Three Roads to Quantum Gravity

Total Page:16

File Type:pdf, Size:1020Kb

Three Roads to Quantum Gravity “It would be hard to imagine a better guide to this difficult subject.” PHYSICS —SCIENTIFIC AMERICAN The Holy Grail of modern physics is the theory of “quantum gravity.” It is a search for a view of the Universe that unites two seemingly opposed pillars of modern science: Einstein’s theory of general relativity, which deals with large scale phenomena like planets, solar systems and galaxies, and quantum theory, which deals with the world of the very small—molecules, atoms and electrons. In the last few years physicists have made steps toward their goal of a completely new theory of space, time and the universe, a “theory of everything.” In Three Roads to Quantum Gravity, Lee Smolin, who has spent his career at the forefront of these new discoveries, presents for the first time the main ideas behind the new developments that have brought a quantum theory of gravity in sight. Written with exceptional style and clarity, Three Roads to Quantum Gravity confronts the deepest questions of the nature of the universe and provides a preview of some of the remarkable scientific developments we can look forward to in the twenty-first century. Praise for THREE ROADS TO QUANTUM GRAVITY “[Smolin] argues lucidly and effectively….This is a deeply philosophical work OHEN that asks us to rethink the epistemological roots of the mental pictures we C EW ORK IMES OOK EVIEW make about nature. —N Y T B R ARC M “Absolutely compelling…Lee Smolin is one of a small handful of physicists around the world who have been able to make genuine progress on an extraordinarily dif- ficult problem that has stumped some of the world’s finest minds for 80 years. [R]equired reading for anyone interested in the problem of quantum gravity and HE MERICAN CIENTIST the future of theoretical physics.” —T A S OVER DESIGN BY C LEE SMOLIN is a leading contributor to the search for a quantum theory of gravity. He is currently a researcher at Perimeter Institute for Theoretical Physics and WITH A NEW POSTSCRIPT BY THE AUTHOR Professor of Physics at Waterloo University. He is also the author of Life of the Cosmos. US $14.00 / $20.95 CAN A Member of the Perseus Books Group www.basicbooks.com THREE ROADS TO QUANTUM GRAVITY LEE SMOLIN A Member of the Perseus Books Group SmolinNRM.qxd 5/16/02 2:37 PM Page iv To my parents Pauline and Michael Copyright © 2001 by Lee Smolin Published by Basic Books, A Member of the Perseus Books Group First Published in Great Britian in 2000 by Weidenfeld and Nicolson All rights reserved. Printed in the United States of America. No part of this book may be reproduced in any manner whatsoever without written permission except in the case of brief quotations embodied in critical articles and reviews. For information, address Basic Books, 387 Park Avenue South, New York, NY 10016-8810. Typeset at the Spartan Press Ltd Lymington, Hants A CIP record for this book is available from the Library of Congress. ISBN 0-465-07836-2 020304/10987654321 CONTENTS ............................................................................................ Acknowledgments vii Prologue: The quest for quantum gravity 1 Part I Points of departure 15 1 There is nothing outside the universe 17 2 In the futurewe shall know more 26 3 Many observers,not many worlds 33 4 The universe is made of processes, not things 49 Part II What we have learned 67 5 Black holes and hidden regions 69 6 Acceleration and heat 77 7 Black holes are hot 88 8 Area and information 95 9 How to count space 106 10 Knots,links and kinks 125 11 The sound of space is a string 146 vi THREE ROADS TO QUANTUM GRAVITY PartIII Thepresentfrontiers 167 12Theholographicprinciple169 13Howtoweaveastring179 14Whatchoosesthelawsofnature?194 Epilogue:Apossiblefuture 207 Postscript 212 Glossary 226 Suggestions for further reading 235 Index 241 ACKNOWLEDGMENTS I must thank first of all the friends and collaborators who formed the community within which I learned most of what I know about quantum gravity. If I had not had the luck to know Julian Barbour, Louis Crane, John Dell, Ted Jacobson and Carlo Rovelli, I doubt that I would have got very far with this subject at all. They will certainly see their ideas and views represented here. Fotini Markopoulou-Kalamara is re- sponsible for changing my views on several important as- pects of quantum gravity over the last several years, which got me out of space and back into spacetime. Large parts of Chapters 2, 3 and 4 are suffused by her thinking, as will be clear to anyone who has read her papers. I am also indebted to Chris Isham for the several ideas of his that have seeped into my work, in some cases without my fully realizing it, and for his friendship and for the example