11Th Annual NIH Graduate Student Research Symposium | Jan. 13
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Construction and Characterization of an Infectious Vaccinia Virus And
Proc. Nat. Acad Sci. USA Vol. 80, pp. 7155-7159, December 1983 Biochemistry Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters (hybrid vaccinia virus/chimeric gene/live virus vaccine/recombinant DNA) GEOFFREY L. SMITH*, BRIAN R. MURPHYt, AND BERNARD MOSS* *Laboratory of Biology of Viruses and tLaboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20205 Communicated by Robert M. Chanock, August 29, 1983 ABSTRACT A DNA copy of the influenza virus hemagglu- striction sites for the insertion of the foreign gene segment (6, tinin gene, derived from influenza virus A/Jap/305/57 (H2N2) 7). was inserted into the genome of vaccinia virus under the control In this communication, we describe the formation and prop- of an early vaccinia virus promoter. Tissue culture cells infected erties of a vaccinia virus recombinant that contains the influ- with the purified recombinant virus synthesized influenza hem- enza virus gene for hemagglutinin (HA). The HA genes from agglutinin, which was glycosylated and transported to the cell sur- several influenza subtypes have been cloned and their se- face where it could' be cleaved with trypsin into HAI and HA2 quences determined (14-18), and some of these been ex- subunits. Rabbits and hamsters inoculated intradermally with re- have combinant virus produced circulating antibodies that inhibited pressed in simian virus 40 (SV40) virus vectors (19-22). The hemagglutination by influenza virus. Furthermore, vaccinated product-of this gene is probably the most thoroughly studied hamsters achieved levels of antibody similar to those obtained upon integral membrane protein: its three-dimensional structure has primary infection with influenza virus and were protected against been determined (23), antigenic sites have been mapped (24), respiratory infection with the A/Jap/305/57 influenza virus. -
Vaccinia Virus and Poxvirology M E T H O D S I N M O L E C U L a R B I O L O G Y™
METHODS IN MOLECULAR BIOLOGY BIOLOGYTMTM Volume 269 VVacciniaaccinia VirusVirus andand PoxvirologyPoxvirology MethodsMethods andand ProtocolsProtocols Edited by Stuart N. Isaacs Vaccinia Virus and Poxvirology M E T H O D S I N M O L E C U L A R B I O L O G Y™ John M. Walker, SERIES EDITOR 291. Molecular Toxicology Protocols, edited by 270. Parasite Genomics Protocols, edited by Sara Phouthone Keohavong and Stephen G. Grant, E. Melville, 2004 2005 269. Vaccina Virus and Poxvirology: Methods 290. Basic Cell Culture, Third Edition, edited by and Protocols,edited by Stuart N. Isaacs, 2004 Cheryl D. Helgason and Cindy Miller, 2005 268. Public Health Microbiology: Methods and Protocols, edited by John F. T. Spencer and 289. Epidermal Cells, Methods and Applications, Alicia L. Ragout de Spencer, 2004 edited by Kursad Turksen, 2004 267. Recombinant Gene Expression: Reviews and 288. Oligonucleotide Synthesis, Methods and Appli- Protocols, Second Edition, edited by Paulina cations, edited by Piet Herdewijn, 2004 Balbas and Argelia Johnson, 2004 287. Epigenetics Protocols, edited by Trygve O. 266. Genomics, Proteomics, and Clinical Tollefsbol, 2004 Bacteriology: Methods and Reviews, edited 286. Transgenic Plants: Methods and Protocols, by Neil Woodford and Alan Johnson, 2004 edited by Leandro Peña, 2004 265. RNA Interference, Editing, and 285. Cell Cycle Control and Dysregulation Modification: Methods and Protocols, edited Protocols: Cyclins, Cyclin-Dependent Kinases, by Jonatha M. Gott, 2004 and Other Factors, edited by Antonio Giordano 264. Protein Arrays: Methods and Protocols, and Gaetano Romano, 2004 edited by Eric Fung, 2004 284. Signal Transduction Protocols, Second Edition, 263. Flow Cytometry, Second Edition, edited by edited by Robert C. -
Curriculum Vitae
