Applying Cognitive Science to Online Teaching and Learning Strategies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Problem Solving and Learning
Science Watch Problem Solving and Learning John R. Anderson Newell and Simon (1972) provided a framework for un- computer simulation of human thought and was basically derstanding problem solving that can provide the needed unconnected to research in animal and human learning. bridge between learning and performance. Their analysis Research on human learning and research on prob- of means-ends problem solving can be viewed as a general lem solving are finally meeting in the current research characterization of the structure of human cognition. on the acquisition of cognitive skills (Anderson, 1981; However, this framework needs to be elaborated with a Chi, Glaser, & Farr, 1988; Van Lehn, 1989). Given nearly strength concept to account for variability in problem- a century of mutual neglect, the concepts from the two solving behavior and improvement in problem-solving skill fields are ill prepared to relate to each other. I will argue with practice. The ACT* theory (Anderson, 1983) is such in this article that research on human problem solving an elaborated theory that can account for many of the would have been more profitable had it attempted to in- results about the acquisition of problem-solving skills. Its corporate ideas from learning theory. Even more so, re- central concept is the production rule, which plays an search on learning would have borne more fruit had analogous role to the stimulus-response bond in earlier Thorndike not cast out problem solving. learning theories. The theory has provided a basis for con- This article will review the basic conception of prob- structing intelligent computer-based tutoring systems for lem solving that is the legacy of the Newell and Simon the instruction of academic problem-solving skills. -
Teacher Training: Learning to Be Instigators of Thought™ Through a Process Aligned with Inspired Teaching's Educational Phil
Transforming education through innovation teacher training Teacher Training: Learning to be Instigators of Thought™ Through a process aligned with Inspired Teaching’s educational philosophy – which engages participants intellectually, physically, and emotionally - Inspired Teaching trains teachers to design and implement rigorous, student-centered lessons and activities that meet student needs and academic standards, including the Common Core State Standards. Like the teaching process itself, our teacher training is complex and allows for customization to meet the specific needs of each teacher. This audience-sensitivity creates a permanent shift in teachers’ thinking about their jobs and is one of the key reasons our process is so effective. Inspired Teaching’s Five Step Process for Teacher Education Each teacher navigates the following process: Step 1. Analyze and deepen my understanding of the ways I learn through a rigorous examination of the teaching and learning process, including my including my own experiences as a child and adult learner. Step 2. Articulate and defend my philosophy of teaching and learning , including what I believe about children. Challenge myself to listen to and consider other points of view and to find room in my philosophy for an appreciation of children's natural curiosity and innate desire to learn. Step 3. Make the connection to classroom practice , analyzing my current instructional strategies and whether they support my philosophy, so that I can explore and develop new ways to make sure what I do in the classroom matches my philosophy of teaching and learning. Step 4. Build the skills of effective teachers , including active listening, asking questions that will spark students' intellect and imaginations, observing to assess for student understanding, and communicating effectively. -
Ethnographies of Science Education: Situated Practices of Science Learning for Social/Political Transformation
Ethnographies of science education: situated practices of science learning for social/political transformation By: Carol B. Brandt, Heidi Carlone Brandt, C. & Carlone, H.B. (2012). Ethnographies of science education: Situated practices of science learning for social/political transformation. Ethnography and Education, 7(2), 143-150. This is an Accepted Manuscript of an article published by Taylor & Francis Group in Ethnography and Education on 18 Jul 2012, available online at: http://www.tandfonline.com/10.1080/17457823.2012.693690. ***© Taylor & Francis. Reprinted with permission. No further reproduction is authorized without written permission from Taylor & Francis. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document. *** Abstract: This article is an introductory essay to the Ethnography and Education special issue Ethnographies of science education: situated practices of science learning for social/political transformation. Keywords: Science Education | Ethnography | Culture Article: Transforming science education has been cited as a global imperative in terms of: producing technological innovation to maintain economic security (Bybee and Fuchs 2006; Tytler 2007); creating critical consumers of scientific knowledge (Osborne and Dillon2008) and fostering a more environmentally sustainable and equitable world (Calabrese Barton 2001; Carter 2008). In light of these agendas, viewing science as a cultural process has significantly contributed to our understanding -
Cognitive Psychology
