Kathleen Fisher Question: Interesting Answer in Algol

Total Page:16

File Type:pdf, Size:1020Kb

Kathleen Fisher Question: Interesting Answer in Algol 10/21/08 cs242! Lisp! Algol 60! Algol 68! Pascal! Kathleen Fisher! ML! Modula! Reading: “Concepts in Programming Languages” Chapter 5 except 5.4.5! Haskell! “Real World Haskell”, Chapter 0 and Chapter 1! (http://book.realworldhaskell.org/)! Many other languages:! Algol 58, Algol W, Euclid, EL1, Mesa (PARC), …! Thanks to John Mitchell and Simon Peyton Jones for some of these slides. ! Modula-2, Oberon, Modula-3 (DEC)! Basic Language of 1960! Simple imperative language + functions! Successful syntax, BNF -- used by many successors! real procedure average(A,n); statement oriented! real array A; integer n; No array bounds.! begin … end blocks (like C { … } )! begin if … then … else ! real sum; sum := 0; Recursive functions and stack storage allocation! for i = 1 step 1 until n Fewer ad hoc restrictions than Fortran! do General array references: A[ x + B[3] * y ] sum := sum + A[i]; Type discipline was improved by later languages! average := sum/n No “;” here.! Very influential but not widely used in US! end; Tony Hoare: “Here is a language so far ahead of its time that it was not only an improvement on its predecessors Set procedure return value by assignment.! but also on nearly all of its successors.”! Question:! Holes in type discipline! Is x := x equivalent to doing nothing?! Parameter types can be arrays, but! No array bounds! Interesting answer in Algol:! Parameter types can be procedures, but! No argument or return types for procedure parameters! integer procedure p; begin Problems with parameter passing mechanisms! …. Pass-by-name “Copy rule” duplicates code, p := p …. interacting badly with side effects! end; Pass-by-value expensive for arrays! Some awkward control issues! Assignment here is actually a recursive call!! goto out of block requires memory management! 1 10/21/08 Substitute text of actual parameter Considered difficult to understand! Unpredictable with side effects! Idiosyncratic terminology! Types were called “modes”! Example Arrays were called “multiple values”! Used vW grammars instead of BNF! procedure inc2(i, j); Context-sensitive grammar invented by van Wijngaarden! integer i, j; begin begin Elaborate type system! i := i+1; k := k+1; Complicated type conversions! j := j+1 A[k] := A[k] +1 end; end; Fixed some problems of Algol 60! inc2 (k, A[k]); Eliminated pass-by-name! Not widely adopted! Is this what you expected?! Adriaan van Wijngaarden! Primitive modes! . Compound modes! Storage management! int! . arrays! real! . structures! Local storage on stack! char! . procedures! Heap storage, explicit alloc, and garbage collection! bool! . sets! string! . pointers! Parameter passing! compl (complex)! Pass-by-value! bits! bytes! Use pointer types to obtain pass-by-reference! sema (semaphore)! format (I/O)! Rich, structured, and Assignable procedure variables! file! orthogonal type system is Follow “orthogonality” principle rigorously! a major contribution of Algol 68. A Tutorial on Algol 68 by Andrew S. Tanenbaum! Designed by Niklaus Wirth (Turing Award)! Array bounds part of type! illegal! Revised the type system of Algol! procedure p(a : array [1..10] of integer) Good data-structuring concepts! procedure p(n: integer, a : array [1..n] of integer) records, variants, subranges! Attempt at orthogonal design backfires! More restrictive than Algol 60/68! – Parameter must be given a type! Procedure parameters cannot have procedure – Type cannot contain variables! parameters! How could this have happened? Emphasis on teaching?! Popular teaching language! . Not successful for “industrial-strength” projects! Simple one-pass compiler! . Kernighan: “Why Pascal is not my favorite language”! . Left niche for C; niche has expanded!!! Niklaus Wirth! 