Broadband Photometric Analysis of the Stellar

Total Page:16

File Type:pdf, Size:1020Kb

Broadband Photometric Analysis of the Stellar BROADBAND PHOTOMETRIC ANALYSIS OF THE STELLAR POPULATIONS IN BRIGHTEST CLUSTER GALAXIES OF X-RAY LUMINOUS GALAXY CLUSTERS ^ 5 A thesis presented to the faculty of San Francisco State University 2 . c ! 4 In partial fulfillment of The Requirements for The Degree Master of Science In Physics (Astronomy) by Yuzo Ishikawa San Francisco, California May 2019 Copyright by Yuzo Ishikawa 2019 CERTIFICATION OF APPROVAL I certify that I have read BROADBAND PHOTOMETRIC ANALY­ SIS OF THE STELLAR POPULATIONS IN BRIGHTEST CLUSTER GALAXIES OF X-RAY LUMINOUS GALAXY CLUSTERS by Yuzo Ishikawa and that in my opinion this work meets the criteria for ap­ proving a thesis submitted in partial fulfillment of the requirements for the degree: Master of Science in Physics (Astronomy) at San Francisco State University. Joseph A. Barranco Chair of Physics & Astronomy 4<iirfberly Coble Professor of Physics & Astronomy ^ --• Adrienne Cool Professor of Physics & Astronomy BROADBAND PHOTOMETRIC ANALYSIS OF THE STELLAR POPULATIONS IN BRIGHTEST CLUSTER GALAXIES OF X-RAY LUMINOUS GALAXY CLUSTERS Yuzo Ishikawa San Francisco State University 2019 We have analyzed broadband Hubble photometry available to study the brightest cluster galaxies (BCGs) in X-ray luminous clusters of galaxies. 18 cool-core (CC) and non-cool-core (NCC) BCGs span a redshift interval of 0.15 < z < 0.55 and were identified by the Canadian Cluster Comparison Project (CCCP). I used this sample to build an analysis pipeline that reduces photometric data from the Hubble Space Telescope to probe the properties of the stellar populations in the BCGs. We apply the observed colors to constrain the parameters in the simple stellar population synthesis models to produce the best fitting SEDs of the BCGs. By applying variable fit-parameters, we can build radial metallicity and mass density profiles and trace the star-formation histories in the BCG. The stellar mass estimates will allow us to build improved mass profiles of the clusters and probe the evolutionary history of the BCGs and the host clusters. I certify that the Abstract is a correct representation of the content of this thesis. ACKNOWLEDGMENTS First and foremost, I would like to thank my mother and sister for their support. Without their support, I would not be here. I would like to thank all the amazing professors and colleagues at SFSU for reinvigorating joy in doing physics and astronomy. I thank my M.S. advisor, Andy Mahdavi, for providing me the research opportunity, the guidance, and the support for my A AS conference debut. I also want to thank the committee members (Dr. Barranco, Dr. Coble, and Dr. Cool) for their support in allowing me to continue this project. I want to especially thank my mentors at UCB Space Sciences Labora­ tory, LBNL, and Caltech (Jerry Edelstein, Martin Sirk, Steve Gibson, Andrew Howard, and many others) for providing me with stimulating research opportunities and training me into a scientist, in addition to my studies at SFSU. I am extremely grateful for their guidance. Finally, last but not least, I thank all my friends and colleagues for making my life outside of work/school meaningful and enriching. I look forward to advancing my astronomy career at Johns Hopkins University. v TABLE OF CONTENTS 1 Introduction............................................................................................................ 1 1.1 The universe in a n u tsh ell........................................................................ 1 1.1.1 Big Bang cosm ology ....................................................................... 2 1.1.2 What is our universe made o f ? ....................................................... 4 1.2 How did galaxies form ?.............................................................................. 5 1.3 Probing the evolution of galaxy clusters.................................................. 6 1.3.1 Brightest Cluster G alaxy................................................................ 8 1.3.2 Cooling flo w ....................................................................................... 10 1.4 Goals and ou tlin e........................................................................................ 10 2 Stellar populations in galaxies............................................................................ 12 2.1 Classifying stars: Hertzsprung-Russell Diagram .................................. 12 2.2 Light to mass: stellar astrophysics............................................................ 14 2.2.1 Quick derivation ................................................................................. 14 2.2.2 Chemical evolution of stars .......................................................... 16 2.2.3 S u m m a ry .......................................................................................... 17 2.3 Stellar population synthesis (S P S )............................................................ 17 2.3.1 Building model SE D s...........................................................................18 2.3.2 Ingredients for S P S .......................................................................... 19 2.3.3 Extracting physical param eters........................................................21 vi 3 Observational t o o ls ...................................................................................................23 3.1 Interpreting the S E D .......................................................................................23 3.1.1 Cosmic distance ladder....................................................................... 