Solar Chimneys for Residential Ventilation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Solar Chimney with an Inverted U-Type Cooling Tower to Mitigate Urban Air Pollution
Chapter 5 A Solar Chimney with an Inverted U-Type Cooling Tower to Mitigate Urban Air Pollution 5.1 Introduction The idea of solar chimney power plant (SCPP) was first put forward by Schlaich et al. [1]. It is based on the utilization of the air density decrease with increasing temperature. The air is heated in a solar collector, then it rises inside a chimney driven by buoyancy, and it drives turbines to generate electricity. In 1983, the world’s first SCPP was built in Manzanares, Spain. This experimental SCPP with 194.6 m chimney height and 5.08 m radius was fully tested and validated till 1989. The relevant experimental results and a scientific description were given by Haff et al. [2, 3]. After that, more and more researchers engaged in the research of SCPP [4–13]. Some researchers also have proposed a series of novel SCPP systems [14–18]. However, it is worth mentioning that most researchers are more focused on how to improve the efficiency of the SC power generation. Cao et al. [19] proposed a solar-assisted large-scale cleaning system for air pollution. The system consists of a large-scale solar collector with the radius of 2500 m, and a chimney with the height of 500 m. There is a filter bank placed near the entrance of the chimney, thus the PM2.5 and larger particulate matter is sepa- rated from the air. Zhou et al. [20] proposed high SCs to drive the warm air containing haze up to higher altitude and enhance the dispersion of dense haze. -
Solar Chimneys Do Draw but Mainly They Just Suck
FORUM Solar chimneys do draw but mainly they just suck Colin Bidden Allison, AP.AIRAH Simultude, Elvin Chatergon, Fratelle Group ABSTRACT Solar chimneys are something of an enigma. They are not very common, and very little is known about their actual performance. They have been installed in various commercial or public buildings, and as long as they are not adding to the space cooling load, are assumed to work satisfactorily. Very few studies have been done to rationalise their performance. Their use in a domestic application is quite scarce. Therefore, when it was proposed to use a solar chimney in a private residence in Perth, it was a fortuitous opportunity to estimate the actual, value – added ventilation contribution of the solar component. A series of virtual experiments using a CFD analysis was designed to measure the actual solar chimney ventilation contribution. These experiments would be extremely impractical to perform in a real sense but the use of a capable CFD code proved to be an extremely useful design tool. The flip-side of this circumstance is that the CFD simulations could not be validated since they indicated that the solar chimney should not be constructed in the first place. At best, the expense of constructing a chimney that would have very little benefit was avoided. Key words: Computational fluid dynamics (CFD), Solar chimney performance, natural ventilation INTRODUCTION BackGROUND Solar chimneys appear to be very clever devices that can be used There appears to be a dearth of information pertaining to the to ventilate a building free of charge by using the energy of the performance of solar chimneys. -
Wind- Chimney
WIND-CHIMNEY Integrating the Principles of a Wind-Catcher and a Solar-Chimney to Provide Natural Ventilation A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Architecture by Fereshteh Tavakolinia December 2011 WIND-CHIMNEY Integrating the Principles of a Wind-Catcher and a Solar-Chimney to Provide Natural Ventilation © 2011 Fereshteh Tavakolinia ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: WIND-CHIMNEY Integrating the Principles of a Wind-Catcher and a Solar-Chimney to Provide Natural Ventilation AUTHOR: Fereshteh Tavakolinia DATE SUBMITTED: December 2011 COMMITTEE CHAIR: James A. Doerfler, Associate Department Head COMMITTEE MEMBER: Jacob Feldman, Professor iii WIND-CHIMNEY Integrating the principles of a wind-catcher and a solar chimney to provide natural ventilation Fereshteh Tavakolinia Abstract This paper suggests using a wind-catcher integrated with a solar-chimney in a single story building so that the resident might benefit from natural ventilation, a passive cooling system, and heating strategies; it would also help to decrease energy use, CO2 emissions, and pollution. This system is able to remove undesirable interior heat pollution from a building and provide thermal comfort for the occupant. The present study introduces the use of a solar-chimney with an underground air channel combined with a wind-catcher, all as part of one device. Both the wind-catcher and solar chimney concepts used for improving a room’s natural ventilation are individually and analytically studied. This paper shows that the solar-chimney can be completely used to control and improve the underground cooling system during the day without any electricity. -
2021-2022 Parent Handbook