2 10/21/08 ML Statically typed, general-purpose programming language! Type safe!! Designed by Dennis Ritchie, Turing Award winner, for writing Unix! Intended for interactive use! Evolved from B, which was based on BCPL! Combination of Lisp and Algol-like features! Expression-oriented! B was an untyped language; C adds some checking! Higher-order functions! Garbage collection! Relationship between arrays and pointers! Abstract data types! An array is treated as a pointer to first element! Module system! E1[E2] is equivalent to ptr dereference: *((E1)+(E2)) Exceptions! Pointer arithmetic is not common in other languages! Designed by Turing-Award winner Robin Milner for LCF Theorem Prover! Ritchie quote! Used in textbook as example language! “C is quirky, flawed, and a tremendous success.”! Haskell Haskell is a programming language that is! Similar to ML: general-purpose, strongly typed, higher-order, Good vehicle for studying language concepts! functional, supports type inference, supports interactive and Types and type checking! compiled use! General issues in static and dynamic typing! Different from ML: lazy evaluation, purely functional, rapidly evolving type system.! Type inference! Parametric polymorphism! Designed by committee in 80’s and 90’s to unify Ad hoc polymorphism! research efforts in lazy languages.! Control! Haskell 1.0 in 1990, Haskell ‘98, Haskell’ ongoing. ! Lazy vs. eager evaluation! “A History of Haskell: Being Lazy with Class” HOPL 3! Tail recursion and continuations! Paul Hudak! Simon Precise management of effects! Peyton Jones! John Hughes! Phil Wadler! ! Functional programming will make you think 1,000,000 differently about programming.! Mainstream languages are all about state! 10,000 Functional programming is all about values! Practitioners Ideas will make you a better programmer in 100 ! whatever language you regularly use.! The quick death! 1 Haskell is “cutting edge.” A lot of current Geeks research is done in the context of Haskell.! 1yr 5yr 10yr 15yr 3 10/21/08 ! ! Threshold of immortality! 1,000,000 1,000,000 10,000 10,000 Practitioners Practitioners The complete 100 100 absence of death! ! The slow death! ! 1 1 Geeks Geeks 1yr 5yr 10yr 15yr 1yr 5yr 10yr 15yr “Learning Haskell is a great way of training yourself to think functionally so you are ready to take full advantage of ! “I'm already looking at coding C# 3.0 when it comes out” ! problems and my mental (blog Apr 2007)! In Haskell, f :: A → B means for every x ∈ A,! perspective is now shifting 1,000,000 back and forth between purely OO and more FP styled solutions” ! f(x) = some element y = f(x) ∈ B! (blog Mar 2007)! 10,000 run forever! Practitioners 100 ! The second life?! In words, “if f(x) terminates, then f(x) ∈ B.”! In ML, functions with type A → B can throw an 1 Geeks exception, but not in Haskell.! 1990 1995 2000 2005 2010 Functions that take other functions as arguments or return as a result are higher-order functions.! Interactive Interpretor (ghci): read-eval-print! ghci infers type before compiling or executing! Common Examples:! Type system does not allow casts or other loopholes!! Map: applies argument function to each element in a collection.! Reduce: takes a collection, an initial value, and a function, and Examples! combines the elements in the collection according to the function.! Prelude> (5+3)-2 6 list = [1,2,3] it :: Integer r = foldl (\accumulator i -> i + accumulator) 0 list Prelude> if 5>3 then “Harry” else “Hermione” “Harry” Google uses Map/Reduce to parallelize and distribute it :: [Char] -- String is equivalent to [Char] massive data processing tasks. Prelude> 5==4 False (Dean & Ghemawat, OSDI 2004)! it :: Bool 4 10/21/08 Booleans! Tuples! True, False :: Bool if … then … else … --types must match (4, 5, “Griffendor”) :: (Integer, Integer, String) Integers! Lists! 