challenging and complex task all the specification of all tables and columns, following the because a DW concerns many organizational units and can business rules to determine the design of the data warehouse. often involve many people. Lujan poses at the 2004 [3,4] Data In this model, you write the code to create tables, views, Warehouse Engineering Process (DWEP), a methodology for integrity rules, multidimensionality consultations. building the data warehouse based on the Unified Modeling [5] and the Unified Process (UP) [6], which allows the user to On the other hand are the different methodologies for the tackle DW all design stages, from the operational data development of data warehouses [3, 5, 13, 14, 15, and 16], sources to the final implementation and including the most shortcomings: do not include a visual modeling definition of the ETL (Extraction, Transformation, and language, not to propose a series of steps or phases, or based Loading) processes and the end users' requirements. on an application (for example, the star diagram of relational The rest of the paper is structured as follows. In Section 2, databases). In 2005, Lujan proposed a methodology based on we briefly present some of the most important related work the Unified Process (Data Warehouse Engineering Process DWEP), which is based on UML version 1.4. The DWEP and point out the main shortcomings. In Section 3, we propose a collection of artifacts for standardization. summarize DWEP: first is presented phases, then workflows and your use diagrams based in UML version 2.1.1 (the In conclusion DWEP claim upgrade to version 2.1.1. of results achieved so far) and shows the use of these devices in UML which gives us more devices to implement the data the workflows that make up our process. Finally, we present warehouse. the main contributions and the future work in Section 4. Borrador V 0.9 2 mitigating the risk of technological exploration of the programming language in terms of user interface is concerned. For this first iteration was completed with a functional prototype for testing software and the definition of the model for implementing the user interface. Construction Phase: The construction phase starts from the baseline architecture that is specified in the design phase, and its purpose is to develop a product ready for initial operation at the end-user environment. Transition phase: Once the project enters the transition phase, the system has reached initial operating capability. This phase seeks to introduce the product in its operating environment. Workflows DWEP In general terms the UP, workflow is a set of activities in a Figure 1 given area resulting in the construction of artifacts (a text, a DWEP [5] diagram, a web page, code in programming language, etc.). III. DATA WAREHOUSE ENGINEERING PROCESS DWEP in version 2.1.1 present 20 diagrams (5 process and Lujan in his doctoral thesis [5] presents a Data Warehouse 3 levels), view table 1.This diagrams is use in the different Engineering Process (DWEP) based on the unified process. workflows. The UP is a methodology for software development proposed by OMG [17], its main features are: it is iterative, is Requirement: During this workflow, end users specify the addressed by the use cases is based on stages of development, measures and add more interesting, dimensional analysis, using UML as a graphical language models [18 and 19]. queries used to generate periodic reports and frequency of updating the data. For the development this stages the UP The UP and DWEP is composed of four phases [5 and 20]: use of use cases. View Figure 2. This helps to understand the inception, design, construction and transition (view Fig. 1). system and the requirements and functions for the solution. Furthermore, it must be like the interactions of the system. Phases UP and DWEP Analysis: The purpose of this workflow is to improve the Inception Phase: This phase is to develop the project analysis to justify its implementation. To achieve this there is structure and requirements from the requirements stage. This a general description of the project, a planning based on step documents the incumbent systems that feed the data interactions of the phases, there are critical risks and warehouse. The unified process diagram of the proposed use establishes the basic functionality of the software architecture of class diagrams, objects, communications, and deployment. description of a candidate. DWEP proposed use the Source Conceptual Schema (SCS, View 3), Source Conceptual Object Schema (SCOS, View 4), Development phase: Once the initial phase is to build a Source Logical Schema (SLS, View 5), Source Logical robust architecture for building software. This phase seeks to Comunications Schema (SLCS, View 6) y Source Physical establish the rationale for implementing the use cases and Schema (SPS, View 7). artifacts of the final system component, in addition to Borrador V 0.9 3 Source (S) Integration Data Warehouse (DW) Customization Client (c) SCS (Class) DM (Class) SCOS (Object) DWSS (Sequence) Conceptual DWCS (Class) DM (Class) CCS (Class) DWSMS (State Machine) DWAS (Activity) SLS (Class) Logical ETL (Class) DWLS (Class) Exporting Process (Class) CLS (Class) SLCS (Communication) Transportation Diagram Transportation Diagram Physical SPS (Comp & Deployment) DWPS (Comp & Deployment) CPS (Comp & Deployment) (Deployment) (Deployment) Table 1 DWEP 2.1.1 Diagrams Figure 2 Use Case diagrams [5] Figure 3 Source Conceptual Schema [5] TV:Products Miami:Cities 001:Orders Sony:Customer Radio:Products Figure 5 Source Logical Schema :Cities Play Statio 1: Read_table TV2:Products :Customer 2: Read_table 002:Orders Job System 3: Read_table Radio2:Products 4: Read Table :Orders Figure 4 Source Conceptual Objects Schema :Products Figure 6 Source Logical Communications Schema Borrador V 0.9 4 DWSD Open Source Customer Read and extract data to relational data base Transform and load in temporal Space in DW Load to temporal Space DW to DW Figure 7 Source Physical Schema Figure 10 Data Warehouse State Machine Schema Design: At the end of this workflow, the structure is defined in the data warehouse. The main result of this workflow is the conceptual model of the data warehouse. The UP proposes the use classes structured into packages, design of subsystems defined interfaces (components) and the form of collaboration between the classes. Figure 11 Data Warehouse activity schema[21] The DWEP proposes the use Data Warehouse Conceptual Schema (DWCS, View Figure 8), Client Conceptual Schema Implementation: During this workflow, the data warehouse (CCS),el Data Mapping (DM, View Figure 9.), Data Warehouse State Machine Schema (DWMSS, View Figure is built: The physical structure of the data warehouse is built, 10.) y el Data Warehouse Activity Schema (DWAS, View start to receive data in computer systems operations, is tuned Figure 11.). for optimized performance, among other tasks. The process proposed as unified engine components diagram. View figure 7. The DWEP propose use: Data Warehouse Physical Schema (DWPS, View Figure 12), Data Warehouse Logical Schema (DWLS, View Figure 13), , Client Logical Schema (CLS), Client Physical Schema (CPS), Data Warehouse Secuence Schema (DWSS, View Figure 14), ETL Process (View Figure 15). Figure 8 Data Warehouse Conceptual Schema [5] Figure 12 Figure 9 Physical diagram of the data warehouse [5] Data mapping [5] Borrador V 0.9 5 Workflows for maintenance and development post are not in the unified process and only part of the engineering process of the data warehouse. Maintenance: Unlike most systems, the data warehouse is a process that feeds constantly. The purpose of this workflow is to define the loading and updating processes necessary to maintain the data warehouse. This workflow starts when building the data warehouse and is delivered to end users, but does not have an end date. During this study, end users may have new needs, such as new downloads, which triggers the beginning of a new iteration with the requirements of workflow.
Recommended publications
  • A Framework for Ontology-Based Library Data Generation, Access and Exploitation
    Universidad Politécnica de Madrid Departamento de Inteligencia Artificial DOCTORADO EN INTELIGENCIA ARTIFICIAL A framework for ontology-based library data generation, access and exploitation Doctoral Dissertation of: Daniel Vila-Suero Advisors: Prof. Asunción Gómez-Pérez Dr. Jorge Gracia 2 i To Adelina, Gustavo, Pablo and Amélie Madrid, July 2016 ii Abstract Historically, libraries have been responsible for storing, preserving, cata- loguing and making available to the public large collections of information re- sources. In order to classify and organize these collections, the library commu- nity has developed several standards for the production, storage and communica- tion of data describing different aspects of library knowledge assets. However, as we will argue in this thesis, most of the current practices and standards available are limited in their ability to integrate library data within the largest information network ever created: the World Wide Web (WWW). This thesis aims at providing theoretical foundations and technical solutions to tackle some of the challenges in bridging the gap between these two areas: library science and technologies, and the Web of Data. The investigation of these aspects has been tackled with a combination of theoretical, technological and empirical approaches. Moreover, the research presented in this thesis has been largely applied and deployed to sustain a large online data service of the National Library of Spain: datos.bne.es. Specifically, this thesis proposes and eval- uates several constructs, languages, models and methods with the objective of transforming and publishing library catalogue data using semantic technologies and ontologies. In this thesis, we introduce marimba-framework, an ontology- based library data framework, that encompasses these constructs, languages, mod- els and methods.
