MASTER's THESIS Radio Technologies for Smart Homes: Zigbee Or Enocean

Total Page:16

File Type:pdf, Size:1020Kb

MASTER's THESIS Radio Technologies for Smart Homes: Zigbee Or Enocean MASTER’S THESIS Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Engineering at the University of Applied Sciences Technikum Wien Telecommunication and Internet technologies Radio technologies for Smart Homes: ZigBee or EnOcean by Felix Richter, BSc 1200, Vienna, Höchstädtplatz 5 Supervisor 1: Mag. DI, Friedrich Praus Supervisor 2: FH-Prof. Dipl.-Ing. Dr.techn., Thomas Sommer Vienna, 27.02.2012 Declaration „I confirm that this thesis is entirely my own work. All sources and quotations have been fully acknowledged in the appropriate places with adequate footnotes and citations. Quotations have been properly acknowledged and marked with appropriate punctuation. The works consulted are listed in the bibliography. This paper has not been submitted to another examination panel in the same or a similar form, and has not been published. “ Place, Date Signature Kurzfassung Diese Masterarbeit befasst sich mit zwei möglichen Funktechnologien, die in einem „Smart Home“ (übersetzt „Intelligentes Heim“) eingesetzt werden können. Sowohl der offene ZigBee Standard als auch der proprietäre EnOcean Standard spezifizieren ein drahtloses Sensornetzwerk (WSN) und werden in den ersten Kapiteln ausführlich beschrieben. Es folgt der Vergleich beider Technologien. Dabei stellt sich heraus, dass das Hauptargument für ZigBee seine Sicherheitsfunktionen sind. Als größter Vorteil von EnOcean kann das Energy Harvesting gesehen werden. Dabei erfolgt die Energieversorgung durch das Generieren von Energie aus der Umgebung, z.B. durch Druck, Temperaturdifferenz, Sonnenenergie, etc. Der praktische Teil der Arbeit umfasst den Aufbau eines drahtlosen Sensornetzwerkes mit EnOcean-Technologie, als Teil eines Smart Home Projektes. Die Arbeit beinhaltet die Beschreibungen des Hardwareaufbaus, der Hardware selbst, und der Software- konfigurationen. Schlagwörter: ZigBee, EnOcean, drahtloses Sensornetzwerk, WSN, Energy Harvesting Abstract This master’s thesis deals with two possible wireless technologies which may be used in a Smart Home. Both the open ZigBee standard and the proprietary EnOcean standard are specifying a wireless sensor network (WSN) and both are described in detail in the first chapters. It follows the comparison of both technologies, where it comes out that ZigBee's advantages are its security functions while EnOcean's big advantage is its Energy Harvesting technology. With this technology energy is supplied by generating it from the environment, e.g. by pressure, temperature difference, solar energy, etc. The practical part of the thesis comprises the construction of a wireless sensor network with EnOcean technology, as part of a smart home project. The thesis includes descriptions of the hardware configuration, of the hardware itself, and of the software configurations. Keywords: ZigBee, EnOcean, wireless sensor network, WSN, Energy Harvesting 2 Acknowledgements I want to thank my supervisor Mag. DI Friedrich Praus for his readiness to help others. I also want to thank FH-Prof. Dipl.-Ing. Dr.techn. Thomas Sommer who helped me finding an interesting topic, helped me improving my thesis and supported the project financially. 3 Table of Contents 1 Introduction ............................................................................................................ 6 1.1 Motivation ............................................................................................................... 6 1.2 Scope of work......................................................................................................... 8 2 Own contributions ................................................................................................... 8 3 State of the art ........................................................................................................ 9 3.1 ZigBee .................................................................................................................... 9 3.1.1 IEEE 802.15.4 ........................................................................................................ 9 3.1.2 ZigBee Details ...................................................................................................... 22 3.2 EnOcean .............................................................................................................. 32 3.2.1 Technical description ............................................................................................ 36 3.2.2 EnOcean Dolfin System Architecture for developers ............................................ 41 3.2.3 Fields of Application ............................................................................................. 42 3.3 Comparison of ZigBee and EnOcean ................................................................... 44 3.3.1 ZigBee and energy harvesting .............................................................................. 44 3.3.2 Technical comparison ........................................................................................... 45 3.3.3 Economic comparison .......................................................................................... 48 4 Project SMART HOME ......................................................................................... 50 4.1 Concept ................................................................................................................ 50 4.1.1 What is the Beckhoff System? .............................................................................. 51 4.1.2 EnOcean integration into the Beckhoff system ..................................................... 51 4.1.3 What is KNX? ....................................................................................................... 