0, 1, 2, … :: Integer [] :: [a] -- polymorphic type +, * , … :: Integer -> Integer -> Integer 1 : [2, 3, 4] :: [Integer] -- infix cons notation Strings! Records! “Ron ! Weasley” data Person = Person {firstName :: String, lastName :: String} Floats! hg = Person { firstName = “Hermione”, lastName = “Granger”} 1.0, 2, 3.14159, … --type classes to disambiguate Haskell Libraries! Patterns can be used in place of variables! <pat> ::= <var> | <tuple> | <cons> | <record> …! Anonymous function! \x -> x+1 --like Lisp lambda, function (…) in JS Value declarations! General form ! Declaration form! <pat> = <exp>! <name> ! <pat > = <exp >! Examples! 1 1 <name> <pat > = <exp > …! myTuple = (“Flitwick”, “Snape”) 2 2 (x,y) = myTuple <name> <patn> = <expn> …! myList = [1, 2, 3, 4] z:zs = myList Examples! Local declarations! f !(x,y) = x+y --actual parameter must match pattern (x,y) length [] = 0 let (x,y) = (2, “Snape”) in x * 4 length (x:s) = 1 + length(s) Apply function to every element of list! Append lists! map f [] = [] append ([], ys) = ys map f (x:xs) = f x : map f xs append (x:xs, ys) = x : append (xs, ys) map (\x -> x+1) [1,2,3] [2,3,4] Reverse a list! Compare to Lisp reverse [] = [] reverse (x:xs) = (reverse xs) ++ [x] (define map (lambda (f xs) (if (eq? xs ()) () Questions! (cons (f (car xs)) (map f (cdr xs))) ))) How efficient is reverse?! Can it be done with only one pass through list?! 5 10/21/08 Examples! data ! Color = Red | Yellow | Blue reverse xs = elements are Red, Yellow, Blue let rev ( [], accum ) = accum rev ( y:ys, accum ) = rev ( ys, y:accum ) data Atom = Atom String | Number Int in rev ( xs, [] ) elements are Atom “A”, Atom “B”, …, Number 0, ...! data List = Nil | Cons (Atom, List) elements are Nil, Cons(Atom “A”, Nil), …! # Cons(Number 2, Cons(Atom(“Bill”), Nil)), ...! General form! 1 3 data <name> = <clause> | … | <clause>! 2 2 2 2 <clause> ::= <constructor>
Recommended publications
  • Edsger Dijkstra: the Man Who Carried Computer Science on His Shoulders
    INFERENCE / Vol. 5, No. 3 Edsger Dijkstra The Man Who Carried Computer Science on His Shoulders Krzysztof Apt s it turned out, the train I had taken from dsger dijkstra was born in Rotterdam in 1930. Nijmegen to Eindhoven arrived late. To make He described his father, at one time the president matters worse, I was then unable to find the right of the Dutch Chemical Society, as “an excellent Aoffice in the university building. When I eventually arrived Echemist,” and his mother as “a brilliant mathematician for my appointment, I was more than half an hour behind who had no job.”1 In 1948, Dijkstra achieved remarkable schedule. The professor completely ignored my profuse results when he completed secondary school at the famous apologies and proceeded to take a full hour for the meet- Erasmiaans Gymnasium in Rotterdam. His school diploma ing. It was the first time I met Edsger Wybe Dijkstra. shows that he earned the highest possible grade in no less At the time of our meeting in 1975, Dijkstra was 45 than six out of thirteen subjects. He then enrolled at the years old. The most prestigious award in computer sci- University of Leiden to study physics. ence, the ACM Turing Award, had been conferred on In September 1951, Dijkstra’s father suggested he attend him three years earlier. Almost twenty years his junior, I a three-week course on programming in Cambridge. It knew very little about the field—I had only learned what turned out to be an idea with far-reaching consequences. a flowchart was a couple of weeks earlier.