2021-2022 PARENT HANDBOOK “This is the hope we have - a hope in a new humanity that will come from this new education, an education that is collaboration of man and the universe….” -Dr. Maria Montessori i | Page Welcome to Undercroft Montessori School! To both new and returning families, we extend a warm welcome to the new school year! We are so happy you are part of our Undercroft community. Over the course of this year your children will grow in a Montessori environment designed to cultivate qualities of independence, confidence, competence, leadership and a love of learning. Parents are important teachers in the lives of their children and we are honored to partner with you in support of your child’s learning and development. The strength of that partnership is an important foundation for your child’s success in school. We are committed to our relationships with parents and rely on your communication, support, and involvement to ensure a successful experience for your child. As we begin Undercroft’s 57th year, we are delighted to share the many wonderful things Undercroft has to offer. Please review carefully the information included in this handbook. It is intended to acquaint you with the policies and procedures of the school. It is important that you read it thoroughly. This summer, we will review and update our pandemic plan, which summarizes the strategies we will employ to safeguard the health and well-being of our school community in the context of the COVID-19 pandemic. This plan remains a living document, and will be subject to change throughout the year as we respond to changing guidelines for schools, as well as changing circumstances related to the pandemic in the greater community. -
A Prior's Mansion at Michelmersh
Proc Hampsh Field Club Archaeol Soc 48, 1992, 107-119 A PRIOR'S MANSION AT MICHELMERSH by EDWARD ROBERTS INTRODUCTION 12-20). Indeed, the St Swithun's compotus rolls show that the prior lived as a great feudal lord Michelmersh lies a few miles north of Romsey with a retinue of officials and servants. He paid beside the river Test. It has long been known frequent visits to his several country houses in that the Manor Farm there contains medieval Hampshire, sometimes for extended periods stonework (Suckling 1914, xxiv) but recent during which there was much feasting and restoration has revealed a fourteenth-century possibly some hunting too, for many of the solar range virtually intact and the frag houses had associated deer parks (Fig 1; mentary remains of two other medieval Kitchin 1892, 33^*; Greatrex 1973 ii, xxxiii, buildings. These surviving structures were lxiii; Drew 1939, 1943 and 1945 passim). only part of a mansion, or large country resi As a general rule, it seems that the prior's dence, belonging to the priory of St Swithun, mansions had a camera domini or private the cathedral priory of Winchester. chamber for the prior, additional rooms for his The chief documentary sources for a study household or visitors, a chapel and a gate of the scale and nature of this mansion are house. Often they were built of stone or, in the fourteen manorial compotus rolls dating from case of Silkstead, of brick (Drew 1939, 99). 1248 to 1326 in Winchester Cathedral Library Michelmersh fulfilled all these criteria, as we (Drew 1943, 86) and two early fifteenth- shall see, but elsewhere the evidence is less century compotus rolls in the Hampshire Record complete and it is possible that the mansions Office (HRO 5M50/2691-2). -
Passive Solar Design Strategies: Guidelines for Home Building
Passive Solar Design Strategies: Guidelines for Horne Building Passive Solar Industries Council National Renewable Energy Laboratory Charles Eley Associates With SufrPort From: U.S. Department of Energy Passive Solar Design Strategies: Guidelines for Home Building Jackson, Mississippi Passive Solar Industries Council National Renewable Energy Laboratory Charles Eley Associates This document was prepared under the sponsorship of the National Renewable Energy Laboratory and produced with funds made available by the United States Department of Energy. Neither the United States Department of Energy, the National Renewable Energy Laboratory, the Passive Solar Industries Council nor any of its member organizations, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. The views and opinions do not necessarily state or reflect those of the United States government, the National Renewable Energy Laboratory, or any agency thereof. This document was prepared with the assistance and participation of representatives from many organizations, but the views and opinions expressed represent general consensus and available information. Unanimous approval by all organizations is not implied. PA:;):;)/VI= :;)ULAH UI=:;)/GN :;) / HA II=WI=:;) r..;UN I cN I ::; Guidelines Part One. Introduction . ...................................... 1 1. The Passive Solar Design Strategies Package. 2 2. Passive Solar Perfonnance Potential .............................. 5 Part Two. Basics of Passive Solar . .............................. 7 .1. Why Passive Solar? More than a Question of Energy. 8 2. Key Concepts: Energy Conservation, Suntempertng, Passive Solar ........... -
Passive and Low Energy Cooling Survey
