Crystal Structure and Electron Transfer Kinetics of Cueo, a Multicopper Oxidase Required for Copper Homeostasis in Escherichia Coli

Total Page:16

File Type:pdf, Size:1020Kb

Crystal Structure and Electron Transfer Kinetics of Cueo, a Multicopper Oxidase Required for Copper Homeostasis in Escherichia Coli Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli Sue A. Roberts*†, Andrzej Weichsel*†, Gregor Grass‡, Keshari Thakali‡, James T. Hazzard*, Gordon Tollin*, Christopher Rensing‡, and William R. Montfort*§ Departments of *Biochemistry and Molecular Biophysics, and ‡Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ 85721 Communicated by John H. Law, University of Arizona, Tucson, AZ, December 31, 2001 (received for review December 4, 2001) CueO (YacK), a multicopper oxidase, is part of the copper-regula- diseases (12). The Wilson disease ATPase transports copper into tory cue operon in Escherichia coli. The crystal structure of CueO the hepatocyte secretory pathway for incorporation into ceru- has been determined to 1.4-Å resolution by using multiple anom- loplasmin. Thus, the cue pathway in bacteria may be functionally alous dispersion phasing and an automated building procedure similar to both copper and iron homeostasis activities in humans. that yielded a nearly complete model without manual interven- MCOs couple four one-electron substrate oxidation steps to tion. This is the highest resolution multicopper oxidase structure the four-electron reduction of dioxygen to water (2). This yet determined and provides a particularly clear view of the four reaction has been best studied in the proteins laccase (E.C. coppers at the catalytic center. The overall structure is similar to 1.10.3.2), AO (E.C.1.10.3.3), and ceruloplasmin (E.C. 1.16.3.1). those of laccase and ascorbate oxidase, but contains an extra MCOs typically contain four copper atoms, one type I (T1) or 42-residue insert in domain 3 that includes 14 methionines, nine of ‘‘blue’’ copper site, and three other atoms in a trinuclear cluster which lie in a helix that covers the entrance to the type I (T1, blue) consisting of one type II (T2) or ‘‘normal’’ copper, and two type copper site. The trinuclear copper cluster has a conformation not III (T3) or ‘‘binuclear’’ coppers (2). Molecular oxygen binds at previously seen: the Cu-O-Cu binuclear species is nearly linear the trinuclear site and is reduced to water through four single- ؍ (Cu-O-Cu bond angle 170°) and the third (type II) copper lies only electron transfer steps from the T1 site, located about 13 Å away. 3.1 Å from the bridging oxygen. CueO activity was maximal at pH Some MCOs, such as laccase, have little specificity and can ␮ 6.5 and in the presence of >100 M Cu(II). Measurements of oxidize a large variety of substrates, whereas others, such as AO, intermolecular and intramolecular electron transfer with laser flash are more specific. photolysis in the absence of Cu(II) show that, in addition to the The crystal structures of three enzymes in this family, laccase normal reduction of the T1 copper, which occurs with a slow rate (13), AO (14), ceruloplasmin (15), and a fourth enzyme con- ؋ 107 M؊1⅐s؊1), a second electron transfer process occurs to 4 ؍ k) taining a T1 copper and a second copper center, nitrite reduc- ؋ 107 9 ؍ an unknown site, possibly the trinuclear cluster, with k tase (16), have been determined at resolutions ranging from 1.9 M؊1⅐s؊1, followed by a slow intramolecular electron transfer to T1 to 3.1 Å. In laccase and AO, each polypeptide chain adopts a copper (k ϳ10 s؊1). These results suggest the methionine-rich helix three-domain structure with the trinuclear copper center located blocks access to the T1 site in the absence of excess copper. in the interior of the protein between domains I and III. The T1 copper center is in domain III and somewhat buried. There is a ulticopper oxidases (MCOs) are prominent in all king- shallow depression at the protein surface where substrates can Mdoms and play a critical role in iron metabolism and approach the T1 copper site and where ligand discrimination copper homeostasis. In mammals, ceruloplasmin functions as a occurs in AO. The T1 copper center and the trinuclear copper ferroxidase, catalyzing the conversion of Fe(II) to Fe(III), and center are connected by the amino acid sequence HCH, where is the major copper-containing protein in plasma (reviewed in the two histidine residues ligate the two T3 copper atoms of the refs. 1 and 2). Animals deficient in ceruloplasmin are anemic, trinuclear cluster and the cysteine is a ligand of the T1 copper. presumably because of the loss of ferroxidase activity. Copper is CueO (formerly YacK), identified as a 53.4-kDa homologue of both essential and toxic, because of metal-catalyzed protein laccase (17), has been shown to oxidize a wide variety of oxidation, and improper copper metabolism in humans is linked substrates including 2,6-dimethyoxyphenol (DMP), enterobactin to several diseases, including Menkes and Wilson diseases (3), (a catecholate siderophore produced by E. coli), and ferrous iron Alzheimer’s disease, and other aging disorders (4). In yeast, the (10, 11), and depends on oxygen for activity. Intriguingly, very MCO Fet3p has ferroxidase activity and is required for iron little oxidase activity occurs in the absence of excess copper. The uptake through generation of ferric iron, the form thought to be mechanism by which CueO protects against copper stress in cells used by the yeast iron transporter Ftr1p (5, 6). In plants, is not fully understood, but is unlikely to be solely because of ascorbate oxidase (AO) and laccases (also a fungal enzyme) copper binding (8, 9). oxidize various phenolic substrates that, in the case of laccase, Ϸ lead to protective polymers (7). An unusual feature of the CueO sequence is a region of 45 In bacteria, the genes and proteins necessary for copper aa at the beginning of domain III (355–400) that includes 14 homeostasis are just now coming to light. Studies of copper methionines and could provide binding sites for exogenous toxicity in Escherichia coli have unveiled two regulatory path- ways, the cus system (for Cu-sensing) and cue system (for Abbreviations: MCO, multicopper oxidase; AO, ascorbate oxidase; T1, type I; T2, type II; T3, Cu-efflux) (8). The cus operon codes for three proteins that form type III; DMP, dimethyoxyphenol; 5-dRFH⅐, 5-deazariboflavin. a multiunit transport complex that spans the periplasmic space Data deposition: The atomic coordinates and structure factors have been deposited in the and links the inner and outer membranes. The complex is Protein Data Bank, www.rcsb.org (PDB ID code 1KV7). proposed to function in copper efflux (8, 9) and is most active †S.A.R. and A.W. contributed equally to this work. under anaerobic growth conditions (8). The cue operon codes for §To whom reprint requests should be addressed. E-mail: [email protected]. two proteins, CueO, a MCO residing in the periplasmic space (8, The publication costs of this article were defrayed in part by page charge payment. This 10, 11), and CopA, a copper efflux P-type ATPase related to the article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. proteins that, when dysfunctional, cause Menkes and Wilson §1734 solely to indicate this fact. 2766–2771 ͉ PNAS ͉ March 5, 2002 ͉ vol. 99 ͉ no. 5 www.pnas.org͞cgi͞doi͞10.1073͞pnas.052710499 Downloaded by guest on September 29, 2021 Table 1. X-ray data measurement and phase determination Native Peak Remote Inflection Data measurement Wavelength (Å) 1.0000 1.3772 1.1922 1.3804 Resolution (Å)26–1.40 26–2.14 26–2.14 26–2.14 Observed reflections 733,346 91,035 89,158 91,943 Unique reflections 88,826 24,997 24,462 25,191 Completeness (%)* 98.5͞87.1 97.2͞99.0 96.2͞99.6 97.6͞98.9 Rsym* 0.064͞0.280 0.024͞0.039 0.024͞0.041 0.025͞0.044 I͞␴(I)* 7.0͞2.3 19.0͞13.6 16.5͞12.2 18.5͞12.4 Phasing Phasing power† 0.8͞0.53 1.29͞1.00 † Rcullis 0.88͞0.88 0.76͞0.67 Rcullis anomalous 0.76 0.82 *Overall͞outermost shell. †Acentric͞centric. copper ions. A similar methionine-rich region also is seen in the surface. Generation of the neutral semiquinone of 5-deaz- PcoA and CopA (Pseudomonas syringae), two proteins also ariboflavin (5-dRFH⅐) was accomplished by using a ns flash from ϭ implicated in copper tolerance, leading to the suggestion that this aN2-pumped dye laser (emission wavelength 395 nm). Kinetic methionine-rich region is important for copper tolerance in traces were analyzed by using KINFIT (OLIS, Jefferson, GA). bacteria (18). Here, we report the crystal structure of CueO, which shows the methionine-rich region to be largely helical and Crystallization and Data Collection. Monoclinic crystals of CueO to cover the substrate-binding region. We also report both grew as rectangular blue plates by the hanging drop vapor steady-state oxidation and transient intramolecular electron diffusion method from 20% PEG 4000, 200 mM ammonium transfer kinetics. The CueO structure, at 1.4 Å, is the highest acetate, 100 mM sodium acetate, pH 4.6 at room temperature. resolution MCO structure determined for any species. The The crystals belong to space group P21 with unit cell dimensions kinetic studies support a model where excess copper alters access a ϭ 49.8 Å, b ϭ 90.5 Å, c ϭ 53.1 Å, ␤ ϭ 102.9°, and one molecule to the T1 site and suggests that intramolecular electron transfer in the asymmetric unit. Before data collection, a 0.4 ϫ 0.3 ϫ between the trinuclear cluster and the T1 site is about 16-fold 0.05-mm crystal was transferred to 50% PEG 4000 and frozen in slower than in AO.