52 4.2 Hardware Design .................................................................................................. 53 4.2.1 Hardware components ......................................................................................... 53 4.2.2 Hardware installation and configuration (EnOcean) .............................................. 54 4.3 Software Design ................................................................................................... 64 4.3.1 TwinCat ................................................................................................................ 64 4.3.2 SmartHome Software - Source Code (PLC) ......................................................... 65 4.3.3 SmartHome Software – Configuration .................................................................. 83 4.3.4 SmartHome Software - Running System .............................................................. 89 4.3.5 SRC-ADO-V3 configuration software .................................................................... 92 4.4 Project evaluation ................................................................................................. 97 4 5 Summary & Outlook ............................................................................................. 98 Bibliography ......................................................................................................................... 99 List of Figures .................................................................................................................... 102 List of Tables ..................................................................................................................... 106 List of abbreviations ........................................................................................................... 107 A: Table of Hardware ......................................................................................................... 109 B: Description of hardware components relevant for EnOcean integration ......................... 110 1) Beckhoff BK9050 - Bus Coupler ......................................................................... 110 2) Beckhoff KL6581 - EnOcean-Masterterminal ...................................................... 112 3) Beckhoff KL6583 - EnOcean-Receiver and Transmitter ..................................... 113 4) EasySense PG1 (switch) .................................................................................... 114 5) EasySense SRG01 (switch) ............................................................................... 115 6) EasySense SRW01 – Window Contact (sensor) ................................................ 117 7) EasySense SR65 – Outdoor Temperature Sensor (sensor) ............................... 118 8) EasySense SR04PST - Indoor temperature sensor (sensor) .............................. 119 9) EasySense SRC-ADO 4AA/4DA Typ1 (actuator) ............................................... 122 C: Background technologies .............................................................................................. 123 5 1 Introduction 1.1 Motivation This chapter deals with how I came to this topic, namely by my interest in environmental, research, and future technologies. The problem! – The people's energy consumption gets higher and higher and finite resources, such as oil, are getting rare with time. Ultimately renewable energy systems (solar, hydro, wind, geothermal ...) will be used for energy production. These have to be mainly due to its dependence on weather conditions, co-ordinated to meet the energy consumption optimally. This task is performed by the smart grid (intelligent power grid). Smart Grids: They are used to calculate and predict the energy consumption in future as accurately as possible. This is done by the
Recommended publications
  • Wireless & Self-Powered Internet of Things
    Wireless & self-powered Internet of Things The Dolphin products are based on miniaturized energy converters, ultra-low power electronics and robust radio technology in open standards like EnOcean, zigbee and Bluetooth Low Energy for OEM product manufacturers. Building automation Smart home LED lighting M2M Our technology The Dolphin modules and white label products use the energy harvesting principle, in which energy is obtained from the surroundings, to supply self-powered wireless sensor networks. The modules are based on miniaturized energy converters that convert motion, light or temperature differences into electrical energy. Together with an efficient energy management system, the energy harvesting technology facilitates communication between maintenance-free IoT devices based on open wireless standards, such as EnOcean, zigbee and Bluetooth Low Energy. The solutions are used in building automation, smart homes, LED lighting control systems as well as industrial applications. Energy harvesting Wireless Ultra-low power The Dolphin portfolio for OEM product manufacturers The Dolphin portfolio includes the product lines “868 MHz EnOcean” for Europe, “902 MHz EnOcean” for North America and “928 MHz EnOcean” in Japan based on the EnOcean wireless standard introduced by the EnOcean Alliance (ISO/IEC 14543-3-1X) on the sub 1 GHz band, which has proven to be a resounding success in building automation and smart homes. The Dolphin porftolio also includes the “2.4 GHz zigbee” product line in the 2.4 GHz band, which can be used in smart home applications all over the world, and the “2.4 GHz BLE” portfolio for Bluetooth systems for modern lighting control. Energy converter Energy harvesting Energy harvesting Controlers Tools wireless switches wireless sensors Products in 868 MHz EnOcean for Europe Products with 868 MHz are suitable for Europe and other countries adopting RED.