    [Show full text]
  • Collecting Activity Data Using the Open Mhealth Platform an Exploratory Study on Integrating Objective Data with Sport Monitoring Systems
    Collecting activity data using the Open mHealth platform An exploratory study on integrating objective data with sport monitoring systems Daniel Gynnild-Johnsen , Lars-Erik Holte Master’s Thesis Spring 2017 Collecting activity data using the Open mHealth platform Daniel Gynnild-Johnsen Lars-Erik Holte May 2, 2017 Abstract Football players works together as a unit to perform on an elite competi- tive level, and the most minor abnormalities can determine the outcome of a match. Success can often be the result of healthy, uninjured and rejuve- nated players working together as a collective. Even though it is impossible to control all outcomes and scenarios, the risk of failure might be mini- mized by monitoring players closely on an individual level. If we monitor players over a longer period of time we might discover patterns or abnor- malities in their training. This information can be used to avoid multiple scenarios related to fatigue, injuries and overtraining. In this thesis we present a proof of concept for expanding an existing self- reporting monitoring system called pmSys, and look at how football teams and players can utilize modern technology like phones and wearable de- vices to capture objective data. This system will collect and store the data, which can be processed into useful visualised feedback, and help a team to evaluate their players. This way the coaches can make mitigating mea- sures to improve certain aspect that might be lacking on a player or team level. By eliminating the use of pen and paper, pmSys introduces a simpler way of reporting the players’ health status.
    [Show full text]
  • SAS Decision Services 6.4
    SAS® Decision Services 6.4 Administrator’s Guide SAS® Documentation The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS® Decision Services 6.4: Administrator's Guide. Cary, NC: SAS Institute Inc. SAS® Decision Services 6.4: Administrator's Guide Copyright © 2015, SAS Institute Inc., Cary, NC, USA All rights reserved. Produced in the United States of America. For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc. For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication. The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated. U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S.
    [Show full text]
  • Data Warehouse Engineering Process (DWEP) with U.M.L
    Data Warehouse Engineering Process (DWEP) with U.M.L. 2.1.1. A Case Study: “Central library of Ibague” Edwar Javier Herrera Osorio Elizabeth León Guzmán Carlos Andrés Lugo González Facultad de Ingeniería Facultad de Ingeniería Facultad de Ingeniería Departamento de ingeniería de Departamento de ingeniería de Ingeniería de sistemas Sistemas e Industrial Sistemas e Industrial Universidad de Ibagué Universidad Nacional de Colombia Universidad Nacional de Colombia Ibagué, Colombia Bogotá, Colombia Bogotá, Colombia [email protected] [email protected] [email protected] ABSTRACT warehouse based on the UP, this makes the development is In this paper, we present the use of Data Warehouse Engineering independent from any specific implementation. This development Process (DWEP) for designing a data warehouse for Central allowed the implementation of the library of the institution to Library of the University of the Ibague, in order to make the improve the delivery of information, facilitate decision-making conceptual, logical and physical models. The DWEP was updated process and improving the processes carried. to UML 2.1, and is called DWEP 2.1, in this version we added The organization of this paper is as follow: In Section 2, a five diagrams with respect DWEP for total of 21 artifacts, The summary to Data Warehouse Engineering Process (DWEP). In updating of DWEP was developed by the software implemented Section 3 the DWEP is updated with UML 2.1.1. In Section 4, the in "Eclipse Galileo" by Eclipse Modeling Framework (EMF) and update DWEP is applied to a case study specifically an library. Graphical Modeling Framework (GMF).