COGNITIVE PSYCHOLOGY PSYCH 126 Acknowledgements College of the Canyons would like to extend appreciation to the following people and organizations for allowing this textbook to be created: California Community Colleges Chancellor’s Office Chancellor Diane Van Hook Santa Clarita Community College District College of the Canyons Distance Learning Office In providing content for this textbook, the following professionals were invaluable: Mehgan Andrade, who was the major contributor and compiler of this work and Neil Walker, without whose help the book could not have been completed. Special Thank You to Trudi Radtke for editing, formatting, readability, and aesthetics. The contents of this textbook were developed under the Title V grant from the Department of Education (Award #P031S140092). However, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. Unless otherwise noted, the content in this textbook is licensed under CC BY 4.0 Table of Contents Psychology .................................................................................................................................................... 1 126 ................................................................................................................................................................ 1 Chapter 1 - History of Cognitive Psychology ............................................................................................. 7 Definition of Cognitive Psychology -
The Cambridge Handbook of the Learning Sciences Edited by R
Cambridge University Press 0521845548 - The Cambridge Handbook of the Learning Sciences Edited by R. Keith Sawyer Frontmatter More information The Cambridge Handbook of the Learning Sciences Learning sciences is an interdisciplinary field that studies teaching and learning. The sciences of learning include cognitive science, educational psychology, computer sci- ence, anthropology, sociology, neuroscience, and other fields. The Cambridge Handbook of the Learning Sciences shows how educators can use the learning sciences to design more effective learning environments, including school classrooms and informal settings such as science centers or after-school clubs, online distance learning, and computer- based tutoring software. The chapters in this handbook describe exciting new classroom environments, based on the latest science about how children learn. CHLS is a true handbook: readers can use it to design the schools of the future – schools that will prepare graduates to participate in a global society that is increasingly based on knowledge and innovation. R. Keith Sawyer is Associate Professor of Education at Washington University in St. Louis. He received his Ph.D. in Psychology at the University of Chicago and his S.B. in Computer Science at the Massachusetts Institute of Technology. He studies cre- ativity, collaboration, and learning. Dr. Sawyer has written or edited eight books. His most recent book is Explaining Creativity: The Science of Human Innovation (2006). © Cambridge University Press www.cambridge.org Cambridge University Press 0521845548 - The Cambridge Handbook of the Learning Sciences Edited by R. Keith Sawyer Frontmatter More information The Cambridge Handbook of the Learning Sciences Edited by R. Keith Sawyer Washington University © Cambridge University Press www.cambridge.org Cambridge University Press 0521845548 - The Cambridge Handbook of the Learning Sciences Edited by R. -
The Learning Sciences: the Very Idea Liam Rourkea* and Norm Friesenb Ananyang Technological University, Singapore; Bsimon Fraser University, Canada
Educational Media International, Vol. 43, No. 4, December 2006, pp. 271–284 The learning sciences: the very idea Liam Rourkea* and Norm Friesenb aNanyang Technological University, Singapore; bSimon Fraser University, Canada TaylorREMI_A_192539.sgm10.1080/09523980600926226Educational0952-3987Original2006434000000DecemberLiamRourkeliam.rourke@gmail.com and& Article Francis (print)/1469-5790Francis Media 2006 LtdInternational (online) Attempts to frame the study of teaching and learning in explicitly scientific terms are not new, but they have been growing in prominence. Journals, conferences, and centres of learning science are appearing with remarkable frequency. However, in most of these invocations of an educational science, science itself is understood largely in progressivist, positivistic terms. More recent theory, sociology, and everyday practice of science are ignored in favour of appeals to apparently idealized scientific rigour and efficiency. We begin this article by considering a number of examples of prominent scholarship undermining this idealization. We then argue that learning and education are inescapably interpretive activities that can only be configured rhetorically rather than substantially as science. We conclude by arguing for the relevance of a broader and self-consciously rhetorical/metaphorical conception of science, one that would include the possibility of an interpretive human science. Science et apprentissage: l’idée elle-même Les tentatives visant à enchâsser l’étude de l’enseignement et de l’apprentissage dans des termes explicitement scientifiques, ne sont pas nouvelles mais elles sont de plus en plus marquées. Des revues, des conférences et des centres de science de l’apprentissage apparaissent de plus en plus fréquemment. Dans la plupart de ces invoca- tions à une science éducative le mot science est toutefois pris dans un sens largement positiviste et progressiste. -
Cognition, Affect, and Learning —The Role of Emotions in Learning