Recommended publications
  • Crystal Structures of Multicopper Oxidase Cueo G304K Mutant
    www.nature.com/scientificreports OPEN Crystal structures of multicopper oxidase CueO G304K mutant: structural basis of the increased Received: 17 November 2017 Accepted: 5 September 2018 laccase activity Published: xx xx xxxx Hanqian Wang1, Xiaoqing Liu2, Jintong Zhao2, Qingxia Yue2, Yuhua Yan1,3, Zengqiang Gao4, Yuhui Dong1,4, Zhiyong Zhang5, Yunliu Fan2, Jian Tian2, Ningfeng Wu2 & Yong Gong1 The multicopper oxidase CueO is involved in copper homeostasis and copper (Cu) tolerance in Escherichia coli. The laccase activity of CueO G304K mutant is higher than wild-type CueO. To explain this increase in activity, we solved the crystal structure of G304K mutant at 1.49 Å. Compared with wild- type CueO, the G304K mutant showed dramatic conformational changes in methionine-rich helix and the relative regulatory loop (R-loop). We further solved the structure of Cu-soaked enzyme, and found that the addition of Cu ions induced further conformational changes in the R-loop and methionine-rich helix as a result of the new Cu-binding sites on the enzyme’s surface. We propose a mechanism for the enhanced laccase activity of the G304K mutant, where movements of the R-loop combined with the changes of the methionine-rich region uncover the T1 Cu site allowing greater access of the substrate. Two of the G304K double mutants showed the enhanced or decreased laccase activity, providing further evidence for the interaction between the R-loop and the methionine-rich region. The cuprous oxidase activity of these mutants was about 20% that of wild-type CueO. These structural features of the G304K mutant provide clues for designing specifc substrate-binding mutants in the biotechnological applications.
    [Show full text]
  • Finding New Enzymes from Bacterial Physiology: a Successful Approach Illustrated by the Detection of Novel Oxidases in Marinomonas Mediterranea
    Mar. Drugs 2010, 8, 519-541; doi:10.3390/md8030519 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Finding New Enzymes from Bacterial Physiology: A Successful Approach Illustrated by the Detection of Novel Oxidases in Marinomonas mediterranea Antonio Sanchez-Amat 1,*, Francisco Solano 2 and Patricia Lucas-Elío 1 1 Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Campus de Espinardo, Murcia 30100, Spain; E-Mail: [email protected] 2 Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia 30100, Spain; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-868884955; Fax: +34-868883963. Received: 10 February 2010; in revised form: 21 February 2010 / Accepted: 22 February 2010 / Published: 5 March 2010 Abstract: The identification and study of marine microorganisms with unique physiological traits can be a very powerful tool discovering novel enzymes of possible biotechnological interest. This approach can complement the enormous amount of data concerning gene diversity in marine environments offered by metagenomic analysis, and can help to place the activities associated with those sequences in the context of microbial cellular metabolism and physiology. Accordingly, the detection and isolation of microorganisms that may be a good source of enzymes is of great importance. Marinomonas mediterranea, for example, has proven to be one such useful microorganism. This Gram-negative marine bacterium was first selected because of the unusually high amounts of melanins synthesized in media containing the amino acid L-tyrosine. The study of its molecular biology has allowed the cloning of several genes encoding oxidases of biotechnological interest, particularly in white and red biotechnology.