23 3.1.2 Magnitude system ..............................................................................24 3.1.3 E xtinction............................................................................................. 25 3.2 Broadband photom etry....................................................................................26 3.2.1 Photometric filt e r s ..............................................................................26 3.2.2 AB m agnitudes....................................................................................27 3.3 Hubble Space Telescope .................................................................................28 4 M ethods...................................................................................................................... 30 4.1 Data: Target S election....................................................................................31 4.1.1 The Canadian Cluster Comparison Project (C C C P ).................... 31 4.1.2 Hubble archival data - M A S T ...........................................................32 4.2 Photometric red u ction ....................................................................................33 4.2.1 Identifying the B C G .......................................................................... 34 4.2.2 A strom etry .......................................................................................... 34 4.2.3 P hotom etry.......................................................................................... 35 4.2.4 Surface brightness profiles of BCG .................................................. 37 4.3 SPS analysis.......................................................................................................37 4.3.1 Ezgal SPS model generator ............................................................. 38 4.3.2 Python SPS analyzer.......................................................................... 39 vii 5 Results 44 5.1 SSP (single starburst) fitting..........................................................................44 5.1.1 SSP: Surface brightness p rofiles.......................................................45 5.1.2 SSP: Mass and Metallicity profiles................................................... 46 5.1.3 SSP: Estimating a g e ..........................................................................48 6 Discussion.................................................................................................................. 53 6.1 Error analysis...................................................................................................53 6.2 Probing galaxy evolution................................................................................54 6.3 How good is SPS with broadband photometry? ......................................56 6.4 Implications for future w o r k .........................................................................57 7 Conclusion.................................................................................................................. 59 Bibliography ...................................................................................................................61 viii LIST OF TABLES Table Page 3.1 (Left) HST as seen from STS Discovery and (right) Cutaway diagram with instruments labeled.................................................................................. 29 3.2 Relevant instrument characteristics for ACS WFC and WFPC2 Wide- Field. Details can be found in their respective instrument handbooks [26, 3 7 ]................................................................................................................29 3.3 HST filter curves. The ACS detector is optimized in the visible spec­ trum..................................................................................................................... 29 4.1 List of the cool core clusters with X-ray properties [22, 2 3 ] .................... 33 4.2 List of the non-cool core
Recommended publications
  • Cinemática Estelar, Modelos Dinâmicos E Determinaç˜Ao De
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE POS´ GRADUA¸CAO~ EM F´ISICA Cinem´atica Estelar, Modelos Din^amicos e Determina¸c~ao de Massas de Buracos Negros Supermassivos Daniel Alf Drehmer Tese realizada sob orienta¸c~aoda Professora Dra. Thaisa Storchi Bergmann e apresen- tada ao Programa de P´os-Gradua¸c~aoem F´ısica do Instituto de F´ısica da UFRGS em preenchimento parcial dos requisitos para a obten¸c~aodo t´ıtulo de Doutor em Ci^encias. Porto Alegre Mar¸co, 2015 Agradecimentos Gostaria de agradecer a todas as pessoas que de alguma forma contribu´ıram para a realiza¸c~ao deste trabalho e em especial agrade¸co: • A` Profa. Dra. Thaisa Storchi-Bergmann pela competente orienta¸c~ao. • Aos professores Dr. Fabr´ıcio Ferrari da Universidade Federal do Rio Grande, Dr. Rogemar Riffel da Universidade Federal de Santa Maria e ao Dr. Michele Cappellari da Universidade de Oxford cujas colabora¸c~oes foram fundamentais para a realiza¸c~ao deste trabalho. • A todos os professores do Departamento de Astronomia do Instituto de F´ısica da Universidade Federal do Rio Grande do Sul que contribu´ıram para minha forma¸c~ao. • Ao CNPq pelo financiamento desse trabalho. • Aos meus pais Ingon e Selia e meus irm~aos Neimar e Carla pelo apoio. Daniel Alf Drehmer Universidade Federal do Rio Grande do Sul Mar¸co2015 i Resumo O foco deste trabalho ´eestudar a influ^encia de buracos negros supermassivos (BNSs) nucleares na din^amica e na cinem´atica estelar da regi~ao central das gal´axias e determinar a massa destes BNSs.