    [Show full text]
  • Comparison of Zigbee, Z-Wave, Wi-Fi, and Bluetooth Wireless Technologies Used in Home Automation
    Comparison of Zigbee, Z-Wave, Wi-Fi, and Bluetooth Wireless Technologies Used in Home Automation Salim Jibrin Danbatta Asaf Varol Department of Software Engineering Department of Software Engineering Firat University Firat University Elazig, Turkey Elazig, Turkey [email protected] [email protected] Abstract— Most of the home automation wireless technologies A literature review is presented in section II, home on the internet of things are based on ZigBee, Z-Wave, Wi-Fi, automation wireless technologies are discussed in section III. and Bluetooth wireless technologies. While these solutions are The research design is described in section IV while results and good enough, users of smart homes are facing challenges of discussion are presented in section V, and section VI describes selecting the best technology. This paper compares the the conclusions of the study. performance of ZigBee, Z-Wave Wi-Fi and Bluetooth technologies from the user’s perspective. Power consumption, range, cost, ease of use, scalability, and interoperability are the six indices developed as guidelines to potential users, and hence, II. LITERATURE REVIEW the results of this study. With this knowledge, the users can make the appropriate choice of wireless technology solution to use in Several studies about home automation systems have been their home automation systems. done in the past. They include experimental, descriptive, and comparative analysis involving different wired and wireless Keywords—internet of things, home automation, wireless technologies used in Home Automation. technologies, Zigbee, Z-Wave, Wi-Fi, Bluetooth Sikandar et al. [5] show how SMS (short message service) based and wireless technology enhance the controlling of home I.
    [Show full text]
  • ZIGBEE EXPLOITED the Good, the Bad and the Ugly
    08 ZIGBEE EXPLOITED The good, the bad and the ugly Tobias Zillner – August 6th 2015 Cognosec © 2015 | Castellezgasse 16/2 | 1020 Vienna, Austria ZigBee Exploited Version 1.0 TABLE OF CONTENTS ABSTRACT ..................................................................................................................................................... 1 INTRODUCTION ............................................................................................................................................. 1 THE ZIGBEE STANDARD .............................................................................................................................. 1 ZIGBEE SECURITY ........................................................................................................................................ 2 Network Layer Security ................................................................................................................................ 2 Application Support Sublayer Security ......................................................................................................... 2 ZIGBEE APPLICATION PROFILES ............................................................................................................... 3 ZigBee Home Automation Public Application Profile (HAPAP) .................................................................... 3 ZigBee Light Link Profile (ZLL) ..................................................................................................................... 4 SECBEE – A NEW ZIGBEE SECURITY
    [Show full text]
  • Zach-2010-Monitoring for Simulation Validation-182.Pdf
    MONITORING FOR SIMULATION VALIDATION Robert Zach and Ardeshir Mahdavi Department of Building Physics and Building Ecology, Vienna University of Technology, Austria building data streams are not exploited. Such benefits ABSTRACT include: One of the key problems in building simulation is to i) Energy optimization through improved determine the accuracy of a simulation model. Due to management of technical building systems. the complexity of a building, a comprehensive and exhaustive mathematical proof is usually not ii) Increased awareness of building users possible. Therefore, an appropriate way to validate a regarding their impact on buildings’ energy building model is to compare simulation results with use. measurements obtained from real buildings. Such iii) Early detection (and treatment) of comparisons not only allow for the validation of deficiencies and malfunctions in energy simulation models used in the context of building systems and devices, thus effectively design support, but also provide calibrated simulation supporting a preventive maintenance models to be applied in the context of real-time regime. simulation-assisted building systems control. iv) Successive building performance INTRODUCTION improvement and optimization via the analyses of dynamically updated building This paper deals with the monitoring infrastructure energy and performance data bases. necessary to validate building simulation models and implement simulation-based control strategies v) Long-term accumulation of empirical (Mahdavi et al. 2009, Orehounig et al. 2010). information on buildings' energy and Required sensors are discussed and technologies for environmental performance toward different domains are compared and assessed. improving the design, construction, and Possible network infrastructures to collect the operation of existing and new buildings. measured data are discussed.