Environmental Building News - Marc Rosenbaum's Passive and Low Energy Cooling Summary... Page 1 of 14 Home Search Subscribe Features Product Reviews Other Stories Passive and Low Energy Cooling Survey by Marc Rosenbaum, P.E. Marc's other articles 1.0 Comfort 2.0 Psychrometrics 3.0 Conventional Mechanical Cooling Using Vapor Compression 4.0 Loads 5.0 Climate 6.0 Distribution Options 7.0 Dehumidification 8.0 Ventilative Cooling 9.0 Nocturnal Ventilative Cooling 10.0 Night Sky Radiational Cooling 11.0 Evaporative Cooling 12.0 Earth-coupled Cooling 13.0 System Strategies This report documents a survey I made of passive and low energy cooling techniques. It begins with an overview of general cooling issues. The topics covered in the sections following are: comfort, psychrometrics, an overview of mechanical cooling, loads, climate data, distribution options, dehumidification, ventilative cooling, nocturnal ventilative cooling, radiant cooling, evaporative cooling, earth-coupled cooling, and combined system strategies. Principal references were Passive Cooling, edited by Jeffrey Cook, and Passive and Low Energy Cooling of Buildings, by Baruch Givoni. Both books are primarily academic in nature, but Givoni in particular provides plenty of actual field data. These books don't necessarily represent the state- of-the-art: Cook was published in 1989, and Givoni in 1994. As we decide which direction to pursue, we will seek more current information. The physics are unlikely to change much, however. The usual caveat applies: I am not expert in any of these applications, and all errors herein are mine. 1.0 Comfort Buildings are cooled primarily to enhance human comfort. -
Improving Stack Effect in Hot Humid Building Interiors with Hybrid Turbine Ventilator(S)
MAT EC Web of Conferences 17, 01012 (2014) DOI: 10.1051/matecconf/20141701012 C Owned by the authors, published by EDP Sciences, 2014 Improving Stack Effect in Hot Humid Building Interiors with Hybrid Turbine Ventilator(s) Radia Tashkina Rifa1, Karam M. Al-Obaidi2 , Abdul Malek Abdul Rahman3,a 1,2,3School of Housing, Building and Planning, Universiti Sains Malaysia, 11800, Penang, Malaysia Abstract. Natural ventilation strategies have been applied through the ages to offer thermal comfort. At present, these techniques could be employed as one of the methods to overcome the electric consumption that comes from the burning of disproportionate fossil fuel to operate air conditioners. This air conditioning process is the main contributor of CO2 emissions. This paper focuses on the efficiency of stack ventilation which is one of the natural ventilation strategies, and at the same time attempts to overcome the problem of erratic wind flow and the low indoor/outdoor temperature difference in the hot, humid Malaysian climate. Wind flow and sufficient pressure difference are essential for stack ventilation, and as such the irregularity can be overcome with the use of the Hybrid Turbine Ventilator (HTV) which extracts hot air from the interior of the building via the roof level. The extraction of hot air is constant and consistent throughout the day time as long as there is sunlight falling on the solar panel for solar electricity. The aim of this paper is to explore the different HTV strategies and find out which building dimensions is most expected to reduce maximum indoor air temperature of a given room in a real weather condition. -
The Wind-Catcher, a Traditional Solution for a Modern Problem Narguess
THE WIND-CATCHER, A TRADITIONAL SOLUTION FOR A MODERN PROBLEM NARGUESS KHATAMI A submission presented in partial fulfilment of the requirements of the University of Glamorgan/ Prifysgol Morgannwg for the degree of Master of Philosophy August 2009 I R11 1 Certificate of Research This is to certify that, except where specific reference is made, the work described in this thesis is the result of the candidate’s research. Neither this thesis, nor any part of it, has been presented, or is currently submitted, in candidature for any degree at any other University. Signed ……………………………………… Candidate 11/10/2009 Date …………………………………....... Signed ……………………………………… Director of Studies 11/10/2009 Date ……………………………………… II Abstract This study investigated the ability of wind-catcher as an environmentally friendly component to provide natural ventilation for indoor environments and intended to improve the overall efficiency of the existing designs of modern wind-catchers. In fact this thesis attempts to answer this question as to if it is possible to apply traditional design of wind-catchers to enhance the design of modern wind-catchers. Wind-catchers are vertical towers which are installed above buildings to catch and introduce fresh and cool air into the indoor environment and exhaust inside polluted and hot air to the outside. In order to improve overall efficacy of contemporary wind-catchers the study focuses on the effects of applying vertical louvres, which have been used in traditional systems, and horizontal louvres, which are applied in contemporary wind-catchers. The aims are therefore to compare the performance of these two types of louvres in the system. For this reason, a Computational Fluid Dynamic (CFD) model was chosen to simulate and study the air movement in and around a wind-catcher when using vertical and horizontal louvres. -
Space Heating with Solar Hot Water
