Regulation of the Bone Marrow Niche by Inflammation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bone Marrow and the Control of Immunity
Cellular & Molecular Immunology (2012) 9, 11–19 ß 2012 CSI and USTC. All rights reserved 1672-7681/12 $32.00 www.nature.com/cmi REVIEW Bone marrow and the control of immunity Ende Zhao1,2,7, Huanbin Xu3,7, Lin Wang2, Ilona Kryczek1,KeWu2,YuHu2, Guobin Wang2 and Weiping Zou1,4,5,6 Bone marrow is thought to be a primary hematopoietic organ. However, accumulated evidences demonstrate that active function and trafficking of immune cells, including regulatory T cells, conventional T cells, B cells, dendritic cells, natural killer T (NKT) cells, neutrophils, myeloid-derived suppressor cells and mesenchymal stem cells, are observed in the bone marrow. Furthermore, bone marrow is a predetermined metastatic location for multiple human tumors. In this review, we discuss the immune network in the bone marrow. We suggest that bone marrow is an immune regulatory organ capable of fine tuning immunity and may be a potential therapeutic target for immunotherapy and immune vaccination. Cellular & Molecular Immunology (2012) 9, 11–19; doi:10.1038/cmi.2011.47; published online 24 October 2011 Keywords: bone marrow; immunity; memory T cell; regulatory T cell; tumor INTRODUCTION to the endosteum of the bone and more around blood vessels Bone marrow is the tissue comprising the center and the epiphysis of (Figure 2). bones, which is the place where new blood cells are produced. Bone Bone marrow stroma contains multipotential non-hematopoietic marrow has been long thought to be a hematopoietic organ. However, progenitor cells (Figure 1c) capable of differentiating into various it is well known that B cells are produced and matured in the tissues of mesenchymal origin, including osteoblasts, endothelial bone marrow. -
Bcl3 Prevents Acute Inflammatory Lung Injury in Mice by Restraining Emergency Granulopoiesis
Research article Bcl3 prevents acute inflammatory lung injury in mice by restraining emergency granulopoiesis Daniel Kreisel,1,2 Seiichiro Sugimoto,1 Jeremy Tietjens,1 Jihong Zhu,1 Sumiharu Yamamoto,1 Alexander S. Krupnick,1 Ruaidhri J. Carmody,3 and Andrew E. Gelman1,2 1Department of Surgery and 2Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA. 3Department of Biochemistry and Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland. Granulocytes are pivotal regulators of tissue injury. However, the transcriptional mechanisms that regulate granulopoiesis under inflammatory conditions are poorly understood. Here we show that the transcriptional coregulator B cell leukemia/lymphoma 3 (Bcl3) limits granulopoiesis under emergency (i.e., inflammatory) conditions, but not homeostatic conditions. Treatment of mouse myeloid progenitors with G-CSF — serum concentrations of which rise under inflammatory conditions — rapidly increased Bcl3 transcript accumula- tion in a STAT3-dependent manner. Bcl3-deficient myeloid progenitors demonstrated an enhanced capacity to proliferate and differentiate into granulocytes following G-CSF stimulation, whereas the accumulation of Bcl3 protein attenuated granulopoiesis in an NF-κB p50–dependent manner. In a clinically relevant model of transplant-mediated lung ischemia reperfusion injury, expression of Bcl3 in recipients inhibited emergency granulopoiesis and limited acute graft damage. These data demonstrate a critical role for Bcl3 in -
The Role of CD40/CD40 Ligand Interactions in Bone Marrow Granulopoiesis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Review Article TheScientificWorldJOURNAL (2011) 11, 2011–2019 ISSN 1537-744X; doi:10.1100/2011/671453 The Role of CD40/CD40 Ligand Interactions in Bone Marrow Granulopoiesis Irene Mavroudi1, 2 and Helen A. Papadaki1 1Department of Hematology, University of Crete School of Medicine, P.O. Box 1352, 71110 Heraklion, Crete, Greece 2Graduate Program “Molecular Basis of Human Disease”, University of Crete School of Medicine, 71003 Heraklion, Greece Received 29 August 2011; Accepted 5 October 2011 Academic Editor: Marco Antonio Cassatella The CD40 ligand (CD40L) and CD40 are two molecules belonging to the TNF/TNF receptor super- family, and their role in adaptive immune system has widely been explored. However, the wide range of expression of these molecules on hematopoietic as well as nonhematopoietic cells has revealed multiple functions of the CD40/CD40L interactions on different cell types and processes such as granulopoiesis. CD40 triggering on stromal cells has been documented to enhance the expression of granulopoiesis growth factors such as granulocyte-colony-stimulating factor (G- CSF) and granulocyte/monocyte-colony-stimulating factor (GM-CSF), and upon disruption of the CD40/CD40L-signaling pathway, as in the case of X-linked hyperimmunoglobulin M (IgM) syn- drome (XHIGM), it can lead to neutropenia. In chronic idiopathic neutropenia (CIN) of adults, however, under the influence of an inflammatory microenvironment, CD40L plays a role in granu- locytic progenitor cell depletion, providing thus a pathogenetic cause of CIN. KEYWORDS: CD40L, CD40, granulopoiesis, G-CSF, GM-CSF, Flt3-L, neutropenia, apoptosis, tumor necrosis factor family, and granulocytic progenitor cells Correspondence should be addressed to Helen A. -
Trauma in the Aged Myelopoiesis Induced by Severe Shock And
A Detailed Characterization of the Dysfunctional Immunity and Abnormal Myelopoiesis Induced by Severe Shock and Trauma in the Aged This information is current as of September 23, 2021. Dina C. Nacionales, Benjamin Szpila, Ricardo Ungaro, M. Cecilia Lopez, Jianyi Zhang, Lori F. Gentile, Angela L. Cuenca, Erin Vanzant, Brittany Mathias, Jeevan Jyot, Donevan Westerveld, Azra Bihorac, Anna Joseph, Alicia Mohr, Lizette V. Duckworth, Frederick A. Moore, Henry V. Baker, Christiaan Leeuwenburgh, Lyle L. Moldawer, Scott Downloaded from Brakenridge and Philip A. Efron J Immunol 2015; 195:2396-2407; Prepublished online 5 August 2015; doi: 10.4049/jimmunol.1500984 http://www.jimmunol.org/ http://www.jimmunol.org/content/195/5/2396 Supplementary http://www.jimmunol.org/content/suppl/2015/08/05/jimmunol.150098 Material 4.DCSupplemental References This article cites 50 articles, 10 of which you can access for free at: by guest on September 23, 2021 http://www.jimmunol.org/content/195/5/2396.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. -
Ng LG, Ostuni R, Hidalgo A. Heterogeneity of Neutrophils
This is the peer reviewed version of the following article: Ng LG, Ostuni R, Hidalgo A. Heterogeneity of neutrophils. Nat Rev Immunol. 2019;19(4):255‐65 which has been published in final form at https://doi.org/10.1038/s41577‐019‐0141‐8 Heterogeneity of neutrophils Lai Guan Ng1, Renato Ostuni2 and Andrés Hidalgo3 1 Singapore Immunology Nework (SIgN), A*STAR, Biopolis, Singapore 2 Genomics of the Innate Immune System Unit, San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy 3 Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain Correspondence: Lai Guan NG Email: [email protected] SIgN, Biopolis; 8A Biomedical Grove, #03-06, Immunos, Singapore 138648; Phone: +65 6407 0330; Fax: +65 +6464 2056 Renato Ostuni Email: [email protected] Genomics of the Innate Immune System Unit, San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. Phone: +39 02 2643 5017; Fax: +39 02 2643 4621 Andrés Hidalgo Email: [email protected] Area of Cell & Developmental Biology, Fundación CNIC, Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain. Phone: +34 91 4531200 (Ext. 1504). Fax: +34 91 4531245 1 Abstract Structured models of ontogenic, phenotypic and functional diversity have been instrumental for a renewed understanding of the biology of immune cells, such as macrophages and lymphoid cells. There are, however, no established models that can be employed to define the diversity of neutrophils, the most abundant myeloid cells. -
The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection
cells Review The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection Fátima Conceição-Silva 1,* , Clarissa S. M. Reis 1,2,†, Paula Mello De Luca 1,† , Jessica Leite-Silva 1,3,†, Marta A. Santiago 1,†, Alexandre Morrot 1,4 and Fernanda N. Morgado 1,† 1 Laboratory of Immunoparasitology, Oswaldo Cruz Institute (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21.040-360, RJ, Brazil; [email protected] (C.S.M.R.); pmdeluca@ioc.fiocruz.br (P.M.D.L.); [email protected] (J.L.-S.); marta.santiago@ioc.fiocruz.br (M.A.S.); alexandre.morrot@ioc.fiocruz.br (A.M.); morgado@ioc.fiocruz.br (F.N.M.) 2 Postgraduate Program in Clinical Research in Infectious Diseases, INI-Fiocruz, Rio de Janeiro 21.040-360, RJ, Brazil 3 Postgraduate Program in Parasitic Biology, IOC-Fiocruz, Rio de Janeiro 21.040-360, RJ, Brazil 4 Tuberculosis Research Laboratory, Faculty of Medicine, Federal University of Rio de Janeiro-RJ, Rio de Janeiro 21.941-901, RJ, Brazil * Correspondence: fconcei@ioc.fiocruz.br † These authors equally contribute to this work. Abstract: The first formal description of the microbicidal activity of extracellular traps (ETs) con- taining DNA occurred in neutrophils in 2004. Since then, ETs have been identified in different populations of cells involved in both innate and adaptive immune responses. Much of the knowledge has been obtained from in vitro or ex vivo studies; however, in vivo evaluations in experimental models and human biological materials have corroborated some of the results obtained. Two types Citation: Conceição-Silva, F.; Reis, of ETs have been described—suicidal and vital ETs, with or without the death of the producer cell. -
Inflammation, Aging and Hematopoiesis: a Complex
cells Review Inflammation, Aging and Hematopoiesis: A Complex Relationship Pavlos Bousounis 1,2, Veronica Bergo 1,2,3 and Eirini Trompouki 1,4,* 1 Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; [email protected] (P.B.); [email protected] (V.B.) 2 Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany 3 International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany 4 Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany * Correspondence: [email protected]; Tel.: +49-761-5108-550 Abstract: All vertebrate blood cells descend from multipotent hematopoietic stem cells (HSCs), whose activity and differentiation depend on a complex and incompletely understood relationship with inflammatory signals. Although homeostatic levels of inflammatory signaling play an intricate role in HSC maintenance, activation, proliferation, and differentiation, acute or chronic exposure to inflammation can have deleterious effects on HSC function and self-renewal capacity, and bias their differentiation program. Increased levels of inflammatory signaling are observed during aging, affecting HSCs either directly or indirectly via the bone marrow niche and contributing to their loss of self-renewal capacity, diminished overall functionality, and myeloid differentiation skewing. These changes can have significant pathological consequences. Here, we provide an overview of the current literature on the complex interplay between HSCs and inflammatory signaling, and how this relationship contributes to age-related phenotypes. Understanding the mechanisms and Citation: Bousounis, P.; Bergo, V.; Trompouki, E. Inflammation, Aging outcomes of this interaction during different life stages will have significant implications in the and Hematopoiesis: A Complex modulation and restoration of the hematopoietic system in human disease, recovery from cancer and Relationship. -
Impaired B-Lymphopoiesis, Myelopoiesis, and Derailed Cerebellar Neuron Migration in CXCR4- and SDF-1-Deficient Mice