Kamhawi S., 1 CURRICULUM VITAE NAME: Shaden Kamhawi, Ph.D. h index 2014, 29 ADDRESS Vector Molecular Biology Section Laboratory of Malaria and Vector Research National Institute of Allergy and Infectious Diseases National Institutes of Health 12735 Twinbrook Parkway Room 2E-32D Rockville, MD, 20852 Phone: 301-594-5547 Fax: 301-594-5373 Email: [email protected] PROFESSIONAL EXPERIENCE 2014-Present, Associate Scientist, Core, Laboratory of Malaria and Vector Research (LMVR), NIAID, NIH 2006-2014, Staff Scientist, Core, Laboratory of Malaria and Vector Research (LMVR), NIAID, NIH 2001- 2006, Staff Scientist, Laboratory of Parasitic Diseases (LPD), NIAID, NIH. 1997- 2001, Visiting associate, LPD, NIAID, NIH. 1996- 2000, Associate professor, Department of Biological Sciences, Yarmouk University, Irbid, Jordan. 1990-1996, Assistant professor, Department of Biological Sciences, Yarmouk University, Irbid, Jordan. EDUCATION 1990, Ph.D. in Medical Entomology, Salford Univeristy, Salford, England. 1985, B.Sc. in Biological & Biochemical Sciences, Salford University, Salford, England. AREA OF EXPERTISE Vector Biology; Vector-Parasite-Host molecular interactions; Host immune response to transmission of Leishmania by sand fly bite; Development of vector-based vaccines; Field-oriented investigations of epidemiology of leishmaniases and transmission patterns. CURRENT DUTIES: Dr. Kamhawi plays an essential role in sand fly-related research at NIAID. She brings a unique set of skills including extensive field expertise in leishmaniasis epidemiology and Kamhawi S., 2 a proficiency in experimental techniques covering various fields including entomology, parasitology, immunology and molecular biology. Current duties of Dr. Kamhawi include: The sand fly Unit: Dr. Kamhawi is a world expert on phlebotomine sand flies, vectors of the neglected tropical disease leishmaniasis. -
Poxvirus DNA Replication
Downloaded from http://cshperspectives.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Poxvirus DNA Replication Bernard Moss Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892 Correspondence: [email protected] Poxviruses are large, enveloped viruses that replicate in the cytoplasm and encode proteins for DNA replication and gene expression. Hairpin ends link the two strands of the linear, double-stranded DNA genome. Viral proteins involved in DNA synthesis include a 117-kDa polymerase, a helicase–primase, a uracil DNA glycosylase, a processivity factor, a single- stranded DNA-binding protein, a protein kinase, and a DNA ligase. A viral FEN1 family protein participates in double-strand break repair. The DNA is replicated as long conca- temers that are resolved by a viral Holliday junction endonuclease. oxviruses are large, enveloped, DNA viruses (Moss 2007). The DNA replication proteins, in Pthat infect vertebrate and invertebrate spe- contrast to those involved in early transcription, cies and replicate entirely in the cytoplasm are not packaged in virions but are translated (Moss 2007). Two poxviruses are human-spe- from viral early mRNAs. DNA replication oc- cific: variola virus and molluscum contagiosum curs following release of the genome from the virus. The former causes smallpox, a severe dis- core, and progeny DNA serves as the template ease with high mortality that was eradicated for transcription of intermediate- and late-stage more than two decades ago; the latter is distrib- genes (Yang et al. 2011). uted worldwide and produces discrete benign skin lesions in infants and extensive disease in immunocompromised individuals. -
Mechanisms to the Human in Life Body
FROM DEFENSE BACTERIA MECHANISMS TO THE HUMAN IN LIFE BODY FOURTEENTH ANNUAL LSI SYMPOSIUM MAY 21, 2015 Images courtesy of Katherine D. Walton, research investigator, and Deborah Gumucio, professor, Department of Cell and Developmental Biology, U-M Medical School SCHEDULE FORUM HALL, PALMER COMMONS (OVERFLOW SEATING AVAILABLE IN GREAT LAKES NORTH) 8:30 A.M. 1:15 P.M. WELCOME | Alan Saltiel, Ph.D. ROLE OF THE MICROBIOTA IN INFECTION CONTROL Mary Sue Coleman Director of the Life Sciences Institute AND SEQUELAE | Yasmine Belkaid, Ph.D. Chief of Mucosal Immunology Section, Laboratory of 8:35 A.M. Parasitic Diseases, National Institutes of Health, National INTRODUCTION OF THE MARY SUE AND KENNETH Institute of Allergy and Infectious Diseases COLEMAN LIFE SCIENCES LECTURER | Mary Sue Coleman, Ph.D. 1:55 P.M. President Emerita IMMUNE REGULATION OF INTESTINAL HEALTH AND DISEASE | Gregory F. Sonnenberg, Ph.D. 8:50 A.M. Assistant Professor of Microbiology and Immunology in MARY SUE AND KENNETH COLEMAN LIFE SCIENCES Medicine, Weill Cornell Medical College LECTURE: HOMEOSTASIS, INFLAMMATION AND DISEASE | Ruslan Medzhitov, Ph.D. AFTERNOON BREAK David W. Wallace Professor of Immunobiology, Yale School of Medicine; Investigator, Howard Hughes 3:15 P.M. Medical Institute TISSUE CONTROL OF MACROPHAGE HOMEOSTASIS AND FUNCTION | Miriam Merad, M.D., Ph.D. MORNING BREAK Professor of Oncological Science and Medicine; Mount Sinai Chair in Cancer Immunology; Director of Human 10:30 A.M. Immune Monitoring Center, Tisch Cancer Institute, Icahn GENERATION OF A MEMORY OF INFECTION DURING School of Medicine at Mount Sinai CRISPR-CAS IMMUNITY | Luciano Marraffini, Ph.D. Assistant Professor, head of the Laboratory of 3:55 P.M. -
