Broadband Photometric Analysis of the Stellar
Total Page:16
File Type:pdf, Size:1020Kb
BROADBAND PHOTOMETRIC ANALYSIS OF THE STELLAR POPULATIONS IN BRIGHTEST CLUSTER GALAXIES OF X-RAY LUMINOUS GALAXY CLUSTERS ^ 5 A thesis presented to the faculty of San Francisco State University 2 . c ! 4 In partial fulfillment of The Requirements for The Degree Master of Science In Physics (Astronomy) by Yuzo Ishikawa San Francisco, California May 2019 Copyright by Yuzo Ishikawa 2019 CERTIFICATION OF APPROVAL I certify that I have read BROADBAND PHOTOMETRIC ANALY SIS OF THE STELLAR POPULATIONS IN BRIGHTEST CLUSTER GALAXIES OF X-RAY LUMINOUS GALAXY CLUSTERS by Yuzo Ishikawa and that in my opinion this work meets the criteria for ap proving a thesis submitted in partial fulfillment of the requirements for the degree: Master of Science in Physics (Astronomy) at San Francisco State University. Joseph A. Barranco Chair of Physics & Astronomy 4<iirfberly Coble Professor of Physics & Astronomy ^ --• Adrienne Cool Professor of Physics & Astronomy BROADBAND PHOTOMETRIC ANALYSIS OF THE STELLAR POPULATIONS IN BRIGHTEST CLUSTER GALAXIES OF X-RAY LUMINOUS GALAXY CLUSTERS Yuzo Ishikawa San Francisco State University 2019 We have analyzed broadband Hubble photometry available to study the brightest cluster galaxies (BCGs) in X-ray luminous clusters of galaxies. 18 cool-core (CC) and non-cool-core (NCC) BCGs span a redshift interval of 0.15 < z < 0.55 and were identified by the Canadian Cluster Comparison Project (CCCP). I used this sample to build an analysis pipeline that reduces photometric data from the Hubble Space Telescope to probe the properties of the stellar populations in the BCGs. We apply the observed colors to constrain the parameters in the simple stellar population synthesis models to produce the best fitting SEDs of the BCGs. By applying variable fit-parameters, we can build radial metallicity and mass density profiles and trace the star-formation histories in the BCG. The stellar mass estimates will allow us to build improved mass profiles of the clusters and probe the evolutionary history of the BCGs and the host clusters. I certify that the Abstract is a correct representation of the content of this thesis. ACKNOWLEDGMENTS First and foremost, I would like to thank my mother and sister for their support. Without their support, I would not be here. I would like to thank all the amazing professors and colleagues at SFSU for reinvigorating joy in doing physics and astronomy. I thank my M.S. advisor, Andy Mahdavi, for providing me the research opportunity, the guidance, and the support for my A AS conference debut. I also want to thank the committee members (Dr. Barranco, Dr. Coble, and Dr. Cool) for their support in allowing me to continue this project. I want to especially thank my mentors at UCB Space Sciences Labora tory, LBNL, and Caltech (Jerry Edelstein, Martin Sirk, Steve Gibson, Andrew Howard, and many others) for providing me with stimulating research opportunities and training me into a scientist, in addition to my studies at SFSU. I am extremely grateful for their guidance. Finally, last but not least, I thank all my friends and colleagues for making my life outside of work/school meaningful and enriching. I look forward to advancing my astronomy career at Johns Hopkins University. v TABLE OF CONTENTS 1 Introduction............................................................................................................ 1 1.1 The universe in a n u tsh ell........................................................................ 1 1.1.1 Big Bang cosm ology ....................................................................... 2 1.1.2 What is our universe made o f ? ....................................................... 4 1.2 How did galaxies form ?.............................................................................. 5 1.3 Probing the evolution of galaxy clusters.................................................. 6 1.3.1 Brightest Cluster G alaxy................................................................ 8 1.3.2 Cooling flo w ....................................................................................... 10 1.4 Goals and ou tlin e........................................................................................ 10 2 Stellar populations in galaxies............................................................................ 12 2.1 Classifying stars: Hertzsprung-Russell Diagram .................................. 12 2.2 Light to mass: stellar astrophysics............................................................ 14 2.2.1 Quick derivation ................................................................................. 14 2.2.2 Chemical evolution of stars .......................................................... 16 2.2.3 S u m m a ry .......................................................................................... 17 2.3 Stellar population synthesis (S P S )............................................................ 17 2.3.1 Building model SE D s...........................................................................18 2.3.2 Ingredients for S P S .......................................................................... 19 2.3.3 Extracting physical param eters........................................................21 vi 3 Observational t o o ls ...................................................................................................23 3.1 Interpreting the S E D .......................................................................................23 3.1.1 Cosmic distance ladder....................................................................... 23 3.1.2 Magnitude system ..............................................................................24 3.1.3 E xtinction............................................................................................. 25 3.2 Broadband photom etry....................................................................................26 3.2.1 Photometric filt e r s ..............................................................................26 3.2.2 AB m agnitudes....................................................................................27 3.3 Hubble Space Telescope .................................................................................28 4 M ethods...................................................................................................................... 30 4.1 Data: Target S election....................................................................................31 4.1.1 The Canadian Cluster Comparison Project (C C C P ).................... 31 4.1.2 Hubble archival data - M A S T ...........................................................32 4.2 Photometric red u ction ....................................................................................33 4.2.1 Identifying the B C G .......................................................................... 34 4.2.2 A strom etry .......................................................................................... 34 4.2.3 P hotom etry.......................................................................................... 35 4.2.4 Surface brightness profiles of BCG .................................................. 37 4.3 SPS analysis.......................................................................................................37 4.3.1 Ezgal SPS model generator ............................................................. 38 4.3.2 Python SPS analyzer.......................................................................... 39 vii 5 Results 44 5.1 SSP (single starburst) fitting..........................................................................44 5.1.1 SSP: Surface brightness p rofiles.......................................................45 5.1.2 SSP: Mass and Metallicity profiles................................................... 46 5.1.3 SSP: Estimating a g e ..........................................................................48 6 Discussion.................................................................................................................. 53 6.1 Error analysis...................................................................................................53 6.2 Probing galaxy evolution................................................................................54 6.3 How good is SPS with broadband photometry? ......................................56 6.4 Implications for future w o r k .........................................................................57 7 Conclusion.................................................................................................................. 59 Bibliography ...................................................................................................................61 viii LIST OF TABLES Table Page 3.1 (Left) HST as seen from STS Discovery and (right) Cutaway diagram with instruments labeled.................................................................................. 29 3.2 Relevant instrument characteristics for ACS WFC and WFPC2 Wide- Field. Details can be found in their respective instrument handbooks [26, 3 7 ]................................................................................................................29 3.3 HST filter curves. The ACS detector is optimized in the visible spec trum..................................................................................................................... 29 4.1 List of the cool core clusters with X-ray properties [22, 2 3 ] .................... 33 4.2 List of the non-cool core