    [Show full text]
  • INVESTIGATING ACTIVE GALACTIC NUCLEI with LOW FREQUENCY RADIO OBSERVATIONS By
    INVESTIGATING ACTIVE GALACTIC NUCLEI WITH LOW FREQUENCY RADIO OBSERVATIONS by MATTHEW LAZELL A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Physics & Astronomy College of Engineering and Physical Sciences The University of Birmingham March 2015 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Low frequency radio astronomy allows us to look at some of the fainter and older synchrotron emission from the relativistic plasma associated with active galactic nuclei in galaxies and clusters. In this thesis, we use the Giant Metrewave Radio Telescope to explore the impact that active galactic nuclei have on their surroundings. We present deep, high quality, 150–610 MHz radio observations for a sample of fifteen predominantly cool-core galaxy clusters. We in- vestigate a selection of these in detail, uncovering interesting radio features and using our multi-frequency data to derive various radio properties. For well-known clusters such as MS0735, our low noise images enable us to see in improved detail the radio lobes working against the intracluster medium, whilst deriving the energies and timescales of this event.
    [Show full text]
  • An Outline of Stellar Astrophysics with Problems and Solutions
    An Outline of Stellar Astrophysics with Problems and Solutions Using Maple R and Mathematica R Robert Roseberry 2016 1 Contents 1 Introduction 5 2 Electromagnetic Radiation 7 2.1 Specific intensity, luminosity and flux density ............7 Problem 1: luminous flux (**) . .8 Problem 2: galaxy fluxes (*) . .8 Problem 3: radiative pressure (**) . .9 2.2 Magnitude ...................................9 Problem 4: magnitude (**) . 10 2.3 Colour ..................................... 11 Problem 5: Planck{Stefan-Boltzmann{Wien{colour (***) . 13 Problem 6: Planck graph (**) . 13 Problem 7: radio and visual luminosity and brightness (***) . 14 Problem 8: Sirius (*) . 15 2.4 Emission Mechanisms: Continuum Emission ............. 15 Problem 9: Orion (***) . 17 Problem 10: synchrotron (***) . 18 Problem 11: Crab (**) . 18 2.5 Emission Mechanisms: Line Emission ................. 19 Problem 12: line spectrum (*) . 20 2.6 Interference: Line Broadening, Scattering, and Zeeman splitting 21 Problem 13: natural broadening (**) . 21 Problem 14: Doppler broadening (*) . 22 Problem 15: Thomson Cross Section (**) . 23 Problem 16: Inverse Compton scattering (***) . 24 Problem 17: normal Zeeman splitting (**) . 25 3 Measuring Distance 26 3.1 Parallax .................................... 27 Problem 18: parallax (*) . 27 3.2 Doppler shifting ............................... 27 Problem 19: supernova distance (***) . 28 3.3 Spectroscopic parallax and Main Sequence fitting .......... 28 Problem 20: Main Sequence fitting (**) . 29 3.4 Standard candles ............................... 30 Video: supernova light curve . 30 Problem 21: Cepheid distance (*) . 30 3.5 Tully-Fisher relation ............................ 31 3.6 Lyman-break galaxies and the Hubble flow .............. 33 4 Transparent Gas: Interstellar Gas Clouds and the Atmospheres and Photospheres of Stars 35 2 4.1 Transfer equation and optical depth .................. 36 Problem 22: optical depth (**) . 37 4.2 Plane-parallel atmosphere, Eddington's approximation, and limb darkening ..................................