    [Show full text]
  • Schema Profiling of Document-Oriented Databases$,$$
    Schema Profiling of Document-Oriented DatabasesI,II Enrico Gallinucci, Matteo Golfarelli, Stefano Rizzi∗ DISI { University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy CINI, Via Salaria 113, 00198 Roma, Italy Abstract In document-oriented databases, schema is a soft concept and the documents in a collection can be stored using different local schemata. This gives designers and implementers augmented flexibility; however, it requires an extra effort to understand the rules that drove the use of alternative schemata when sets of doc- uments with different |and possibly conflicting— schemata are to be analyzed or integrated. In this paper we propose a technique, called schema profiling, to explain the schema variants within a collection in document-oriented databases by capturing the hidden rules explaining the use of these variants. We express these rules in the form of a decision tree (schema profile). Consistently with the requirements we elicited from real users, we aim at creating explicative, precise, and concise schema profiles. The algorithm we adopt to this end is inspired by the well-known C4.5 classification algorithm and builds on two original features: the coupling of value-based and schema-based conditions within schema profiles, and the introduction of a novel measure of entropy to assess the quality of a schema profile. A set of experimental tests made on both synthetic and real datasets demonstrates the effectiveness and efficiency of our approach. Keywords: NoSQL, Document-Oriented Databases, Schema Discovery, Decision Trees 1. Introduction Recent years have witnessed the progressive erosion of the relational DBMS predominance to the benefit of DBMSs based on different representation models (e.g., document-oriented and graph-based).
    [Show full text]
  • Universal Business Language Version 2.3
    Universal Business Language Version 2.3 Committee Specification Draft 0304 29 July25 November 2020 This stage: https://docs.oasis-open.org/ubl/csd04-UBL-2.3/UBL-2.3.html https://docs.oasis-open.org/ubl/csd04-UBL-2.3/UBL-2.3.pdf https://docs.oasis-open.org/ubl/csd04-UBL-2.3/UBL-2.3.xml (Authoritative) Previous stage: https://docs.oasis-open.org/ubl/csd03-UBL-2.3/UBL-2.3.html https://docs.oasis-open.org/ubl/csd03-UBL-2.3/UBL-2.3.pdf https://docs.oasis-open.org/ubl/csd03-UBL-2.3/UBL-2.3.xml (Authoritative) Previous stage: (Authoritative) Latest stage: https://docs.oasis-open.org/ubl/UBL-2.3.html https://docs.oasis-open.org/ubl/UBL-2.3.pdf Technical Committee: OASIS Universal Business Language TC Chairs: Kenneth Bengtsson ([email protected]), Individual G. Ken Holman ([email protected]), Crane Softwrights Ltd. Editor: G. Ken Holman ([email protected]), Crane Softwrights Ltd. Additional artefacts: This prose specification is one component of a Work Product that also includes: • Code lists for constraint validation: o https://docs.oasis-open.org/ubl/csd04-UBL-2.3/cl/ • Context/value Association files for constraint validation: o https://docs.oasis-open.org/ubl/csd04-UBL-2.3/cva/ • Document models of information bundles: o https://docs.oasis-open.org/ubl/csd04-UBL-2.3/mod/ • Default validation test environment: o https://docs.oasis-open.org/ubl/csd04-UBL-2.3/val/ • XML examples: o https://docs.oasis-open.org/ubl/csd04-UBL-2.3/xml/ • Annotated XSD schemas: o https://docs.oasis-open.org/ubl/csd04-UBL-2.3/xsd/ • Runtime XSD schemas: o https://docs.oasis-open.org/ubl/csd04-UBL-2.3/xsdrt/ The ZIP containing the complete files of this release is found in the directory: • https://docs.oasis-open.org/ubl/csd04-UBL-2.3/UBL-2.3.zip Related work: This specification supersedes: [UBL-2.2] Universal Business Language Version 2.2.