    [Show full text]
  • Network & Wireless
    NETWORK & WIRELESS HUMIDITY & WIRELESS Kele Has Doubled the Offering of Network and Wireless Solutions, NETWORK and Continues to Add to Our Options to Meet Your Needs. Babel Buster | p. 719 L-VIS Series | p. 721 BASRT-B | p. 727 Series 110A | p. 733 ValuPoint VP4-23 | p. 744 EKI Series | p. 738 Series NETWORK & WIRELESS Products manufactured MODEL/SERIES PAGE in the United States Network Display and Control Panels Wireless EnOcean and ZigBee Devices L-VIS Series — BACnet and LON Touch Panel . 721 and Systems (cont.) Products that are BBC-SD — BACnet Graphic Display . 724 E3T-SxE Series — EnOcean Wireless European new to the catalog WebOP Series — Touchscreen Operator Display Light Switches . 826 Panel . 725 E3T-S2H Series — EnOcean Wireless Handheld Remote . 827 Network Gateways EasySens Thanos — EnOcean Room Operating ETH-1000 — Provides connectivity between Ethernet Panel . .. 830 and RS-485 based networks . 713 EasySens Receiver Gateways — EnOcean Receiver XLTR-1000 — Provides Connectivity Between Two Gateways . 831 Rs-485 Based Networks . 714 EasySens SRC Receiver Controllers — EnOcean Raptor Protocol Converter — RLE Technologies Receiver Controllers . 832 Protocol Coverter . 715 EasySens Repeater — EnOcean Wireless LGATE-9xx Series — Lonworks/Bacnet And Repeater . 833 Universal Gateways . 717 EasySens Switches — EnOcean Lighting, Blinds Babel Buster Series — BACnet - Modbus - SNMP and Shutters Switches . 834 Gateways . 719 EasySens Specialty Wireless Transmitters — AddMe® Series — BACnet - Modbus Network I/O . 743 EnOcean Remote Control, Key Card Switch, Window/Door Contact . 835 Network I/O Modules EasySens Room Sensors — EnOcean Temperature, Humidity and CO2 Sensors . 836 L-IOB Series — BACnet and LON I/O Module . 739 EasySens Temperature Sensors — EnOcean i.CanDoIt Series — Embedded Network Servers 742 Surface, Duct, Remote and Outdoor AddMe® Series — BACnet - Modbus Network I/O .