    [Show full text]
  • Arxiv:1904.13390V3 [Gr-Qc] 14 Jul 2021
    July 15, 2021 0:35 WSPC/INSTRUCTION FILE halo˙spacetime International Journal of Modern Physics D © World Scientific Publishing Company Gravitational lensing study of cold dark matter led galactic halo Samrat Ghosh High Energy & Cosmic Ray Research Centre, University of North Bengal, Siliguri, West Bengal, 734013, India [email protected] Arunava Bhadra High Energy & Cosmic Ray Research Centre, University of North Bengal, Siliguri, West Bengal, 734013, India aru [email protected] Amitabha Mukhopadhyay Department of Physics, University of North Bengal, Siliguri, West Bengal, 734013, India amitabha 62@rediffmail.com Received Day Month Year Revised Day Month Year In this work the space-time geometry of the halo region in spiral galaxies is obtained considering the observed flat galactic rotation curve feature, invoking the Tully-Fisher relation and assuming the presence of cold dark matter in the galaxy. The gravitational lensing analysis is performed treating the so obtained space-time as a gravitational lens. It is found that the aforementioned space-time as the gravitational lens can consistently explain the galaxy-galaxy weak gravitational lensing observations and the lensing obser- vations of the well-known Abell 370 and Abell 2390 galaxy clusters. arXiv:1904.13390v3 [gr-qc] 14 Jul 2021 Keywords: galactic rotation curve; galactic halo; gravitational lensing. PACS numbers: 1. Introduction The astrophysical observations reveal that after the termination of the luminous disk the expected Keplerian fall-off is absent in rotation curves (variation of the angular velocity of test particles with distance from the galactic center) of spiral galaxies.58, 63–65, 73 The frequency shift of the 21 cm HI emission line from neutral hydrogen cloud at large distances from the galactic center rotating in circular orbits allows constructing a rotation curve of galaxies involving distances up to a few tens of kpc or even a few hundreds of kpc in few cases.
    [Show full text]
  • The Search for Million Degree Gas Through the NVII Hyperfine Line
    The Search for Million Degree Gas Through The N VII Hyperfine Line Joel N. Bregman and Jimmy A. Irwin Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 [email protected], [email protected] ABSTRACT Gas in the million degree range occurs in a variety of astronomical environ- ments, and it may be the main component of the elusive missing baryons at low redshift. The N VII ion is found in this material and it has a hyperfine spin-flip transition with a rest frequency of 53.042 GHz, which can be observed for z > 0.1, when it is shifted into a suitably transparent radio band. We used the 42- 48 GHz spectrometer on the Green Bank Telescope to search for both emission and absorption from this N VII transmission. For absorption studies, 3C273, 3C 279, 3C 345, and 4C+39.25 were observed but no feature were seen above the 5σ level. For emission line studies, we observed Abell 1835, Abell 2390 and the star-forming galaxy PKS 1345+12, but no features were seen exceeding 5σ. We examine whether the strongest emission feature, in Abell 2390 (3.7σ), and the strongest absorption feature, toward 4C+39.25 (3.8σ), might be expected from 10 6 theoretical models. The emission feature would require ∼10 M⊙ of 10 K gas, which is inconsistent with X-ray limits for the O VII Kα line, so it is unlikely to be real. The N VII absorption feature requires a N VII column of 6×1016 cm−2, higher than model predictions by at least an order of magnitude, which makes it inconsistent with model expectations.