of his life and thought. Stuart Kauffman has taught me most of what I know about how to think about self-organized systems, and I thank him for both the gift of his friendship and his willingness to walk with me in the space between our two subjects. I am also very indebted for discussions, collaborations and encouragement to Giovanni Amelino-Camelia, Abhay Ashte- kar, Per Bak, Herbert Bernstein, Roumen Borissov, Alain Connes, Michael Douglas, Laurant Friedel, Rodolfo Gambini, Murray Gell-Mann, Sameer Gupta, Eli Hawkins, Gary Horowitz, Viqar Husain, Jaron Lanier, Richard Livine, Yi Ling, Renate Loll, Seth Major, Juan Maldecena, Maya Paczuski, Roger Penrose, Jorge Pullin, Martin Rees, Mike Reisenberger, viii THREE ROADS TO QUANTUM GRAVITY Jurgen Renn, Kelle Stelle, Andrew Strominger, Thomas Thiemann and Edward Witten. I add a special word of appreciation for the founders of the ®eld of quantum gravity, including Peter Bergmann, Bryce DeWitt, David Finkelstein, Charles Misner, Roger Penrose and John Archibald Wheeler. If they see many of their ideas here, it is because these are the ideas that continue to shape how we see our problem. Our work has been supported generously by the National Science Foundation, for which I especially have to thank Richard Issacson. In the last several years generous and unexpected gifts from the Jesse Phillips Foundation have made it possible to concentrate on doing science at a time when nothing was more important than the time and freedom to think and work. I am grateful also to Pennsylvania State University, and especially to my chair, Jayanth Banavar, for the supportive and stimulating home it has given me over the last six years, as well as for showing some understanding of the con¯icting demands placed upon me when I found myself with three full-time jobs, as a scientist, teacher and author. The theory group at Imperial College provided a most stimulating and friendly home from home during the year's sabbatical during which this book was written. This book would not exist were it not for the kind encouragement of John Brockman and Katinka Matson, and I am also very grateful to Peter Tallack of Weidenfeld & Nicolson, both for his encouragement and ideas and for being such a good editor, in the old-fashioned sense. Much of the clarity of the text is also due to the artistry and intelligence of John Woodruff's copy editing. Brian Eno and Michael Smolin read a draft and made invaluable suggestions for the organiza- tion of the book, which have greatly improved it. The support of friends has continued to be essential to keeping my own spirit alive, especially Saint Clair Cemin, Jaron Lanier and Donna Moylan. Finally, as always, my greatest debt is to my parents and family, not only for the gift of life but for imparting in me the desire to look beyond what is taught in school, to try to see the world as it may actually be. Lee Smolin London, July 2000 PROLOGUE ............................................................................................ THE QUEST FOR QUANTUM GRAVITY This book is about the simplest of all questions to ask: `What are time and space?' This is also one of the hardest questions to answer, yet the progress of science can be measured by revolutions that produce new answers to it. We are now in the midst of such a revolution, and not one but several new ideas about space and time are being considered. This book is meant to be a report from the front. My aim is to communicate these new ideas in a language that will enable any interested reader to follow these very exciting developments. Space and time are hard to think about because they are the backdrop to all human experience. Everything that exists exists somewhere, and nothing happens that does not happen at some time. So, just as one can live without questioning the assumptions in one's native culture, it is possible to live without asking about the nature of space and time. But there is at least a moment in every child's life when they wonder about time. Does it go on for ever? Was there a ®rst moment? Will there be a last moment? If there was a ®rst moment, then how was the universe created? And what happened just a moment before that? If there was no ®rst moment, does that mean that everything has happened before? And the same for space: does it go on and on for ever? If there is an end to space, what is just on the other side of it? If there isn't an end, can one count the things in the universe? I'm sure people have been asking these questions for as long as there have been people to ask them. I would be surprised if 2 THREE ROADS TO QUANTUM GRAVITY the people who painted the walls of their caves tens of thousands of years ago did not ask them of one another as they sat around their ®res after their evening meals.