    [Show full text]
  • Publiek Domein Laat Bedrijven Te Veel Invullen
    Steven Pemberton, software-uitvinder en bouwer aan het World wide web Publiek domein laat bedrijven te veel invullen De Brit Steven Pemberton is al sinds 1982 verbonden aan het Centrum voor Wiskunde Informatica (CWI) in Amsterdam. Ook hij is een aartsvader van het internet. Specifiek van het World wide web, waarvan hij destijds dicht bij de uitvinding zat. Steven blijft naar de toekomst kijken, nog met dezelfde fraaie idealen. C.V. 19 februari 1953 geboren te Ash, Surrey, Engeland 1972-1975 Programmeur Research Support Unit Sussex University 1975-1977 Research Programmer Manchester University 1977-1982 Docent Computerwetenschap Brighton University 1982-heden Onderzoeker aan het Centrum voor Wiskunde & Informatica (CWI) Verder: 1993–1999 Hoofdredacteur SIGCHI Bulletin en ACM Interactions 1999–2009 Voorzitter HTML en XHTML2 werkgroepen van W3C 2008-heden Voorzitter XForms werkgroep W3C The Internet Guide to Amsterdam Homepage bij het CWI Op Wikipedia 1 Foto’s: Frank Groeliken Tekst: Peter Olsthoorn Steven Pemberton laat zich thuis interviewen, op een typisch Amsterdamse plek aan de Bloemgracht, op de 6e etage van een pakhuis uit 1625 met uitzicht op de Westertoren. Hij schrijft aan een boek, een voortzetting van zijn jaarlijkse lezing in Pakhuis de Zwijger, met in 2011 The Computer as Extended Phenotype (Computers, Genes and You) als titel. Wat is je thema? “De invloed van hard- en software op de maatschappij, vanuit de nieuwe technologie bezien. ‘Fenotype’ gaat over computers als product van onze genen, als een onderdeel van de evolutie. Je kunt de aanwas van succesvolle genen zien als een vorm van leren, of een vorm van geheugen.
    [Show full text]
  • An Interview with Tony Hoare ACM 1980 A.M. Turing Award Recipient
    1 An Interview with 2 Tony Hoare 3 ACM 1980 A.M. Turing Award Recipient 4 (Interviewer: Cliff Jones, Newcastle University) 5 At Tony’s home in Cambridge 6 November 24, 2015 7 8 9 10 CJ = Cliff Jones (Interviewer) 11 12 TH = Tony Hoare, 1980 A.M. Turing Award Recipient 13 14 CJ: This is a video interview of Tony Hoare for the ACM Turing Award Winners project. 15 Tony received the award in 1980. My name is Cliff Jones and my aim is to suggest 16 an order that might help the audience understand Tony’s long, varied, and influential 17 career. The date today is November 24th, 2015, and we’re sitting in Tony and Jill’s 18 house in Cambridge, UK. 19 20 Tony, I wonder if we could just start by clarifying your name. Initials ‘C. A. R.’, but 21 always ‘Tony’. 22 23 TH: My original name with which I was baptised was Charles Antony Richard Hoare. 24 And originally my parents called me ‘Charles Antony’, but they abbreviated that 25 quite quickly to ‘Antony’. My family always called me ‘Antony’, but when I went to 26 school, I think I moved informally to ‘Tony’. And I didn’t move officially to ‘Tony’ 27 until I retired and I thought ‘Sir Tony’ would sound better than ‘Sir Antony’. 28 29 CJ: Right. If you agree, I’d like to structure the discussion around the year 1980 when 30 you got the Turing Award. I think it would be useful for the audience to understand 31 just how much you’ve done since that award.