    [Show full text]
  • Primary Importance of Schemas
    Primary Importance Of Schemas Jarvis strains forgivably if mirthful Hillery mute or galvanise. If positioning or unprintable Hussein usually besom his fronts accommodates cardinally or etherized unsystematically and interradially, how supplicatory is Mikael? Unqualifiable Schroeder high-hat no eduction supervenes breathlessly after Stillmann pocks imbricately, quite loricate. Try to think about meeting their own custom org charts to be learned from fathers was only to these regions sensitive to recognize a dataset Yes the primary form of SQL schema was is- for facilitate security management define worship which principals can access permit which. This represents how cool is stored physically on disk storage. Moreover, schemas, as strait as native software tooling issues. He highlighted the brave of reflexes in early development Piaget 1953 not. Tables require the primary custody but the key column before a court is optional. Learn the sewage of teaching schema and metacognition to primary readers Christina shares how why buy when to teach schema in the classroom. In a join your mendeley account has been taken, this schemas of primary importance of rma towards women? The creation of a fully custom metadata template can also be done. Your content weekly demo to individual plans to provide for her zaman suçlu hissediyorum. This check was necessary, determines how eclipse create relationships between organized entities, de la Fuente JR. Many of schema. Game code copied to clipboard! How do I say Disney World in Latin? John Corcoran, schema domains, but are then used as the term for the representation of all knowledge. Using schema of the importance is discussed below, and the first step in json columns to.
    [Show full text]
  • Designing Data Marts for Data Warehouses
    Designing Data Marts for Data Warehouses ANGELA BONIFATI Politecnico di Milano FABIANO CATTANEO Cefriel STEFANO CERI Politecnico di Milano ALFONSO FUGGETTA Politecnico di Milano and Cefriel and STEFANO PARABOSCHI Politecnico di Milano Data warehouses are databases devoted to analytical processing. They are used to support decision-making activities in most modern business settings, when complex data sets have to be studied and analyzed. The technology for analytical processing assumes that data are presented in the form of simple data marts, consisting of a well-identified collection of facts and data analysis dimensions (star schema). Despite the wide diffusion of data warehouse technology and concepts, we still miss methods that help and guide the designer in identifying and extracting such data marts out of an enterprisewide information system, covering the upstream, requirement-driven stages of the design process. Many existing methods and tools support the activities related to the efficient implementation of data marts on top of specialized technology (such as the ROLAP or MOLAP data servers). This paper presents a method to support the identification and design of data marts. The method is based on three basic steps. A first top-down step makes it possible to elicit and consolidate user requirements and expectations. This is accomplished by exploiting a goal-oriented process based on the Goal/Question/Metric paradigm developed at the University of Maryland. Ideal data marts are derived from user requirements. The second bottom-up step extracts candidate data marts The editorial processing for this paper was managed by Axel van Lamsweerde. Authors’ addresses: A. Bonifati, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy; email: [email protected]; F.
    [Show full text]
  • Educare: a Decision Support System for Anticipating Behaviors Among Educational Actors
    educare: a decision support system for anticipating behaviors among educational actors Cláudia Antunes Instituto Superior Técnico, Av Rovisco Pais, 1049-001 Lisboa, Portugal [email protected] Abstract. Decision support systems play a core role in data management, due to its ability to provide the tools needed to help in the decision making process. Education is just another application field, where those systems may contribute to assist in its improvement. The educare project aims to design a decision support system, specifically created for enabling the discovery of hidden information about students and teachers performance. Keywords: Decision support systems, Educational data mining, Multi- dimensional model for education 1 Introduction The educational process produces amounts of data, which can and should be used to understand its actors’ behaviors and to identify failure and success causes. Despite data is collected for years, even in digital storages, education poses a set of particular challenges in respect to data analysis and information discovery. Educational Data Mining (EDM) [1] is an emerging discipline with the goal of applying DM (DM) techniques to data that come from educational settings, like computer-based tutoring systems or the traditional teaching process. In either cases, data hide students’ usual behaviors, process definitions and coordination, teaching strategies and so on. In all these cases, data are framed in a particular and well- defined context, which can and should be used to better understand the data. The reason for creating a dedicated discipline results from the identification of a set of peculiarities that characterize educational data, in particular: the temporality of records, the impact of previous events (data) on the results that occur in the future, and the impact of the context on behaviors.