    [Show full text]
  • BMC Structural Biology Biomed Central
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central BMC Structural Biology BioMed Central Research article Open Access Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases Marta Ferraroni1, Nina M Myasoedova2, Vadim Schmatchenko2, Alexey A Leontievsky2, Ludmila A Golovleva2, Andrea Scozzafava1 and Fabrizio Briganti*1 Address: 1Department of Chemistry University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy and 2G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms Russian Accademy of Science, Pushchino, Moscow Region, 1422920, Russia Email: Marta Ferraroni - [email protected]; Nina M Myasoedova - [email protected]; Vadim Schmatchenko - [email protected]; Alexey A Leontievsky - [email protected]; Ludmila A Golovleva - [email protected]; Andrea Scozzafava - [email protected]; Fabrizio Briganti* - [email protected] * Corresponding author Published: 26 September 2007 Received: 28 March 2007 Accepted: 26 September 2007 BMC Structural Biology 2007, 7:60 doi:10.1186/1472-6807-7-60 This article is available from: http://www.biomedcentral.com/1472-6807/7/60 © 2007 Ferraroni et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in pathogenesis, immunogenesis and morphogenesis of organisms and in the metabolic turnover of complex organic substances.
    [Show full text]
  • Multicopper Oxidases in Saccharomyces Cerevisiae and Human Pathogenic Fungi
    Journal of Fungi Review Multicopper Oxidases in Saccharomyces cerevisiae and Human Pathogenic Fungi Tanmoy Chakraborty 1, Renáta Tóth 1, Joshua D. Nosanchuk 2 and Attila Gácser 3,* 1 Department of Microbiology, University of Szeged, Kozep fasor, 6726 Szeged, Hungary; [email protected] (T.C.); [email protected] (R.T.) 2 Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; [email protected] 3 MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, 6726 Szeged, Hungary * Correspondence: [email protected] Received: 30 March 2020; Accepted: 25 April 2020; Published: 27 April 2020 Abstract: Multicopper oxidases (MCOs) are produced by microscopic and macroscopic fungal species and are involved in various physiological processes such as morphogenesis, lignin degradation, and defense mechanisms to stress inducing environmental conditions as well as fungal virulence. This review will summarize our current understanding regarding the functions of MCOs present in Saccharomyces cerevisiae and in different human fungal pathogens. Of the two main MCO groups, the first group of MCOs is involved in iron homoeostasis and the second includes laccases. This review will also discuss their role in the pathogenesis of human fungal pathogens. Keywords: multicopper oxidases; laccase; virulence; iron uptake; pathogenic fungi 1. Introduction Multicopper oxidases (MCOs) are blue copper containing proteins and they generally have multiple copper atoms (1 to 6) per molecule [1,2]. Diverse enzymes belong to this family of proteins that include laccases, ferroxidases, ascorbate oxidase, bilirubin oxidase and laccase-like MCOs [3]. MCOs are produced by both prokaryotic as well as various eukaryotic organisms.
    [Show full text]
  • Cuprous Oxidase Activity of Cueo from Escherichia Coli Satish K
    JOURNAL OF BACTERIOLOGY, Nov. 2004, p. 7815–7817 Vol. 186, No. 22 0021-9193/04/$08.00ϩ0 DOI: 10.1128/JB.186.22.7815–7817.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved. Cuprous Oxidase Activity of CueO from Escherichia coli Satish K. Singh,1 Gregor Grass,2 Christopher Rensing,3 and William R. Montfort1* Departments of Biochemistry and Molecular Biophysics1 and Soil, Water, and Environmental Science,3 University of Arizona, Tucson, Arizona, and Institute for Microbiology, Martin Luther University, Halle, Germany2 Received 17 June 2004/Accepted 16 August 2004 We have found CueO from Escherichia coli to have a robust cuprous oxidase activity, severalfold higher than any homologue. These data suggest that a functional role for CueO in protecting against copper toxicity in vivo includes the removal of Cu(I). Copper is an essential micronutrient, serving as a cofactor and iron-chelating siderophores (4, 10), and these characteris- for numerous enzymes. However, being a redox-active transi- tics have made the role of CueO in copper homeostasis difficult tion metal, it is also cytotoxic through generation of reactive to discern. Most suggestions have centered on either a direct oxygen species in aerobic cells. Organisms in all kingdoms of link to copper homeostasis through oxidation of Cu(I) (4, 6, life have therefore evolved elaborate copper homeostatic 14) or on an indirect link via iron homeostasis, through oxida- mechanisms (1, 17). Disturbances in copper homeostasis have tion of Fe(II) or the iron chelator enterobactin (4, 6, 7, 10). been implicated in several diseases, including Menkes and Attempts to measure cuprous activity in CueO have been re- Wilson disease (12), Parkinson’s disease (25), and Alzheimer’s ported to fail (10) but are difficult to measure due to the disease and related aging disorders (19).