    [Show full text]
  • X2rail-1 Deliverable D7.1 Analysis of Existing Lines and Economic Models
    X2Rail-1 Project Title: Start-up activities for Advanced Signalling and Automation Systems Starting date: 01/09/2016 Duration in months: 36 Call (part) identifier: H2020-S2RJU-CFM-2015-01-1 Grant agreement no: 730640 Deliverable D7.1 Analysis of existing lines and economic models Due date of deliverable Month 09 Actual submission date 18-02-2019 Organization name of lead contractor for this deliverable 18-TTS Dissemination level PU Revision DB-001-02-R2 Deliverable template version: 02 (09/11/16) X2Rail-1 Deliverable D7.1 Analysis of existing lines and economic models Authors Author(s) Alstom Transport S.A. (ALS) Pierre Damien Jourdain AZD Praha SRO (AZD) Michal Pavel Lukas Michalik BOMBARDIER TRANSPORTATION SWEDEN AB (BTSE) Jorgen Mattisson INDRA (INDRA) Francisco Parrilla Thales Transportation Systems GMBH (TTS) Ana Millán Belen Losada Trafikverket – TRV (TRV) Jan Bystrom Contributor(s) ANSALDO STS S.p.A. (ASTS) Giovanni Canepa CAF Signalling S.L. (CAF) Ignacio Gonzalez Deutsche Bahn AG (DB) Julian Mohr MERMEC SPA (MERMEC) Vito Caliandro Siemens (SIE) Jose Manuel Mellado GA 730640 Page 2 of 165 X2Rail-1 Deliverable D7.1 Analysis of existing lines and economic models 1. Executive Summary The present document constitutes the first issue of Deliverable D7.1 “Analysis of existing lines and economic models” in the framework of the Project titled “Start-up activities for Advanced Signalling and Automation Systems” (Project Acronym: X2Rail-1; Grant Agreement No 730640). Although modern signalling systems are going to considerably reduce trackside equipment in the next years, a source of the innovation step proposed by the X2Rail-1 WP7 is to provide fully distributed control of remote trackside objects such as points, level crossings, etc., without requiring the necessity to install specialized trackside cabling and associated cable routes, ducting etc.
    [Show full text]
  • Zigbee-Based System for Remote Monitoring and Control of Switches
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. ZigBee-Based System for Remote Monitoring and Control of Switches A thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering at Massey University, Albany, New Zealand. © Matthew Lyon October 2010 1 Abstract Home automation technology has existed for nearly four decades, but is nonetheless mostly absent in the average home today. The systems that do exist are often highly customised and expensive, catering to a very niche market, or overly sophisticated and complicated. Many of these also require extensive, dedicated cabling as their communications backbone and as such are only practical to install during the construction of a new house. The core aims of this project are to develop a cheap and simple home automation system that can be easily installed in new and existing houses. These aims are achieved by creating a centralised system where most of the intelligence is managed by a PC server and the end nodes are kept as simple as possible. The server is responsible for basic security, maintaining awareness of the current system state and providing the user interface. At the outer edge of the system is a ZigBee network of wall switches and, in between, a home gateway provides a protocol translation service between the two. The new, “smart” switches are designed to be entirely compatible with existing wall switches in terms of their mounting and wiring requirements, and so ZigBee is chosen to provide a reliable wireless communication channel between the end nodes and the gateway.
    [Show full text]
  • What's New in Zigbee 3.0
    White Paper SWRA615A–June 2019 What's New in Zigbee 3.0 Zigbee is an industry-proven worldwide standard for low power, self-healing, robust mesh networks offering a complete and interoperable IoT solution for home and building automation. Based on the IEEE 802.15.4 standard and providing a simplified approach to commissioning devices securely, it enables users the ability to form networks involving over 250 devices for large coverage areas. Through adherence to a profile specification and ZCP (Zigbee Compliant Platform) testing, Zigbee devices can become certified for interoperability across various platforms. Texas Instruments™ CC13x2 and CC26x2 devices are part of the SimpleLink™ microcontroller (MCU) platform. Zigbee based applications can be developed on these devices using the TI Z-Stack included with the SimpleLink™ CC13x2 and CC26x2 software development kit (SDK). This SDK includes everything needed to develop Zigbee certifiable solution including tools, application examples, documentation and source code. It uses Zigbee 3.0, the latest specification from the Zigbee Alliance which unifies former application segments under a common certification process. The following sections intend to give users an overview of all of the new features introduced in the Zigbee 3.0 specification. 1 Overview At the core of Zigbee 3.0 is the Zigbee PRO 2017 (R22). Note that previously Zigbee Pro 2015 (R21) was required for Zigbee 3.0, which has now been replaced with the newer Zigbee Pro 2017 (R22) specification. Older implementation based on the R21 specification are still compatible with the new R22 specification. The Zigbee PRO Specification adds child device management, improved security features, and new network topology options to Zigbee networks.