Professional design, installation and service of renewable energy systems Space heating with solar hot water ReVision Energy is often asked whether we can integrate our solar hot water systems with conventional boilers to produce energy for space heating. The question is understandable because we know that in a typical Maine home, the space heating load represents up to 80% of the annual oil or propane consumption. Minimizing this consumption and displacing as much as possible with clean, renewable solar energy is a laudable goal. Plus, sunshine is free. Here are the circumstances when active solar space heating is the best alternative. Who should consider active solar space heating? Ask yourself the following questions. If you answer yes to all of the questions, then solar space heating might be for you. Are you building new or do you already have a house that is super insulated? Super insulation values are generally R-30 walls & R-50 ceiling. Do you have, or can you install, a low temperature distribution system, such as concrete slab- on-grade or a thin slab, with radiant tubing? Do you plan to install, or do you have, a high efficiency backup heating system? Do you have a budget of $10,000-$20,000 that you want to invest in a solar hot water system? If you answer YES to all of the above questions, then active solar space heat might be for you! What are the benefits of an active solar space heating system? For those who make the investment to build an active solar space heating system, the benefits are numerous. -
Railing LED Light NEW! Powder Coat White Antique Bronze
The Largest Selection of... FENCE & DECK ACCESSORIES IN THE WORLD ! Since 1987 HHOOMMEE TTOOPPSS April 2016 NEW! 800-211-8665 • WWW.HOMETOPS.COM Introducing Two NEW GREEN Products by Aurora decK lighting ... • PHOENIX Recessed L.E.D. Lighting Kit • ODYSSEY Recessed L.E.D. Lighting Kit phOenix recessed l.e.d. l ighting The Numerous Benefits of the phOenix Recessed L.E.D. Lighting... • Uses Less than 5 Watts on a 10 Light System • LED Bulbs Last up to 25,000 Hours • Create a Soft Accent on the Deck or Railing • Illuminate Stairs, Walkways and Docks • Solid Cast Aluminum Body, Polycarbonate Lens • Can be Used with or without the Remote Control • Operate up to 30 Phoenix LED Lights • Actual Size: 1 1/8” Overall Diameter, 1 1/2” Deep • Easy to Use Remote Control hOenix The phOenix Recessed L.E.D. Lighting Kit The phOenix Recessed L.E.D. Lights This oIptniosntaal alclceersso rBy bitit. w.. ill drill Includes All that You’ll Need for Easy Installation! are available to expand up to a maximum of • 10 Recessed LED Lights 30 Phoenix L.E.D.’s on one transformer! and countersink your hole in one step. • DC Transformer Driver Simplify and speed up the installation • Remote Control with Dimmer These additional lighting kits are available in... process with this optional two-step drill bit. • 100’ Wire and Connectors • 2 Pack • 10 Pack • Detailed Installation Instructions • LED Color Choices: Cool White, Warm White, Cobalt Blue Odyssey recessed l.e.d. l ighting Aurora’s Odyssey led s trip lighting Kits are Extremely Versatile, so Let Light Shine in the Most Difficult of Places! • Each kit comes complete with four strips of LED lights installation wire, our pigtail connectors, the LED Driver Box with timer, Remote Driver, and remote control Odyssey • Several Lengths to Choose from 18”, 24”, 36”, 48”, 72” ALUMINUM CHANNEL ! • Expansion strips are available and up to 16.4 and 20 feet of strip lights • Mounts to ANY Fllat Serviice can be powered by a single LED Driver Box Long Lasting LEDs.. -
Indoor Air Quality, the House As a System and Vented Combustion
Michael J. Van Buren, P.E. Blazing Design, Inc. 49 Commerce Ave, 6A S. Burlington, Vermont 05403 (p) 802-318-6973 Email – [email protected] Fireplace Design “The House as a System” House as a System What does it mean, The “House as a System”? The house as a system refers to how air moves in, out and around a house. Air moves in and out of a house through the “building envelope”. Why Consider the “House as a System”? Many chimneys fail to operate because of aspects of the house and its surroundings. If air flows out of a house, air must flow back into the house Pressure Differences, What Pressure Differences? My Ears Don’t Even Pop! 1 Pound per square inch (Psi) = 27.71 inches of water column (W.C.) 0.1 inch water column (W.C.) = 25 Pascals (PA) House pressures range from 5 to –25 PA What Causes These Air Pressure Differences? Appliances that take air out of the house Exhaust fans – bathrooms, kitchens Clothes dryers Furnaces Atmospherically vented combustion appliances; fireplaces, furnaces, boilers, hot water heaters. Typical Air Flows of Exhaust Fans Device Air Flow (CFM) Bathroom Fan 32-64 Standard Kitchen Fan 85-127 Downdraft Kitchen Fan 210-425 Clothes Dryer 85-160 Central Vacuum 50-110 When air goes out - more air must come in! Fireplace Needs Other Causes affecting Air Pressure Differences The Not-So Obvious Reasons Buoyancy of warm air – “Stack Effect” Wind Furnaces Buoyancy of Warm Air? Everyone knows hot air rises – Why? Hot air is lighter than cold air (air expands when it is heated) That’s why candle flames go up That’s why hot air goes up a chimney Buoyancy of hot air causes a pressure difference in the house relative to the outside pressure which is called “Stack Effect” Stack Effect? Stack Effect - The pressure difference created between the warmer air in a building and the colder air outside.