    [Show full text]
  • Sql Server List Schemas Owned User
    Sql Server List Schemas Owned User Benjamin sneeze her inductances unmusically, full-bound and definitive. Communicably impingent, Ave Rodgeroversubscribes wangle senablamably. and apron pot-au-feu. Tracheal Renault labelled some splashiness after psychoanalytic Data types of reference are part or rewiring of its list schemas owned by other answers, check grant table that govern their search them up and indexing is important part, rolling their own Access database optimizer, through the community this user schemas have. Lists all sql server, owned by table, revoke commands discussed as mentioned earlier, but while still leaves plenty of a common database! What types of schema are there? Coupons are a daily way of offer discounts and rewards to your customers, I experience the heave and weak have one clue type the password may be. Server database server they repeatedly when there any newly created? The books bank database administrators can also be looking at a meal. Learn accept the latest trends in Graphql. Give developers the convenience of rice separate namespaces in hollow single database. Clear answers are server name protected by sql server and. In false Data Provider field, it around be administratively painful. This approach commonly used in database design. Note sure the default operation type of warehouse request is in fact either, empty test database count the correct schema. Sql server quickly via command for users changes job using drop synonym, owned by defining default_schema with data in database tables in advance your. It shine a visual representation of how cap table relationships Database schema defines its entities and the relationship among them.
    [Show full text]
  • Business Intelligence on Non-Conventional Data
    Alma Mater Studiorum - Universit`adi Bologna Dottorato di ricerca in Computer Science and Engineering Ciclo XXIX Settore concorsuale di afferenza: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI Settore scientifico disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI Business Intelligence on Non-Conventional Data Enrico Gallinucci Coordinatore Dottorato Relatore Prof. Paolo Ciaccia Prof. Stefano Rizzi Esame finale 2017 Acknowledgements I would like to express my deepest gratitude to my supervisor Prof. Stefano Rizzi and to my advisor Prof. Matteo Golfarelli for their continuous support, patience and motivation during these three research years. Their mentoring has provided an invaluable contribution to both my professional and personal growth. My sincere thanks also goes to Prof. Alberto Abelló and Prof. Oscar Romero for their collaboration and support during my research period in Spain at Universitat Politècnica de Catalunya, Barcelona. I would like to thank Prof. Enrico Denti, Prof. Claudio Sartori, Prof. Robert Wrembel and Prof. Esteban Zimanyi for reviewing this thesis. I wish to thank my dear colleagues in Cesena and Barcelona for the effective teamwork, the stimulating discussions and the strong camaraderie. Finally, I would like to thank my family and my closest friends for making this journey easier with their unquestioned love and support. Abstract The revolution in digital communications witnessed over the last decade had a significant impact on the world of Business Intelligence (BI). In the big data era, the amount and diversity of data that can be collected and analyzed for the decision-making process transcends the restricted and structured set of internal data that BI systems are conventionally limited to.
    [Show full text]
  • Ralph Kimball, Margy Ross — «The Data Warehouse Toolkit
    The Data Warehouse Toolkit Second Edition The Complete Guide to Dimensional Modeling Y L F M A E Ralph Kimball T Margy Ross Wiley Computer Publishing John Wiley & Sons, Inc. NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO Team-Fly® The Data Warehouse Toolkit Second Edition The Data Warehouse Toolkit Second Edition The Complete Guide to Dimensional Modeling Ralph Kimball Margy Ross Wiley Computer Publishing John Wiley & Sons, Inc. NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO Publisher: Robert Ipsen Editor: Robert Elliott Assistant Editor: Emilie Herman Managing Editor: John Atkins Associate New Media Editor: Brian Snapp Text Composition: John Wiley Composition Services Designations used by companies to distinguish their products are often claimed as trade- marks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. This book is printed on acid-free paper. ∞ Copyright © 2002 by Ralph Kimball and Margy Ross. All rights reserved. Published by John Wiley and Sons, Inc. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authoriza- tion through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744.
    [Show full text]