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis ABD+99. Dirk Ansorge, Klaus Bergner, Bernhard Deifel, Nicholas Hawlitzky, Christoph Maier, Barbara Paech, Andreas Rausch, Marc Sihling, Veronika Thurner, and Sascha Vogel: Managing componentware development – software reuse and the V-Modell process. In M. Jarke and A. Oberweis (editors): Advanced Information Systems Engineering, 11th International Conference CAiSE’99, Heidelberg, volume 1626 of Lecture Notes in Computer Science, pages 134–148. Springer, 1999, ISBN 3-540-66157-3. Abr05. Jean-Raymond Abrial: The B-Book. Cambridge University Press, 2005. AJ94. Samson Abramsky and Achim Jung: Domain theory. In Samson Abramsky, Dov M. Gabbay, and Thomas Stephen Edward Maibaum (editors): Handbook of Logic in Computer Science, volume 3, pages 1–168. Clarendon Press, 1994. And02. Peter Bruce Andrews: An introduction to mathematical logic and type theory: To Truth Through Proof, volume 27 of Applied Logic Series. Springer, 2nd edition, July 2002, ISBN 978-94-015-9934-4. AVWW95. Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams: Concurrent programming in Erlang. Prentice Hall, 2nd edition, 1995. Bac78. Ralph-Johan Back: On the correctness of refinement steps in program develop- ment. PhD thesis, Åbo Akademi, Department of Computer Science, Helsinki, Finland, 1978. Report A–1978–4. Bas83. Günter Baszenski: Algol 68 Preludes for Arithmetic in Z and Q. Bochum, 2nd edition, September 1983. Bau75. Friedrich Ludwig Bauer: Software engineering. In Friedrich Ludwig Bauer (editor): Advanced Course: Software Engineering, Reprint of the First Edition (February 21 – March 3, 1972), volume 30 of Lecture Notes in Computer Science, pages 522–545. Springer, 1975. Bau82. Rüdeger Baumann: Programmieren mit PASCAL. Chip-Wissen. Vogel-Verlag, Würzburg, 1982.
    [Show full text]
  • Final Version
    Centrum Wiskunde & Informatica Software Engineering Software ENgineering A comparison between the ALGOL 60 implementations on the Electrologica X1 and the Electrologica X8 F.E.J. Kruseman Aretz REPORT SEN-E0801 SEPTEMBER 2008 Centrum Wiskunde & Informatica (CWI) is the national research institute for Mathematics and Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO). CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics. CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names of the clusters and in parentheses their acronyms. Probability, Networks and Algorithms (PNA) Software Engineering (SEN) Modelling, Analysis and Simulation (MAS) Information Systems (INS) Copyright © 2008, Centrum Wiskunde & Informatica P.O. Box 94079, 1090 GB Amsterdam (NL) Kruislaan 413, 1098 SJ Amsterdam (NL) Telephone +31 20 592 9333 Telefax +31 20 592 4199 ISSN 1386-369X A comparison between the ALGOL 60 implementations on the Electrologica X1 and the Electrologica X8 ABSTRACT We compare two ALGOL 60 implementations, both developed at the Mathematical Centre in Amsterdam, forerunner of the CWI. They were designed for Electrologica hardware, the EL X1 from 1958 and the EL X8 from 1965. The X1 did not support ALGOL 60 implementation at all. Its ALGOl 60 system was designed by Dijkstra and Zonneveld and completed in 1960. Although developed as an academic exercise it soon was heavily used and appreciated. The X8, successor of the X1 and (almost) upwards compatible to it, had a number of extensions chosen specifically to support ALGOL 60 implementation. The ALGOL 60 system, developed by Nederkoorn and Kruseman Aretz, was completed even before the first delivery of an X8.