    [Show full text]
  • Cybersecurity of Industrial Cyber-Physical Systems: a Review
    CYBERSECURITY OF INDUSTRIAL CYBER-PHYSICAL SYSTEMS: AREVIEW Hakan Kayan Matthew Nunes School of Computer Science and Informatics School of Computer Science and Informatics Cardiff University, UK Cardiff University, UK [email protected] [email protected] Omer Rana Pete Burnap School of Computer Science and Informatics School of Computer Science and Informatics Cardiff University, UK Cardiff University, UK [email protected] [email protected] Charith Perera School of Computer Science and Informatics Cardiff University, UK [email protected] January 12, 2021 ABSTRACT Industrial cyber-physical systems (ICPSs) manage critical infrastructures by controlling the processes based on the “physics” data gathered by edge sensor networks. Recent innovations in ubiquitous computing and communication technologies have prompted the rapid integration of highly intercon- nected systems to ICPSs. Hence, the “security by obscurity” principle provided by air-gapping is no longer followed. As the interconnectivity in ICPSs increases, so does the attack surface. Industrial vulnerability assessment reports have shown that a variety of new vulnerabilities have occurred due to this transition while the most common ones are related to weak boundary protection. Although there are existing surveys in this context, very little is mentioned regarding these reports. This paper bridges this gap by defining and reviewing ICPSs from a cybersecurity perspective. In particular, multi-dimensional adaptive attack taxonomy is presented and utilized for evaluating
    [Show full text]
  • SMART HOME SYSTEMS with the Contribution Of
    Branko Dvoršak Juraj Havelka Elena Mainardi Hrvoje Pandžić Tea Selič Mario Tretinjak SMART HOME SYSTEMS With the contribution of: Vanja Husein Claudia Pacchiega Goran Švast 2 This publication is part of the SHVET project (https://www.smart-hvet.eu/), and has been made possible with the contribution of (in alphabetical order): Center Republike Slovenije za poklicno Izobraževanje (Slovenia) Centoform (Italy) Ecipa Nordest (Italy) Območna Obrtno-Podjetniška zbornica Krško (Slovenia) Obrtničko učilište – ustanova za obrazovanje odraslih (Croatia) Šolski center Novo mesto (Slovenia) Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva (Croatia) This project has been funded with support from the European Commission. This publication reflects the views only of the authors and the Commission cannot be held responsible for any use which may be made of the information contained therein. 3 TABLE OF CONTENTS page 1 INTRODUCTION 4 1.1 WHAT EXACTLY IS A "SMART HOUSE" 5 1.2 HOME AND BUILDING AUTOMATION 6 1.3 FUNCTIONS YOU CAN DO WITH A SMART HOME SYSTEM 6 2 DIFFERENCE BETWEEN A SMART HOME SYSTEM AND A STANDARD ELECTRIC PLANT 13 2.1 ELEMENTS OF A CLASSIC RESIDENTIAL INSTALLATION 13 2.2 STRUCTURE OF A SMART HOME SYSTEM 18 2.3 MODULES OF A SMART HOME SYSTEM 20 3 SMART HOME SYSTEM TECHNOLOGIES 26 3.1 OVERVIEW OF AUTOMATION AND CONTROL TECHNOLOGIES 25 3.2 WHY KONNEX 28 4 KONNEX 30 4.1 HISTORY OF KNX/EIB AND KONNEX ORGANIZATION 30 4.2 TRANSMISSION MEDIA 30 4.3 NET ARCHITECTURE 32 4.4 TOPOLOGY 35 4.5 ADDRESSES 36 4.6 TELEGRAM 38 4.7 PARAMETERIZATION
    [Show full text]
  • Enocean Alliance Now with More Than 170 Members (01/2011)