18Th Annual Upstate New York Immunology Conference
20152015 18th Annual Upstate New York Immunology Conference Major Corporate Sponsors: BD Biosciences BioLegend, Inc. Taconic Bioscience Keynote Speakers: Supported by Yasmine Belkaid, Ph.D. NIH/NIAID Kristin A. Hogquist, Ph.D. Grant Funding Workshop Presentation by: Yasmine Belkaid, Ph.D. Jacob Schumacher, AAI AAI Young Investigator Awards eBioscience/affymetrix Trainee Travel Awards Welcome to The Sagamore Resort and Conference Center Bolton Landing, NY October 25-28, 2015 2. UPSTATE NEW YORK IMM UNOLOGY CONFERENCE ( NYIC) We’ve come a long way from Garnet Hill! This meeting started in 1997 as a small retreat to facilitate interactions among young scientists, institutions, and renowned experts in the field of Immunology. In just a few short years, the number of attendees grew and a larger venue was needed to meet the future needs of the Conference. We are happy to announce the American Association of Immu- nologists (AAI) is once again providing 10 Young Investigator Awards. eBioscience is also proving 10 Trainee Travel Awards. All award winners will give Oral Poster Presentations. There will also be two Workshops. Keynote speakers are Dr. Yasmine Belkaid (NIH/NIAID) and Dr. Kristin A. Hogquist (University of Minnesota). As part of our leisure activities, there will be a cruise on Lake George, as well as a recreational night including miniature golf, Wii, X-box, whiffle ball, and movies! Mr. Brown’s Pub will be open Tuesday night for informal discussions. Trainees will also have an opportunity to win an iPad during one of two drawings. You must be present at the drawing to win! While all these elements lend to the atmosphere, one simple principle goal of this Conference re- mains. -
Pinpointing Pathogens Technologies to Track Infections from the Skies and on the Ground
JULY 2015 | WWW.THE-SCIENTIST.COM PINPOINTING PATHOGENS TECHNOLOGIES TO TRACK INFECTIONS FROM THE SKIES AND ON THE GROUND ERADICATING POLIO AND GUINEA WORM DISEASE THE CONSEQUENCES OF AN INCOMPLETE MICROBIOME MAKING CLINICAL STUDIES MORE DIVERSE PLUS STAYING ACTIVE AFTER RETIREMENT THE NO-WASH ELISA ALTERNATIVE THAT TRANSFORMS YOUR LAB is a registered trademark of PerkinElmer, Inc. All other trademarks are the property their respective owners. ® © 2015 PerkinElmer, Inc. 400334_02 All rights reserved. PerkinElmer Copyright The perfect combination of convenience and results. Drug development and disease prevention are a race against time – so researchers need the confidence in their biology to enable quick go-to-market decisions. AlphaLISA® technology delivers a fast, cost-effective, no-wash ELISA alternative that reduces user error, prevents washing away weak interactions, and makes walkaway, overnight immunoassays possible. All with wider dynamic range, better sensitivity – and more confidence in your findings, especially when used with the EnVision® multimode plate reader. AlphaLISA technology: The no-wash ELISA alternative that fits your research perfectly. Find out more at www.perkinelmer.com/alphalisa High Performance Solution for Your Clinical Research Reliability PRECISION IN YOUR CLINICAL RESEARCH ® VIP Series CytoGROW -86ºC Freezer Optimal Series - CO2 Incubator Rethink High Performance Look to Panasonic’s VIP® freezers for >99% reliability rate, more energy efficiency, and superior temperature uniformity. Match this freezer with our CytoGROW Optimal CO2 incubator, with precise temperature control and contamination resistance, for a high performance solution. Learn more at us.panasonic-healthcare.com Celebrating 40 Years of Passion in Science The 2015-16 NEB Catalog & Technical Reference New England Biolabs introduces the latest edition of its award- winning Catalog & Technical Reference, featuring over 50 new products, up-to-date selection charts, protocols and troubleshooting tips. -