    [Show full text]
  • Adriaan Van Wijngaarden and the Start of Computer Science in the Netherlands
    Adriaan van Wijngaarden and the start of computer science in the Netherlands Jos Baeten, Centrum Wiskunde & Informatica and Institute for Logic, Language and Computation, UvA Adriaan van Wijngaarden and the start of computer science in the Netherlands Jos Baeten, Centrum Wiskunde & Informatica and Institute for Logic, Language and Computation, UvA Adriaan van Wijngaarden 2 November 1916 – 7 February 1987 Graduated TH Delft Mechanical Engineering 1939 PhD TH Delft on calculations for a ship propellor 1945 London February 1946: look at mathematical machines Stichting Mathematisch Centrum 11 February 1946 Mathematics as a service Pure mathematics department Statistics department Computing department (1947) Applied mathematics department (1948) 1 January 1947 head of computing department 1 January 1947 head of computing department ‘Girls of Van Wijngaarden’ 1947: in the UK, also USA Met Turing, Von Neumann, others Plantage Muidergracht 6 Automatische Relais Rekenmachine Amsterdam Tweede Boerhaavestraat 49 ARRA II N.V. Elektrologica, 1957 Algol 60 • In 1955, committee started on unified notation of computer programs • Friedrich Bauer, 1958, International Algebraic Language • 1959, Algorithmic Language, Van Wijngaarden and Dijkstra join • 1960 editor of Algol 60 report • Separation of hardware and software Algol 68 IFIP Working Group 2.1 taking the lead Starts formal language theory (Chomsky’s universal grammar) Van Wijngaarden grammars Reasoning about language and programs Some achievements 1958 started Nederlands RekenMachine Genootschap
    [Show full text]
  • Scaling Functional Synthesis and Repair
    Scaling Functional Synthesis and Repair Thèse N° 8716 Présentée le 11 janvier 2019 à la Faculté informatique et communications Laboratoire d’analyse et de raisonnement automatisés Programme doctoral en informatique et communications pour l’obtention du grade de Docteur ès Sciences par EMMANOUIL KOUKOUTOS Acceptée sur proposition du jury Prof. C. Koch, président du jury Prof. V. Kuncak, directeur de thèse Prof. S. Khurshid, rapporteur Prof. D. Marinov, rapporteur Prof. M. Odersky, rapporteur 2019 Acknowledgements First and foremost, I would like to thank my advisor Viktor Kuncak, for accepting me into his lab, and generously providing his guidance, knowledge, encouragement and support during my PhD studies. This thesis would not have been possible without him. Second, I would like to thank my thesis committee members Christoph Koch, Martin Odersky, Darko Marinov and Sarfraz Khurshid, for taking the time to evaluate my thesis, and for their valuable and extensive comments on it, which helped it improve greatly to its current form. Third, I would like to thank my colleagues Etienne Kneuss, Mukund Ragothaman, Ravishadran Kandhadai Madhavan, Régis Blanc, Mikael Mayer, Nicolas Voirol, Romain Edelmann, Eva Darulova, Andreas Pavlogiannis, Georg Schmid, Jad Hamsa, Romain Ruetschi, and Sarah Sallinger, for our collaboration, exchange of ideas, and the welcoming and creative atmosphere they maintained in the lab. A special thanks goes to Etienne for our great collaboration, and his guidance and patience when he was helping me acclimate during my first months in the lab. Also, I would like to thank Fabien Salvi, Yvette Gallay and Sylvie Jankow, for helping all of us to work unobstructed with their technical and administrative support.
    [Show full text]
  • O Caso Da Literatura Electrónica De Pedro Barbosa
    MESTRADO MULTIMÉDIA - ESPECIALIZAÇÃO EM TECNOLOGIAS EDIÇÕES CRÍTICAS DIGITAIS: O CASO DA LITERATURA ELECTRÓNICA DE PEDRO BARBOSA Carlos Filipe Lopes do Amaral M 2015 FACULDADES PARTICIPANTES: FACULDADE DE ENGENHARIA FACULDADE DE BELAS ARTES FACULDADE DE CIÊNCIAS FACULDADE DE ECONOMIA FACULDADE DE LETRAS Edições Críticas Digitais: O Caso da Literatura Electrónica de Pedro Barbosa Carlos Filipe Lopes do Amaral Mestrado em Multimédia da Universidade do Porto Orientador: Rui Torres (Professor Associado com Agregação da Faculdade de Ciências Humanas e Sociais da Universidade Fernando Pessoa) Co-orientador: João Correia Lopes (Professor Auxiliar da Faculdade de Engenharia da Universidade do Porto) 31 de Julho de 2015 c Carlos Amaral, 2015 Edições Críticas Digitais: O Caso da Literatura Electrónica de Pedro Barbosa Carlos Filipe Lopes do Amaral Mestrado em Multimédia da Universidade do Porto Aprovado em provas públicas pelo Júri: Presidente: Nuno Flores (Professor Auxiliar da Faculdade de Engenharia da Universidade do Porto) Vogal Externo: José Manuel Torres (Professor Associado da Faculdade de Ciências e Tecnologia da Universidade Fernando Pessoa) Orientador: Rui Torres (Professor Associado, com Agregação, da Faculdade de Ciências Humanas e Sociais da Universidade Fernando Pessoa) Resumo As edições críticas digitais são colecções de obras nascidas no seio digital, e operam como arquivos digitais — contemplando a interactividade e o comentário crítico. A literatura electrónica rege-se por uma multitude de práticas literárias que tira partido das capacidades e contextos proporcionados pelo computador — consequentemente, é o resultado ou produto da actividade literária realizada no computador. Pedro Barbosa, autor de literatura gerada por computador, é uma figura central no campo da literatura electrónica e na produção de obras de arte nascidas no meio digital especialmente pela sua presença remontar aos inícios da computação até às práticas de criação artística no computador vigentes na conjuntura tecnológica contemporânea.