How People Learn: Cognition, Affect, and Learning —The Role of Emotions in Learning Barry Kort Ph.D. and Robert Reilly Ed.D. {kort, reilly}@media.mit.edu formerly MIT Media Lab Draft as of date January 2, 2019 Learning is the quintessential emotional experience. Our species, Homo Sapiens, are the beings who think. We are also the beings who learn, and the beings who simultaneously experience a rich spectrum of affective emotional states, including a selected suite of emotional states specifically and directly related to learning. This proposal reviews previously published research and theoretical models relating emotions to learning and cognition and presents ideas and proposals for extending that research and reducing it to practice. Our perspective The concept of affect in learning (i.e., emotions in learning) is the same pedagogy applied by an athletic coach at a sporting event. A coach recognizes the affective state of an athlete, and, for example, exhorts that athlete toward increased performance (e.g., raises the level of enthusiasm), or, redirects a frustrated athlete to a productive affective state (e.g., instills confidence, or pride). A coach recognizes that an athlete’s affective state is a critical factor during performance; and, when appropriate, a coach will intervene with a meaningful strategy or tactic. Athletic coaches are skilled at recognizing affective states and intervening appropriately. Educators can have the same impact on a learner by understanding a learner’s affective state and intervening with appropriate strategies or tactics that will meaningfully manage and guide a person’s learning journey. There are several learning theories and a great deal of neuroscience/affective research. -
Mind Maps in Service of the Mental Brain Activity
PERIODICUM BIOLOGORUM UDC 57:61 VOL. 116, No 2, 213–217, 2014 CODEN PDBIAD ISSN 0031-5362 Forum Mind maps in service of the mental brain activity Summary ŽELJKA JOSIPOVIĆ JELIĆ 1 VIDA DEMARIN 3 Tony Buzan is the creator of the mind maps who based his mnemonic IVANA ŠOLJAN 2 techniques of brain mapping on the terms of awareness and wide brain 1Center for Medical Expertise functionality as well as on the ability of memorizing, reading and creativ- HR-10000 Zagreb, Tvrtkova 5 ity. He conceived the idea that regular practice improves brain functions but Croatia he also introduced radiant thinking and mental literacy. One of the last 2Zagreba~ka banka enormous neuroscience ventures is to clarify the brain complexity and mind HR-10000 Zagreb, Juri{i}eva 22 and to get a complete insight into the mental brain activity. ! e history of Croatia human thought and brain processes dates back in the antiquity and is marked by di" erent ways of looking on the duality of mental and physical 3Medical Director, Medical Centre Aviva HR-10000, Zagreb, Nemetova 2 processes. ! e interaction of mental and physical processes and functioning Croatia of individual results in behavior of the body being carved in the state of mind, and vice versa. Both stable mind - body relation and integrated func- tions of behavior and thinking are necessary for a healthy physiological func- Correspondence: tioning of a human being. @eljka Josipovi} Jeli} Specialist neuropsychiatrist ! e meaning and nature of concience and mind preoccupies as all. In Center for Medical Expertise the decade of brain (1990-2000) and the century of brain (2000-1000) HR-10000 Zagreb, Tvrtkova 5, Croatia numerous discussions were lead and new scienti# c directions formed (cogni- E-mail: zeljka.josipovic-jelic @si.t-com.hr tive science, chemistry of feelings, evolutionary psychology, neurobiology, neurology of consciousness, neurophysiology of memory, philosophy of science and mind etc.) in order to understand and scientifcally clarify the mysteries of mind. -
Strategies to Solve Unfinished Learning: Expanded Learning Time
Targeted Intensive Tutoring Expanded Learning Time The Importance of Strong Relationships ACKNOWLEDGEMENTS: These materials are the result of a collaborative effort between The Education Trust and MDRC staff, including Kayla Patrick, senior P-12 policy analyst (Ed Trust), and Allison Socol, Ph.D., assistant director of P-12 Policy (Ed Trust), Jean B. Grossman, Ph.D., Senior Fellow (MDRC), and Miki Bairstow Shih, technical research analyst (MDRC). STRATEGIES TO SOLVE UNFINISHED LEARNING TO SOLVE STRATEGIES MARCH 2021 Strategies to Solve UNFINISHED LEARNING WHEN THE PANDEMIC FORCED SCHOOLS ACROSS THE COUNTRY TO CLOSE THEIR DOORS IN MARCH 2020, many district and school leaders worked quickly to plan for and address students’ “unfinished learning.”1 How would they support students who had been exposed to content, but had not yet had a chance to master it? A recent study indicated that students, on average, could experience up to five to nine months of unfinished learning by the end of June 2021. But it will be sometime before we know the true amount of unfinished learning caused by schools closing their doors. What is certain, however, is that as the nation continues to battle this pandemic and at-home learning continues, there will be a need to help students, especially the nation’s most vulnerable students, complete unfinished learning for weeks, months, and even years to come. The lack of adequate time for districts to prepare for sudden shutdowns as well as the lack of resources for many districts, especially those that are chronically underfunded, to adjust to virtual learning has exacerbated inequities for Black, Latino, and Native students and students from low- income backgrounds. -
Clemson University, Ph.D., Learning Sciences, Program Proposal, CAAL, 8/7/2014 – Page 1 CAAL 8/7/14 Agenda Item 4C