    [Show full text]
  • An ISOCAM Survey Through Gravitationally Lensing Galaxy Clusters
    A&A 431, 433–449 (2005) Astronomy DOI: 10.1051/0004-6361:20041782 & c ESO 2005 Astrophysics An ISOCAM survey through gravitationally lensing galaxy clusters IV. Luminous infrared galaxies in Cl 0024+1654 and the dynamical status of clusters D. Coia1, B. McBreen1,L.Metcalfe2,3,A.Biviano4, B. Altieri2,S.Ott5,B.Fort6,J.-P.Kneib7,8, Y. Mellier6,9, M.-A. Miville-Deschênes10 , B. O’Halloran1,11, and C. Sanchez-Fernandez2 1 Department of Experimental Physics, University College, Belfield, Dublin 4, Ireland e-mail: [email protected] 2 XMM-Newton Science Operations Centre, European Space Agency, Villafranca del Castillo, PO Box 50727, 28080 Madrid, Spain 3 ISO Data Centre, European Space Agency, Villafranca del Castillo, PO Box 50727, 28080 Madrid, Spain 4 INAF/Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131, Trieste, Italy 5 Science Operations and Data Systems Division of ESA, ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands 6 Institut d’Astrophysique de Paris, 98 bis boulevard Arago, 75014 Paris, France 7 Observatoire Midi-Pyrénées, 14 avenue Edouard Belin, 31400 Toulouse, France 8 California Institute of Technology, Pasadena, CA 91125, USA 9 Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris, France 10 Canadian Institute for Theoretical Astrophysics, 60 St-George Street, Toronto, Ontario M5S 3H8, Canada 11 Dunsink Observatory, Castleknock, Dublin 15, Ireland Received 3 August 2004 / Accepted 26 October 2004 Abstract. Observations of the core of the massive cluster Cl 0024+1654, at a redshift z ∼ 0.39, were obtained with the Infrared Space Observatory using ISOCAM at 6.7 µm (hereafter 7 µm) and 14.3 µm (hereafter 15 µm).
    [Show full text]
  • Locuss: the MID-INFRARED BUTCHER–OEMLER EFFECT
    The Astrophysical Journal, 704:126–136, 2009 October 10 doi:10.1088/0004-637X/704/1/126 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. LoCuSS: THE MID-INFRARED BUTCHER–OEMLER EFFECT C. P. Haines1,G.P.Smith1,E.Egami2,R.S.Ellis3,4, S. M. Moran5, A. J. R. Sanderson1, P. Merluzzi6, G. Busarello6, andR.J.Smith7 1 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; [email protected] 2 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 3 California Institute of Technology, 105-24 Astronomy, Pasadena, CA 91125, USA 4 Department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK 5 Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA 6 INAF - Osservatorio Astronomico di Capodimonte, via Moiariello 16, I-80131 Napoli, Italy 7 Department of Physics, Durham University, Durham, DH1 3LE, UK Received 2009 March 28; accepted 2009 August 14; published 2009 September 21 ABSTRACT We study the mid-infrared (MIR) properties of galaxies in 30 massive galaxy clusters at 0.02 z 0.40, using panoramic Spitzer/MIPS 24 μm and near-infrared data, including 27 new observations from the LoCuSS and ACCESS surveys. This is the largest sample of clusters to date with such high-quality and uniform MIR data covering not only the cluster cores, but extending into the infall regions. We use these data to revisit the so- called Butcher–Oemler (BO) effect, measuring the fraction of massive infrared luminous galaxies (K<K+1.5, 10 LIR > 5×10 L) within r200, finding a steady increase in the fraction with redshift from ∼3% at z = 0.02 to ∼10% by z = 0.30, and an rms cluster-to-cluster scatter about this trend of 0.03.