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 9448–9453, August 1998 Immunology Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice QING MA*, DAN JONES*†,PAUL R. BORGHESANI†‡,ROSALIND A. SEGAL‡,TAKASHI NAGASAWA§, i TADAMITSU KISHIMOTO¶,RODERICK T. BRONSON , AND TIMOTHY A. SPRINGER*,** *The Center for Blood Research and Department of Pathology, Harvard Medical School, Boston, MA 02115; ‡Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115; §Department of Immunology, Research Institute, Osaka Medical Center for Maternal and Child Health, 840 Murodo-cho, Izumi, Osaka 590-02, Japan; ¶Department of Medicine III, Osaka University Medical School, 2-2 Yamada-oka, Suita, Osaka 565, Japan; and iDepartment of Pathology, Tufts University School of Medicine and Veterinary Medicine, Boston, MA 02111 Contributed by Timothy A. Springer, June 9, 1998 ABSTRACT The chemokine stromal cell-derived factor 1, individuals is associated with the decline of CD41 cells and SDF-1, is an important regulator of leukocyte and hemato- clinical progression to AIDS. poietic precursor migration and pre-B cell proliferation. The SDF-1 and CXCR4 have several unusual features for a receptor for SDF-1, CXCR4, also functions as a coreceptor for chemokine and receptor. First, SDF-1 is extraordinarily con- T-tropic HIV-1 entry. We find that mice deficient for CXCR4 served in evolution, with only one amino acid substitution die perinatally and display profound defects in the hemato- between the human and mouse proteins (10). Based on the poietic and nervous systems. CXCR4-deficient mice have presence of an intervening amino acid between the two severely reduced B-lymphopoiesis, reduced myelopoiesis in N-terminal cysteines, SDF-1 has been grouped with the CXC fetal liver, and a virtual absence of myelopoiesis in bone chemokine subfamily; however, the protein sequence of SDF-1 marrow. -
10 Maturation and Development of Leucocytes
MODULE Maturation and Development of Leucocytes Hematology and Blood Bank Technique 10 Notes MATURATION AND DEVELOPMENT OF LEUCOCYTES 10.1 INTRODUCTION The leucocytes develop from the multipotent hematopoietic stem cell which then gives rise to a stem cell committed to formation of leucocytes. Both these cells cannot be identified morphologically by routine methods. The various types of leucocytes are granulocytes (neutrophils, eosinophils and basophils), monocytes and lymphocytes. The three cell types develop separately and accordingly these processes will be discussed separately. OBJECTIVES After reading this lesson, you will be able to: z explain the various stages in the development of leucocytes. z describe the different types of leucocytes seen normally in PBF. 10.2 MYELOPOIESIS This is the process of formation of myeloid cells. It is restricted to the bone marrow after birth. The committed progenitor cell for granulocytes and monocytes is the GM-CFU which proliferates and differentiates to form myeloblast and monoblast. The myeloblast is the earliest morphologically identifiable cell. It is 10-18µm in size. The cytoplasm is scant and basophilic, usually agranular and may contain a few azurophilic cytoplasmic granules in the blast transiting to the next stage 80 HEMATOLOGY AND BLOOD BANK TECHNIQUE Maturation and Development of Leucocytes MODULE of promyelocyte. It has a large round to oval nucleus with a smooth nuclear Hematology and Blood membrane. The chromatin is fine, lacy and is evenly distributed throughout the Bank Technique nucleus. Two-five nucleoli can be identified in the nucleus. The next stage of maturation is the Promyelocyte. It is larger than a myeloblast, 12-20 µm with more abundant cytoplasm which has abundant primary azurophilic granules . -
Aplastic Anemia: Presence in Human Bone Marrow of Cells That Suppress Myelopoiesis* (Thymus-Derived Lymphocytes/Suppressor Cells/Differentiation) WALT A
Proc. Natl. Acad. Sci. USA Vol. 73, No. 8, pp.2890-2894*, August 1976 Medical Sciences Aplastic anemia: Presence in human bone marrow of cells that suppress myelopoiesis* (thymus-derived lymphocytes/suppressor cells/differentiation) WALT A. KAGAN, JoAo A. ASCENSAO, RAJENDRA N. PAHWA, JOHN A. HANSEN, GIDEON GOLDSTEIN, ELISA B. VALERA, GENEVIEVE S. INCEFY, MALCOLM A. S. MOORE, AND ROBERT A. GOOD Memorial Sloan-Kettering Cancer Center, New York, N.Y. 10021 Contributed by Robert A. Good, May 24, 1976 ABSTRACT Bone marrow from a patient with aplastic all negative. There was no history of exposure to drugs or anemia was shown by multiple criteria to have a block in early chemical agents known to be capable of producing aplastic myeloid differentiation. This block was overcome in