June 2, 2017, NIH Record, Vol. LXIX, No. 11
June 2, 2017 Vol. LXIX, No. 11 on stage for a conversation that was beamed the two conducted a “space chat” as Rubins universe-wide to whoever’s out there on orbited 220 miles above Earth. NIH’s Facebook page. This was their second Rubins’ visit to NIH was part of conversation; the first was last Oct. 18, when National DNA Day, which commemorates Astronaut Describes the successful com- Experiences Aboard ISS, pletion of the Human Sequencing DNA in Space Genome Project and BY ERIC BOCK the discovery of DNA’s double helix. If it weren’t for an NIH grant application, She said the purpose NASA astronaut and biologist Dr. Kate of conducting research Rubins would never have been the first aboard the station is person to sequence DNA in space. to learn about funda- “I was writing an R01 [grant application] mental differences when my friend called me and said there in both physical and are astronaut applications online,” she biological processes recounted during a talk at Masur Auditorium in microgravity, the on Apr. 25. “And it turned out to be an excel- effects of radiation and lent procrastination tool for grant writing.” the vacuum of space. She spoke about her 115-day stay aboard These conditions allow the International Space Station (ISS). NIH NIH director Dr. Francis Collins interviews NASA astronaut and biologist researchers to conduct Dr. Kate Rubins on stage in Masur Auditorium on DNA Day, Apr. 25. director Dr. Francis Collins then joined her SEE ASTRONAUT, PAGE 8 Belkaid Describes Intimate Man-Bug Partnership Time was when you had to go outside your own skin to confront “the other.” That all went out the window when the human microbiota—our passengers throughout birth, life and death—was discovered to exert an enormous effect on health. -
Moss, Bernard 2018 Dr
Moss, Bernard 2018 Dr. Bernard Moss Oral History Download the PDF: Moss_Bernard_oral_history (155 kB) This is an interview with Dr Bernard Moss on June 25th, 2018, at the National Institutes of Health (NIH) about his career in the National Institute of Allergy and Infectious Diseases (NIAID). The interviewer is Dr. Victoria Harden, the Founding Director, Emerita, of the Office of NIH History and Stetten Museum. Harden: Dr Moss, would you state your name, and that you're aware that this is being recorded, and that you give permission for the recording? Moss: My name is Bernard Moss, and I'm aware of the recording. Harden: Thank you. You were born on July 26th, 1937, the younger son in your family. Would you describe your childhood and your education through high school, especially noting anyone or any experience that helped direct you towards a career in research? Moss: I was born in Brooklyn, New York. My family was a close one. My grandparents lived in the same apartment building and my uncles and aunts lived within walking distance. I attended a public elementary school, which was just across the street. I recall that I was more interested in outside activities and sports. I liked to read, but I didn't particularly want to read what the teachers prescribed. I remember that getting a library card was exciting. I was able to walk to the library and pick out books myself. Despite the fact that I was not terribly interested in the classroom, I scored high in testing. For that reason, I went through a gifted program, called the SP system in New York City. -
Topological Analysis and Functional Characterization of Vaccinia Virus Morphogenesis Proteins
ABSTRACT Title of Dissertation: TOPOLOGICAL ANALYSIS AND FUNCTIONAL CHARACTERIZATION OF VACCINIA VIRUS MORPHOGENESIS PROTEINS Seong-In Hyun, Doctor of Philosophy, 2017 Dissertation directed by: Dr. Bernard Moss, Adjunct Professor, National Institutes of Health and Dr. Jeffrey DeStefano, Professor, Department of Cell Biology and Molecular Genetics Poxviruses are large, enveloped, double-stranded DNA viruses that replicate in the cytoplasm of host cells and are responsible for diseases of humans and other animals. Vaccinia virus (VACV), the most extensively studied member in the family, encodes approximately 200 proteins, of which 100 are conserved in all members of the vertebrate subfamily