    [Show full text]
  • The GALEX Ultraviolet Virgo Cluster Survey (Guvics) VII
    A&A 611, A42 (2018) https://doi.org/10.1051/0004-6361/201731795 Astronomy & © ESO 2018 Astrophysics The GALEX Ultraviolet Virgo Cluster Survey (GUViCS) VII. Brightest cluster galaxy UV upturn and the FUV-NUV color up to redshift 0.35? S. Boissier1, O. Cucciati2, A. Boselli1, S. Mei3,4,5, and L. Ferrarese6 1 Aix Marseille Univ, CNRS, LAM, Laboratoire d’Astrophysique de Marseille, Marseille, France e-mail: [email protected] 2 INAF – Osservatorio Astronomico di Bologna, via Gobetti 93/3, 40129 Bologna, Italy 3 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 75014 Paris, France 4 Université Paris Denis Diderot, Université Paris Sorbonne Cité, 75205 Paris Cedex 13, France 5 Jet Propulsion Laboratory, California Institute of Technology, Cahill Center for Astronomy & Astrophysics, Pasadena, CA, USA 6 National Research Council of Canada, Herzberg Astronomy and Astrophysics Program, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada Received 18 August 2017 / Accepted 23 December 2017 ABSTRACT Context. At low redshift, early-type galaxies often exhibit a rising flux with decreasing wavelength in the 1000–2500 Å range, called “UV upturn”. The origin of this phenomenon is debated, and its evolution with redshift is poorly constrained. The observed GALEX FUV-NUV color can be used to probe the UV upturn approximately to redshift 0.5. Aims. We provide constraints on the existence of the UV upturn up to redshift ∼0.4 in the brightest cluster galaxies (BCG) located behind the Virgo cluster, using data from the GUViCS survey. Methods. We estimate the GALEX far-UV (FUV) and near-UV (NUV) observed magnitudes for BCGs from the maxBCG catalog in the GUViCS fields.
    [Show full text]
  • ISO's Contribution to the Study of Clusters of Galaxies
    ISO's Contribution to the Study of Clusters of Galaxies ∗ Leo Metcalfe1 ([email protected]), Dario Fadda2, Andrea Biviano3 1XMM-Newton Science Operations Centre, European Space Agency, Villafranca del Castillo, PO Box 50727, 28080 Madrid, Spain 2Spitzer Science Center, California Institute of Technology, Mail code 220-6, 1200 East California Boulevard, Pasadena, CA 91125 3INAF - Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131, Trieste, Italy Abstract. Starting with nearby galaxy clusters like Virgo and Coma, and continu- ing out to the furthest galaxy clusters for which ISO results have yet been published (z =0:56), we discuss the development of knowledge of the infrared and associated physical properties of galaxy clusters from early IRAS observations, through the “ISO-era” to the present, in order to explore the status of ISO’s contribution to this field. Relevant IRAS and ISO programmes are reviewed, addressing both the cluster galaxies and the still-very-limited evidence for an infrared-emitting intra-cluster medium. ISO made important advances in knowledge of both nearby and distant galaxy clusters, such as the discovery of a major cold dust component in Virgo and Coma cluster galaxies, the elaboration of the correlation between dust emission and Hubble- type, and the detection of numerous Luminous Infrared Galaxies (LIRGs) in several distant clusters. These and consequent achievements are underlined and described. We recall that, due to observing time constraints, ISO’s coverage of higher- redshift galaxy clusters to the depths required to detect and study statistically significant samples of cluster galaxies over a range of morphological types could not be comprehensive and systematic, and such systematic coverage of distant clusters will be an important achievement of the Spitzer Observatory.
    [Show full text]
  • CARMA Summer School 2010
    CARMA Memorandum Series #55 CARMA SUMMER SCHOOL 2010 Melvyn Wright, Marc Pound, Dick Plambeck, John Carpenter, Nikolaus Volgenau, Tom Culverhouse, Doug Friedel, Swarnima Manohar, Thiago Goncalves, Mislav Balokovi´c,David Fisher, Rodrigo Herrera Camus, Katie Jameson, Ben Westbrook, Zubair Abdulla, Felippe Navarrete, Rie Miura, Adele Plunkett, Jason Speights, Tim Weinzirl, Manuel Merello, Thomas Fok Kai Tung, Marc Royster, Zubair Abdulla October 1, 2010 ABSTRACT The third CARMA Summer School was held at the observatory on Cedar Flat 2010 July 11-17 with 17 students from Berkeley, Caltech, Illinois, Maryland, U. Chicago, U. Texas, Max Planck Institute for Radioastronomy, U. Tokyo, Yale,U. Hong Kong, U. Split, and Northwestern. During the school, students formed small teams and de- signed and obtained their own observations, in consultation with the instructors. Ob- servations were of evolved stars, protostars, galaxies, molecular clouds, and SZ clusters. In this memo we collect together some of the results from the student projects. – 2 – 1. Introduction The fourth CARMA Summer School was held at the observatory on Cedar Flat 2010 July 11-17 with 19 students from Berkeley, Caltech, Illinois, Maryland, U. Chicago, U. Texas, Max Planck Institute for Radioastronomy, U. Tokyo, Yale,U. Hong Kong, U. Split, and Northwestern. The school had the use of the telescope for the week. The array was in the compact E-configuration. During the school the students had their own observing projects which they worked on during the week as well as attending lectures and demonstations. Each of the student projects had 5-6 hours of telescope time and the students controlled the telescope for their own projects.