    [Show full text]
  • An Extension of Isabelle/UTP with Simpl-Like Control Flow
    USIMPL: An Extension of Isabelle/UTP with Simpl-like Control Flow Joshua Alexander Bockenek Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Masters of Science in Computer Engineering Binoy Ravindran, Chair Peter Lammich Robert P. Broadwater December 8, 2017 Blacksburg, Virginia Keywords: Formal Verification, Formal Methods, Isabelle, Unifying Theories of Programming, Verification Condition Generation © 2018, Joshua Alexander Bockenek USIMPL: An Extension of Isabelle/UTP with Simpl-like Control Flow Joshua Alexander Bockenek (ABSTRACT) Writing bug-free code is fraught with difficulty, and existing tools for the formal verification of programs do not scale well to large, complicated codebases such as that of systems software. This thesis presents USIMPL, a component of the Orca project for formal verification that builds on Foster’s Isabelle/UTP with features of Schirmer’s Simpl in order to achieve a modular, scalable framework for deductive proofs of program correctness utilizing Hoare logic and Hoare-style algebraic laws of programming. This work is supported in part by the Office of Naval Research (ONR) under grants N00014- 17-1-2297 and N00014-16-1-2818, and the Naval Sea Systems Command (NAVSEA)/the Naval Engineering Education Consortium (NEEC) under grant N00174-16-C-0018. Any opinions, findings, and conclusions or recommendations expressed in this thesis are those of the author and do not necessarily reflect the views of ONR or NAVSEA/NEEC. USIMPL: An Extension of Isabelle/UTP with Simpl-like Control Flow Joshua Alexander Bockenek (GENERAL AUDIENCE ABSTRACT) Writing bug-free code is fraught with difficulty, and existing tools for the formal verification of programs do not scale well to large, complicated codebases such as that of systems software (OSes, compilers, and similar programs that have a high level of complexity but work on a lower level than typical user applications such as text editors, image viewers, and the like).
    [Show full text]
  • (Pdf) of the School of Squiggol: a History of the Bird−Meertens
    The School of Squiggol A History of the Bird{Meertens Formalism Jeremy Gibbons University of Oxford Abstract. The Bird{Meertens Formalism, colloquially known as \Squig- gol", is a calculus for program transformation by equational reasoning in a function style, developed by Richard Bird and Lambert Meertens and other members of IFIP Working Group 2.1 for about two decades from the mid 1970s. One particular characteristic of the development of the Formalism is fluctuating emphasis on novel `squiggly' notation: sometimes favouring notational exploration in the quest for conciseness and precision, and sometimes reverting to simpler and more rigid nota- tional conventions in the interests of accessibility. This paper explores that historical ebb and flow. 1 Introduction In 1962, IFIP formed Working Group 2.1 to design a successor to the seminal algorithmic language Algol 60 [4]. WG2.1 eventually produced the specification for Algol 68 [63, 64]|a sophisticated language, presented using an elaborate two- level description notation, which received a mixed reception. WG2.1 continues to this day; technically, it retains responsibility for the Algol languages, but practi- cally it takes on a broader remit under the current name Algorithmic Languages and Calculi. Over the years, the Group has been through periods of focus and periods of diversity. But after the Algol 68 project, the period of sharpest focus covered the two decades from the mid 1970s to the early 1990s, when what later became known as the Bird{Meertens Formalism (BMF) drew the whole group together again. It is the story of those years that is the subject of this paper.