    [Show full text]
  • Laccase Versus Laccase-Like Multi-Copper Oxidase: a Comparative Study of Similar Enzymes with Diverse Substrate Spectra
    EMPA20130243 Laccase versus Laccase-Like Multi-Copper Oxidase: A Comparative Study of Similar Enzymes with Diverse Substrate Spectra Renate Reiss1, Julian Ihssen1, Michael Richter1, Eric Eichhorn2, Boris Schilling2, Linda Tho¨ ny-Meyer1* 1 Laboratory for Biomaterials, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland, 2 Givaudan Schweiz AG, Du¨bendorf, Switzerland Abstract Laccases (EC 1.10.3.2) are multi-copper oxidases that catalyse the one-electron oxidation of a broad range of compounds including substituted phenols, arylamines and aromatic thiols to the corresponding radicals. Owing to their broad substrate range, copper-containing laccases are versatile biocatalysts, capable of oxidizing numerous natural and non-natural industry-relevant compounds, with water as the sole by-product. In the present study, 10 of the 11 multi-copper oxidases, hitherto considered to be laccases, from fungi, plant and bacterial origin were compared. A substrate screen of 91 natural and non-natural compounds was recorded and revealed a fairly broad but distinctive substrate spectrum amongst the enzymes. Even though the enzymes share conserved active site residues we found that the substrate ranges of the individual enzymes varied considerably. The EC classification is based on the type of chemical reaction performed and the actual name of the enzyme often refers to the physiological substrate. However, for the enzymes studied in this work such classification is not feasible, even more so as their prime substrates or natural functions are mainly unknown. The classification of multi-copper oxidases assigned as laccases remains a challenge. For the sake of simplicity we propose to introduce the term ‘‘laccase-like mult-i copper oxidase’’ (LMCO) in addition to the term laccase that we use exclusively for the enzyme originally identified from the sap of the lacquer tree Rhus vernicifera.
    [Show full text]
  • Geometric and Electronic Structure Differences Between the Type 3 Copper Sites of the Multicopper Oxidases and Hemocyanin/Tyrosinase
    Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase Jungjoo Yoon, Satoshi Fujii1, and Edward I. Solomon2 Department of Chemistry, Stanford University, Stanford, CA 94305-5080 Contributed by Edward I. Solomon, February 25, 2009 (sent for review January 31, 2009) The coupled binuclear ‘‘type 3’’ Cu sites are found in hemocyanin (Hc), tyrosinase (Tyr), and the multicopper oxidases (MCOs), such as laccase (Lc), and play vital roles in O2 respiration. Although all type 3 Cu sites share the same ground state features, those of Hc/Tyr have very different ligand-binding properties relative to those of the MCOs. In particular, the type 3 Cu site in the MCOs (LcT3)isa part of the trinuclear Cu cluster, and if the third (i.e., type 2) Cu is T3 removed, the Lc site does not react with O2. Density functional ؊1 theory calculations indicate that O2 binding in Hc is Ϸ9 kcal mol more favorable than for LcT3. The difference is mostly found in the Ϸ ؊1 total energy difference of the deoxy states ( 7 kcal mol ), where Fig. 1. O2 binding in the type 3 Cu sites of Hc/Tyr and MCOs. the stabilization of deoxy LcT3 derives from its long equilibrium Cu–Cu distance of Ϸ5.5–6.5 Å, relative to Ϸ4.2 Å in deoxy Hc/Tyr. The O2 binding in Hc is driven by the electrostatic destabilization Cu–Cu distance of Ϸ3.6 Å (Fig. 1A) (7, 8, 10). The side-on 2Ϫ ␲ of the deoxy Hc site, in which the two Cu(I) centers are kept close geometry promotes a large overlap between the O2 * and the BIOCHEMISTRY together by the protein for facile 2-electron reduction of O2.