CAAL 8/7/14 Agenda Item 4c New Program Proposal Doctor of Philosophy in Learning Sciences Clemson University Summary Clemson University requests approval to offer a program leading to the Doctor of Philosophy in Learning Sciences to be implemented in January 2015. The proposed program is to be offered through traditional instruction. The following chart outlines the stages for approval of the proposal; the Advisory Committee on Academic Programs (ACAP) voted to recommend approval of the proposal. The full program proposal is attached. Stages of Consideration Date Comments Program Planning Summary 2/11/14 received and posted for comment Program Planning Summary 3/30/14 One ACAP member noted that the research considered by ACAP through methods courses appear strong in this degree, electronic review but also suggested adding coursework in cognitive theory and design. Another ACAP member stated that the proposed program is similar to USC Columbia’s Ph.D. program in Educational Psychology and Research. Program Proposal Received 5/15/14 ACAP Consideration 6/19/14 ACAP members suggested the proposal include statements about how the program differs from Educational Psychology programs. ACAP also recommended the addition of recruitment strategy statements to address USC Columbia’s concerns about competition. ACAP requested a revised budget and budget justification. Comments and suggestions 6/20/14 Staff requested additional information about from CHE staff sent to the potential employment opportunities and institution specificity about what students will be able to do and in which positions they might reasonably expect employment. Staff also requested a new letter of evaluation because the letter provided did not adequately address the proposed courses/curriculum, faculty, or resources required. -
Refining Qualitative Ethnographies Using Epistemic Network Analysis: a Study of Socioemotional Learning Dimensions in a Humanistic Knowledge Building Community
Computers & Education 156 (2020) 103943 Contents lists available at ScienceDirect Computers & Education journal homepage: http://www.elsevier.com/locate/compedu Refining qualitative ethnographies using Epistemic Network Analysis: A study of socioemotional learning dimensions in a Humanistic Knowledge Building Community Yotam Hod a,*, Shir Katz a, Brendan Eagan b a University of Haifa, Israel b University of Wisconsin, Madison, USA ARTICLE INFO ABSTRACT Keywords: Contemporary educational research has increasingly pointed to socioemotional dimensions of Cooperative/collaborative learning learning as important in promoting academic progress and sociocognitive developments. Data science applications in education Epistemic Network Analysis, a methodology for producing quantitative ethnographies based on Learning communities complex learning environments, has only begun to examine socioemotional facets of learning in Pedagogical issues classrooms. The aim of this research is to investigate what and how Epistemic Network Analysis Post-secondary education can contribute to qualitative, socioemotionally-focused ethnographies of classroom learning communities. To do this, we employed Epistemic Network Analysis to analyze data collected during a semester of studies, in parallel to a stage developmental analysis of the same community using qualitative methods. The results of this study specifically show the importance of prior experience and how this interacts with participants’ connectedness to the community, as well as how group dynamics are a vital aspect of community discourse and that the socioemotional di mensions that people attach to it may be the determinants of stage advancement. More generally, this study shows how Epistemic Network Analysis can be used to better understand complex socioemotional phenomena in learning communities by combining it with deep, qualitative ethnographies. -
Ethnography of Human Development, Cognition and Learning
EDPSY 582A —Methods Seminar: Ethnography of Human Development, Cognition and Learning Fall 2014 Wednesdays 1:30 to 3:50 Miller 112 INSTRUCTORS Philip Bell Megan Bang LIFE Center LIFE Center [email protected] [email protected] Office Hours: By appt Office Hours: By appt COURSE OVERVIEW “The situated nature of learning, remembering, and understanding is a central fact. It may appear obvious that human minds develop in social situations, and that they use the tools and representational media that culture provides to support, extend, and reorganize mental functioning. But cognitive theories of knowledge representation and educational practice, in school and in the workplace, have not been sufficiently responsive to questions about these relationships.” — Roy Pea & John Seely Brown, 1991 “If ethnography produces cultural interpretations through intense field research experience, how is such unruly experience transformed into an authoritative written account? How, precisely, is a garrulous, overdetermined, cross-cultural encounter, shot through with power relations and personal cross purposes circumscribed as an adequate version of a more-or-less discrete ‘otherworld,’ composed by an individual author?” — James Clifford Learning and development are complex phenomena. The cultural and cognitive processes bound up in learning can be crucially contingent on the history of local community practices, the social and material conditions of specific situations, and they can span across social settings, activity systems, and cultural groupings and deeply relate to the local history. Learning processes and outcomes can play out across short to long time scales from milliseconds to decades. These complexities pose particular conceptual, methodological, and representational challenges. Studies of human development and learning have taken an ethnographic turn over the last twenty years.