    [Show full text]
  • Peter Landin Semantics Seminar 2020 Algol 60 @ 60
    Peter Landin Semantics Seminar 2020 Algol 60 @ 60 Tim Denvir Troy Astarte 1 Introduction: Rationale ⚫ Algol 60 is 60 years old. ⚫ Algol 60 was defined with semantics in mind. ⚫ Peter Landin’s formal semantics of Algol 60. ⚫ An example of burgeoning new interest in formal semantics of programming languages in 60-70s ⚫ So: an apposite topic for PL Semantics Seminar. 2 Content of seminar ⚫ Short history of Algol 60. ⚫ The authors of the Revised Report. ⚫ Relationship of Algol with formal ideas, λ-calculus. ⚫ Peter Landin’s approach to formal description. ⚫ Overview of semantics zeitgeist. ⚫ Other formal descriptions. ⚫ Fascination with Algol: why? ⚫ Postscript; quote from Wittgenstein in Algol 60 Report. 3 Short History of Algol 60 ⚫ Conference in Zurich 1958 ⚫ Preliminary Report: Algol 58/IAL, Comm ACM ⚫ Informal meeting in Mainz Nov. 1958 prompted: ⚫ Algol implementation conference (40) Copenhagen Feb. 1959: “hardware group” (character sets, input eqp) ⚫ Algol Bulletin ed. Peter Naur Regnecentralen Copenhagen 1959-88, 52 issues: discussion forum ⚫ European Algol conference Paris Nov. 1959 (c50): 4 January 1960 Conference 7 European representatives ⚫ Association Française de Calcul ⚫ British Computer Society ⚫ Gesellschaft für Angewandte Mathematik und Mechanik (GAMM) ⚫ Nederlands Rekenmachine Genootschap ⚫ (Learned Societies for Computer Science in Europe) 5 USA Contributions ⚫ Algol working groups on ACM Committee on Programming Languages ⚫ 7 representatives to Jan. 1960 conference after preparatory meeting in Boston Dec.1959 ⚫ (William Turanski killed in road accident just before Jan. 60 conference) ⚫ New draft Report developed from Preliminary Report, formed basis of Revised Report at Jan. 60 conference ⚫ Finally conference in Rome April 1962 to correct, eliminate ambiguities, clarify; ed.
    [Show full text]
  • Dijkstra's Crisis
    Dijkstra’s Crisis: The End of Algol and Beginning of Software Engineering, 1968-72 Thomas Haigh, [email protected], www.tomandmaria.com/tom Draft for discussion in SOFT-EU Project Meeting, September 2010 “In SHOT meetings and in the journals, it is surprising how few and far between critical references to specific historical arguments are: there is hardly any debate or even serious substantive disagreement.” – David Edgerton, 2010. In 1968 a NATO Software Engineering Conference was held in Garmisch, Germany. Attendees represented a cross section of those involved in programming work and its management. Having never met before they were shocked to realize that identical troubles plagued many different kinds of software. Participants agreed that a “software crisis” was raging. Programming projects were chronically late and over budget, yet often failed to produce useful software. They endorsed a new discipline of software engineering, its contents yet to be defined, as the solution to this crisis. A follow up conference, held in Rome the next year, failed to reach consensus on what specific techniques might constitute the core of this new discipline. Yet software engineering soon became the dominant identity to describe the work and management of programmers. That, at least, is the composite account one would gain from the almost identical paragraphs repeated again and again in historical works both scholarly and popular. But this growing mass of consensus is, I believe, built on sand. The historical significance of the 1968 NATO Conference, the demographics of its participants, its connection to prior and subsequent events, and its relationship to the software crisis are at risk of being fundamentally misinterpreted.
    [Show full text]