    [Show full text]
  • Lab-On-A-Chip Platforms Embedding Self-Powered Electrochemical Sensors: a Walkthrough Approach for Bio-Analytical Applications
    DOUTORAMENTO EM QUÍMICA SUSTENTÁVEL Lab-on-a-chip platforms embedding self-powered electrochemical sensors: a walkthrough approach for bio-analytical applications Álvaro Miguel Carneiro Torrinha D 2019 Álvaro Miguel Carneiro Torrinha Lab-on-a-chip platforms embedding self-powered electrochemical sensors: a walkthrough approach for bio-analytical applications Tese do 3° Ciclo de Estudos Conducente ao Grau de Doutor em Química Sustentável Trabalho realizado sob a orientação do Professor Doutor Alberto Nova Araújo e co-orientação da Professora Doutora Maria Conceição Branco Montenegro Julho 2019 De acordo com a legislação em vigor, não é permitida a reprodução de qualquer parte desta tese ii Já fiz uma parte de nada. Agora falta o resto de tudo iii iv Acknowledgements The accomplishment of the work present herein was possible due to the expertise of my supervisors, Alberto Araújo and Maria Conceição Branco Montenegro. I want to thank all the help provided, friendship and for the integration in the Sensors and Biosensors lab. I also like to thank Celia, always cheerful and with a smile to give, for her help and encouragement. I want to thank all my colleagues and friends from FFUP for all the good moments. I am truly grateful to my former supervisor and Professor Simone Morais for believing in me and make me believe that was possible obtaining a PhD degree. Thank you Vânia and Eng. Manuela for all the favours done, all the help provided and friendship. I want to thank Fundação para a Ciência e Tecnologia for the funding through the grant PD/BD/109660/2015. A special thanks to my parents and my brother Pedro for the support and patience.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL and ENVIRONMENTAL SCIENCES SCHOOL OF CHEMISTRY The Modification of Carbon Electrodes for Biosensor Applications by IZZET KOCAK Thesis for the degree of Doctor of Philosophy June_2013 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL and ENVIRONMENTAL SCIENCES School of Chemistry Thesis for the degree of Doctor of Philosophy THE MODIFICATION OF CARBON ELECTRODES FOR BIOSENSOR APPLICATIONS Izzet Kocak This thesis reports upon the covalent attachment of 6 different types of linkers bearing the Boc protecting group to the surface of glassy carbon electrodes, highly ordered pyrolytic graphite with the edge and basal plane orientation and multi-walled carbon nanotube abrasively immobilised onto a glassy carbon substrate by electrochemical oxidation or reduction of the corresponding diazonium salt. Removal of the Boc group allows redox probes, such as anthraquinone-2-carboxyl acid, 4 nitrobenzoyl chloride and 3 and 4 dihydroxybenzoyl chloride, to be coupled to the surface using solid-phase coupling methods.
    [Show full text]
  • In Vitro Unfolding of Yeast Multicopper Oxidase Fet3p Variants Reveals Unique Role of Each Metal Site
    In vitro unfolding of yeast multicopper oxidase Fet3p variants reveals unique role of each metal site Erik Sedla´ ka, Lynn Zieglerb, Daniel J. Kosmanb, and Pernilla Wittung-Stafshedea,c,1 Department of aBiochemistry and Cell Biology, Rice University, Houston, TX 77251; cChemistry, Umea˚University, 90187 Umea˚, Sweden; and bDepartment of Biochemistry, State University of New York, Buffalo, NY 14214 Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved October 22, 2008 (received for review July 8, 2008) Fet3p from Saccharomyces cerevisiae is a multicopper oxidase of these MCO proteins, there are 3 distinct copper sites arrayed (MCO) that contains 3 cupredoxin-like ␤-barrel domains and 4 within the domains in a conserved pattern. One [or 3 in the case of copper ions located in 3 distinct metal sites (T1 in domain 3, T2, and human Cp (hCp)] of the domains contains the typical T1 site found the binuclear T3 at the interface between domains 1 and 3). To in single-domain cupredoxins. This site is most often composed of better understand how protein structure and stability is defined by a coordination sphere of 2 His and 1 Cys; the Cys thiolate ligand cofactor coordination in MCO proteins, we assessed thermal un- provides strong charge transfer to Cu(II) that gives rise to the folding of apo and metallated forms of Fet3p by using spectro- intense blue color of T1 Cu-containing proteins (␧600nm Х 5,000 scopic and calorimetric methods in vitro (pH 7). We find that MϪ1⅐cmϪ1). In the canonical organization of MCO proteins, T1 is unfolding reactions of apo and different holo forms of Fet3p are found in the carboxyl-terminal domain, as illustrated in Fig.