    The way into the future. The EnOcean Standard for sustainable buildings. Energy-efficient. Interoperable. Practice-proven. Self-powered wireless technology from EnOcean. Everything else is prior art. ENOCEAN IS THE KEY TO INTELLIGENT GREEN BUILDINGS. Due to the unique combination of miniaturised energy converters with reliable radio technology, these wireless sensor networks operate for decades without maintenance, are flexible, and ensure cost reductions and energy savings in buildings and industrial installations alike: n Building automation optimizes energy savings and reduces operating costs lowering total cost of ownership. It furthermore, enhances security, protection and convenience. n Wireless radio technology is essential to the success of building automation. It permits the required number, functionality and flexibility of the necessary sensors. Radio technology minimizes installation times and reduces system costs. n No batteries is a mandatory requirement for larger installations. The cost to monitor, replace and recycle batteries increases with the number of installed nodes. Batteryless EnOcean radio solutions are eco-friendly, comply with the principles of building biology, and save key resources. PREMINO II, MUNICH New office building 2007: cross-facility solution Application Building automation with WAGO I/O, DALI, sunshield, heating control, ceilings with integrated cooling Solution n 55 window contacts n 352 lighting switches n 321 blind switches n 303 room temperature sensors n Room controllers in ceilings and floors Benefits n Flexible room structure n Simple installation and service n Full interoperability of products ENOCEAN WIRELESS STANDARD FOR SUSTAINABLE BUILDING. Self-powered Only EnOcean wireless technology supports batteryless and maintenance-free sensors that can be freely positioned: switches next to doors, temperature sensors at the workplace, and motion detectors in the middle of rooms.
    [Show full text]
  • Open Systems for Homes and Buildings: Comparing Lonworks and KNX Alan Kell Peter Colebrook I&I Limited
    Open Systems for Homes and Buildings: Comparing LonWorks and KNX Alan Kell Peter Colebrook i&i limited No part of this publication may be transmitted or reproduced in any form or by any means, electronic or mechanical, for any purpose, without the prior written permission of i&i limited. Trademarks and Logos i&i and Proplan are trademarks of i&i limited. KNX, EIB, European Installation Bus, EHS, European Home Systems and BatiBUS are trademarks of The Konnex Association and its constituent associations; European Installation Bus Association (EIBA), European Home Systems Association (EHSA) and Club BatiBUS International (BCI). Echelon, LON, LONWORKS, LONMARK, LonBuilder, NodeBuilder, LonManager, LonTalk, LonUsers, LonPoint, Digital Home, Neuron, 3120, 3150, LNS, i.LON, LONWORLD, the Echelon logo, and the LonUsers logo are trademarks of Echelon Corporation registered in the United States and other countries. LonMaker, Panoramix, and Networked Energy Services Powered by Echelon are trademarks of Echelon Corporation. All other brand names and product names are trademarks or registered trademarks of their respective holders. About i&i limited Alan Kell was the principal author of the 1993 study by DEGW etl1 entitled “Bus Systems for Building Control” which was the first detailed study in this area to compare, among others, EIB and LONWORKS in the context of building control. Peter Colebrook collaborated closely with Siemens in Regensburg in the late 1980’s, was one of the 12 founder signatories of the European Installation Bus Association (EIBA) and subsequently served as a Director of that Association. He was also one of the founders of the LONMARK Interoperability Association and similarly served as a Director of that Association.
    [Show full text]