    [Show full text]
  • ASTRONOMY and ASTROPHYSICS Evolution of the Colour-Magnitude Relation of Early-Type Galaxies in Distant Clusters
    Astron. Astrophys. 334, 99–109 (1998) ASTRONOMY AND ASTROPHYSICS Evolution of the colour-magnitude relation of early-type galaxies in distant clusters Tadayuki Kodama1,2, Nobuo Arimoto2,4, Amy J. Barger1,3, and Alfonso Aragon-Salamanca´ 1 1 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK ([email protected]) 2 Institute of Astronomy, University of Tokyo, Mitaka, Tokyo 181, Japan 3 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA 4 Observatoire de Paris, Section de Meudon, DAEC, F-92195 Meudon Principle Cedex, France Received 21 November 1997 / Accepted 17 February 1998 Abstract. We present a thorough quantitative analysis of the models of elliptical galaxies with the C-M diagrams for early- evolution of the colour-magnitude relation for early-type galax- type galaxies in two distant clusters, Abell 2390 at z =0.228 ies in 17 distant clusters with redshifts 0.31 <z<1.27 using and Abell 851 at z =0.407, and showed that the origin of the the Kodama & Arimoto (1997) evolutionary model for ellipti- C-M relation was primarily due to the mean stellar metallicity of cal galaxies. The model is calibrated to reproduce the colour- the early-types being a function of total magnitude. In this paper magnitude relation for Coma ellipticals at z ∼ 0 and gives the we present a more thorough study of the evolution of the C-M evolution of the slope and zero-point as a function of redshift. We relation by using 17 clusters at cosmological distances to detect find no significant differences between the colour-magnitude the colour evolution of cluster early-type galaxies directly and relations of the clusters in our sample.
    [Show full text]
  • Astronomy DOI: 10.1051/0004-6361/201220267 & C ESO 2012 Astrophysics
    A&A 548, A59 (2012) Astronomy DOI: 10.1051/0004-6361/201220267 & c ESO 2012 Astrophysics Statistics and implications of substructure detected in a representative sample of X-ray clusters G. Chon1, H. Böhringer1, and G. P. Smith2 1 Max-Planck-Institut für extraterrestrische Physik, 85748 Garching, Germany e-mail: [email protected] 2 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, England Received 21 August 2012 / Accepted 16 October 2012 ABSTRACT We present a morphological study of 35 X-ray luminous galaxy clusters at 0.15 < z < 0.3, selected in a similar manner to the Local Cluster Substructure Survey (LoCuSS), for which deep XMM-Newton observations are available. We characterise the structure of the X-ray surface brightness distribution of each cluster by measuring both their power ratios and centroid shift, and thus rank the clusters by the degree of substructure. These complementary probes give a consistent description of the cluster morphologies with some well understood exceptions. We find a remarkably tight correlation of regular morphology with the occurrence of cool cores in clusters. We also compare our measurements of X-ray morphology with measurements of the luminosity gap statistics and ellipticity of the brightest cluster galaxy (BCG), to examine recent suggestions that these quantities may be efficient probes of the assembly history of and observer’s viewing angle through cluster-scale mass distributions. Our X-ray analysis confirms that cluster with large luminosity gaps form a relatively homogeneous population that appears more regular with the implication that such systems did not suffer from recent merger activity.
    [Show full text]