    [Show full text]
  • An Investigation of Laccase-Like Multicopper
    AN INVESTIGATION OF LACCASE-LIKE MULTICOPPER OXIDASES (LMCOs): STRUCTURE AND FUNCTION STUDIES By James Todd Hoopes (under the Direction of Jeffrey F. D. Dean) ABSTRACT This dissertation describes investigations into the structure and function of selected laccase-like multi-copper oxidases (LMCOs). A plant LMCO from Acer pseudoplatanus has been expressed in tobacco BY2 cell ands compared to the native LMCO isolated from Acer pseudoplatanus cell suspension cultures. It was found to be nearly identical to the native enzyme except with respect to the Kms for certain substrates. A LMCO gene cloned from yellow-poplar (Liriodendron tulipifera) and expressed in transgenic tobacco cells showed ferroxidase activity. This marks the first report of ferroxidase activity associated with a plant LMCO, and suggests an alternative physiological function for these enzymes. Molecular modeling of the Fet3 LMCO gave insight into which amino acids could be involved in iron binding in LMCOs. Additionally, a new chromogenic substrate for laccases and peroxidases, 1,8-diaminonapthalene, was found to be more sensitive and less toxic than traditional substrates when used in SDS-PAGE zymograms. INDEX WORDS: Dissertation, Laccase, Multi-Copper Oxidase, MCO, Copper,Iron Metabolism, Ferroxidase, Lignin, Lignification, Liriodendron tulipifera, Acer pseudoplatanus AN INVESTIGATION OF LACCASE-LIKE MULTICOPPER OXIDASES (LMCOs): STRUCTURE AND FUNCTION STUDIES By James Todd Hoopes B.S. University of Georgia 1992 A Dissertation Submitted To The Graduate Faculty of The University of Georgia In Partial Fulfillment of the Requirements for the Degree DOCTOROF PHILOSPHY. ATHENS, GEORGIA 2004 iii © 2004 James Todd Hoopes All Rights Reserved iv AN INVESTIGATION OF LACCASE-LIKE MULTICOPPER OXIDASES (LMCOs): STRUCTURE AND FUNCTION STUDIES by James Todd Hoopes Major Professor: Jeffrey F.D.Dean Committee: Robert A.
    [Show full text]
  • Structure and Molecular Evolution of Multicopper Blue Proteins
    Article in press - uncorrected proof BioMol Concepts, Vol. 1 (2010), pp. 31–40 • Copyright ᮊ by Walter de Gruyter • Berlin • New York. DOI 10.1515/BMC.2010.004 Short Conceptual Overview Structure and molecular evolution of multicopper blue proteins Hirofumi Komori1,2 and Yoshiki Higuchi1,2,* containing enzymes participate in reactions involving 1 Department of Life Science, Graduate School of Life molecular oxygen. During the evolution of copper-containing Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, proteins, the number of domains in a subunit and the pattern Ako-gun, Hyogo 678-1297, Japan of subunit assembly have varied from protein to protein, 2 RIKEN SPring-8 Center, 1-1-1 Koto, Mikazuki-cho, together with point mutations. The variation appears to pro- Sayo-gun, Hyogo 679-5248, Japan mote the functional evolution of various copper-binding sites for an efficient catalysis of complex redox processes. In the * Corresponding author course of evolution, unique copper sites were created for e-mail: [email protected] oxygen binding and electron storage. Type I copper, called blue copper, has unique spectro- scopic properties and was originally found in electron trans- Abstract fer proteins (2, 3). It has unusually high redox potential and assists electron transfer systems in photosynthesis and nitrate The multicopper blue protein family, which contains cupre- respiration (1, 4). The cupredoxin-like fold containing Type doxin-like domains as a structural unit, is one of the most I copper is found as a structural unit in numerous proteins diverse groups of proteins. This protein family is divided into and is a typical motif for the multicopper blue proteins two functionally different types of enzymes: multicopper (MCBPs).
    [Show full text]