of poxviruses and have roles in gene expression, DNA replication, morphogenesis and cell entry. Previous studies have shown that several vaccinia virus proteins localize to the endoplasmic reticulum (ER), suggesting that it serves as the source of viral membranes. Determining the topology of these viral proteins can provide information about protein function and viral membrane formation. My first project involved using an asymmetric self-associating split-GFP system to determine the topology of the transmembrane viral proteins L2 and A30.5 that localize in the endoplasmic reticulum. This split-GFP system uses large (215 aa) and small (16 aa) fragments of GFP that fluoresce only upon complementation. Our results showed that a short GFP fragment can be used to tag small transmembrane viral proteins to determine their localization and topology in vivo. The second project focuses on a protein called I2, which I showed is required for later stage virion morphogenesis. I deleted the I2 gene from the VACV genome by homologous recombination. -
Dialogue Between Skin Microbiota and Immunity Yasmine Belkaid and Julia A
SKIN 4. W. Jänig, Brain Res. 28, 203–216 (1971). REVIEW 5. R. S. Johansson, J. Physiol. 281, 101–125 (1978). 6. M. Paré, A. M. Smith, F. L. Rice, J. Comp. Neurol. 445, 347–359 (2002). 7. D. T. Blake, S. S. Hsiao, K. O. Johnson, J. Neurosci. 17, Dialogue between skin microbiota 7480–7489 (1997). 8. W. H. Talbot, I. Darian-Smith, H. H. Kornhuber, V. B. Mountcastle, J. Neurophysiol. 31,301–334 (1968). and immunity 9. A. Iggo, A. R. Muir, J. Physiol. 200,763–796 (1969). – 10. C. J. Woodbury, H. R. Koerber, J. Comp. Neurol. 505, 547 561 1 2 (2007). Yasmine Belkaid * and Julia A. Segre * 11. D. Biemesderfer, B. L. Munger, J. Binck, R. Dubner, Brain Res. 142, 197–222 (1978). Human skin, the body’s largest organ, functions as a physical barrier to bar the entry 12. S. Vrontou, A. M. Wong, K. K. Rau, H. R. Koerber, D. J. Anderson, of foreign pathogens, while concomitantly providing a home to myriad commensals. – Nature 493, 669 673 (2013). ’ 13. H. Olausson et al., Nat. Neurosci. 5,900–904 (2002). Over a human s life span, keratinized skin cells, immune cells, and microbes all interact 14. Z. Halata, M. Grim, K. I. Bauman, Anat. Rec. A Discov. Mol. Cell. to integrate the processes of maintaining skin’s physical and immune barrier under Evol. Biol. 271A, 225–239 (2003). homeostatic healthy conditions and also under multiple stresses, such as wounding or 15. Z. Halata, B. L. Munger, Brain Res. 371, 205–230 (1986). infection. In this Review, we explore the intricate interactions of microbes and immune 16. -
Breakdown of Intestinal Homeostasis by Mucosal Infections Triggers Adaptive Immune Responses Against Antigens from Commensal Bacteria
UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE BIOQUÍMICA E IMUNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOQUÍMICA E IMUNOLOGIA Breakdown of intestinal homeostasis by mucosal infections triggers adaptive immune responses against antigens from commensal bacteria Aluna: Liliane Martins dos Santos Orientador(a): Dr. Yasmine Belkaid (NIH) Co-orientador(a): Dr. Leda Quercia Vieira BELO HORIZONTE, 28 DE SETEMBRO DE 2011 Liliane Martins dos Santos Breakdown of intestinal homeostasis by mucosal infections triggers adaptive immune responses against antigens from commensal bacteria Trabalho de Tese apresentado ao Programa de Pós-Graduação em Bioquímica e Imunologia da Universidade Federal de Minas Gerais como requisito parcial para a obtenção do título de Doutor(a) Orientador (a): Dra. Yasmine Belkaid (NIH) Orientador (a): Leda Quercia Vieira Belo Horizonte, 28 de Setembro de 2011 2 ACKNOWLEDGEMENTS Dr. Leda Vieira for having me in her lab for so long, for her support, advices, and great effort in always helping me over these past 10 years; Dr. Yasmine Belkaid for welcoming me into her lab at the Laboratory of Parasitic Diseases at National Institutes of Health (NIH), for her support and advices; Dr. Timothy Hand and Dr. Nicolas Bouladoux from the Belkaid Lab for their great help with the experiments and the enriching discussions; All the other members of the Belkaid Lab for their help and support. Dr. Michael Grigg for his help with the Toxoplasma gondii parasites; All the members of the Laboratório de Gnotobiologia