vitro by anemia. elimination of marrow lymphocytes. Furthermore, this differ- entiation block was transferred in vitro to normal marrow by coculturing with the patient's marrow. We suggest that some METHODS cases of aplastic anemia may be due to an immunologically Cell Separation. Heparinized bone marrow was obtained based suppression of marrow cell differentiation rather than from the posterior iliac crest of the patient and normal adult to a defect in stem cells or their necessary inductive environ- donors in 10 to 20 separate 0.5-ml aspirations. The cells were ment. separated according to density differences by centrifugation The hematopoietic system in man is thought to develop from on a Ficoll-hypaque gradient by the method of Boyum (5). Cells a common stem cell analogous to the spleen colony forming unit present at the plasma/Ficoll-hypaque interface were collected, in mice (CFU-s) (1), which then differentiates into committed and this heterogeneous mixture was then separated according progenitor cells of the granulocytic and monocytic series to size by velocity sedimentation at unit gravity by the method (CFU-c) (2), megakaryocytic, lymphoid, and erythroid lines, of Miller and Phillips (6). -
Granulopoiesis and Thrombopoiesis in Mice Bearing Transplanted Mammary Cancer1
[CANCER RESEARCH 26, 149-159, January 1966| Granulopoiesis and Thrombopoiesis in Mice Bearing Transplanted Mammary Cancer1 L. DELMONTE, A. G. LIEBELT, AND R. A. LIEBELT Department of Anatomy, Baylor University College of Medicine, Houston, Texas Summary from a transplantable mouse mammary tumor (CE 1460 MA CA) that arose as a spontaneous tumor, associated with a severe Growth of a transplantable mammary cancer in CE mice (CE leukocytosis and extramedullary granulopoiesis (EMG)2, in a fe 1460 MA CA) was paralleled by hyperplasia of the granulocytic male mouse of the CE strain (22). CE 1460 MA CA has been elements of the bone marrow and peripheral leukocytosis (up to carried through more than 100 transplant generations in CE mice 350,000 leukocytes/cu mm) with a lymphoid-myeloid ratio re versal to 1:4 and a shift to the left. About 5-20% of the granulo and through more than 50 transplant generations in (BALB/C x CE) FI hybrid mice (hereafter referred to as Ft hybrids); it has cytic elements in the blood and bone marrow showed morpho logic abnormalities. Hematocrit values decreased 10-15%. shown remarkable stability as regards tumor biology and the tumor-associated hématologieresponse in both the parent strain Peripheral platelet levels manifested a slight depression in the (CE) and FI hybrid mice. face of bone marrow megakaryocytopenia and splenic mega- During a partial survey of other transplanted mouse tumors in karyocytosis. Extramedullary granulopoiesis, with the presence our laboratories, we observed a fluctuating increase in circulating of mitoses and all stages of development of the granulocyte series platelets but no leukemoid reaction to be associated with another in diffuse and discrete foci, was observed in the liver, spleen, transplantable mammary tumor (BALB/C 2301 MA CA) of lungs, lymph nodes, and adrenals of CE 1460 tumor bearers. -
Jimmunol.1300714.Full.Pdf
Regulation of Dendritic Cell Differentiation in Bone Marrow during Emergency Myelopoiesis This information is current as Hao Liu, Jie Zhou, Pingyan Cheng, Indu Ramachandran, of September 29, 2021. Yulia Nefedova and Dmitry I. Gabrilovich J Immunol published online 5 July 2013 http://www.jimmunol.org/content/early/2013/07/04/jimmun ol.1300714 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/07/05/jimmunol.130071 Material 4.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 5, 2013, doi:10.4049/jimmunol.1300714 The Journal of Immunology Regulation of Dendritic Cell Differentiation in Bone Marrow during Emergency Myelopoiesis Hao Liu,1 Jie Zhou,1,2 Pingyan Cheng, Indu Ramachandran,3 Yulia Nefedova,3 and Dmitry I. Gabrilovich3 Although accumulation of dendritic cell (DC) precursors occurs in bone marrow, the terminal differentiation of these cells takes place outside bone marrow.