Recommended publications
  • The Metaphysical Baggage of Physics Lee Smolin Argues That Life Is More
    The Metaphysical Baggage of Physics Lee Smolin argues that life is more fundamental than physical laws. BY MICHAEL SEGAL ILLUSTRATION BY LOUISA BERTMAN JANUARY 30, 2014 An issue on tme would not be complete without a conversaton with Lee Smolin. High school dropout, theoretcal physicist, and founding member of the Perimeter Insttute for Theoretcal Physics in Waterloo, Canada, Smolin’s life and work refect many of the values of this magazine. Constantly probing the edges of physics, he has also pushed beyond them, into economics and the philosophy of science, and into popular writng. Not one to shy away from a confrontaton, his 2008 bookThe Trouble with Physicstook aim at string theory, calling one of the hotest developments in theoretcal physics of the past 50 years a dead end. In his thinking on tme too, he has taken a diferent tack from the mainstream, arguing that the fow of tme is not just real, but more fundamental than physical law. He spoke to me on the phone from his home in Toronto. How long have you been thinking about tme? The whole story starts back in the ’80s when I was puzzling over the failure of string theory to uniquely tell us the principles that determine what the laws of physics are. I challenged myself to invent a way that nature might select what the laws of physics turned out to be. I invented a hypothesis called Cosmological Natural Selecton, which was testable, which made explicit predictons. This wasn’t my main day job; my main day job was working on quantum gravity where it’s assumed that tme is unreal, that tme is an illusion, and I was working, like anybody else, on the assumpton that tme is an illusion for most of my career.
    [Show full text]
  • A Singing, Dancing Universe Jon Butterworth Enjoys a Celebration of Mathematics-Led Theoretical Physics
    SPRING BOOKS COMMENT under physicist and Nobel laureate William to the intensely scrutinized narrative on the discovery “may turn out to be the greatest Henry Bragg, studying small mol ecules such double helix itself, he clarifies key issues. He development in the field of molecular genet- as tartaric acid. Moving to the University points out that the infamous conflict between ics in recent years”. And, on occasion, the of Leeds, UK, in 1928, Astbury probed the Wilkins and chemist Rosalind Franklin arose scope is too broad. The tragic figure of Nikolai structure of biological fibres such as hair. His from actions of John Randall, head of the Vavilov, the great Soviet plant geneticist of the colleague Florence Bell took the first X-ray biophysics unit at King’s College London. He early twentieth century who perished in the diffraction photographs of DNA, leading to implied to Franklin that she would take over Gulag, features prominently, but I am not sure the “pile of pennies” model (W. T. Astbury Wilkins’ work on DNA, yet gave Wilkins the how relevant his research is here. Yet pulling and F. O. Bell Nature 141, 747–748; 1938). impression she would be his assistant. Wilkins such figures into the limelight is partly what Her photos, plagued by technical limitations, conceded the DNA work to Franklin, and distinguishes Williams’s book from others. were fuzzy. But in 1951, Astbury’s lab pro- PhD student Raymond Gosling became her What of those others? Franklin Portugal duced a gem, by the rarely mentioned Elwyn assistant. It was Gosling who, under Franklin’s and Jack Cohen covered much the same Beighton.
    [Show full text]
  • BEYOND SPACE and TIME the Secret Network of the Universe: How Quantum Geometry Might Complete Einstein’S Dream
    BEYOND SPACE AND TIME The secret network of the universe: How quantum geometry might complete Einstein’s dream By Rüdiger Vaas With the help of a few innocuous - albeit subtle and potent - equations, Abhay Ashtekar can escape the realm of ordinary space and time. The mathematics developed specifically for this purpose makes it possible to look behind the scenes of the apparent stage of all events - or better yet: to shed light on the very foundation of reality. What sounds like black magic, is actually incredibly hard physics. Were Albert Einstein alive today, it would have given him great pleasure. For the goal is to fulfil the big dream of a unified theory of gravity and the quantum world. With the new branch of science of quantum geometry, also called loop quantum gravity, Ashtekar has come close to fulfilling this dream - and tries thereby, in addition, to answer the ultimate questions of physics: the mysteries of the big bang and black holes. "On the Planck scale there is a precise, rich, and discrete structure,” says Ashtekar, professor of physics and Director of the Center for Gravitational Physics and Geometry at Pennsylvania State University. The Planck scale is the smallest possible length scale with units of the order of 10-33 centimeters. That is 20 orders of magnitude smaller than what the world’s best particle accelerators can detect. At this scale, Einstein’s theory of general relativity fails. Its subject is the connection between space, time, matter and energy. But on the Planck scale it gives unreasonable values - absurd infinities and singularities.
    [Show full text]
  • A Realist Vision of the Quantum World
    A realist's vision of the quantum world Kragh, Helge Stjernholm Published in: American Scientist Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: Unspecified Citation for published version (APA): Kragh, H. S. (2019). A realist's vision of the quantum world. American Scientist, 107, 374-376. https://www.americanscientist.org/article/a-realist-vision-of-the-quantum-world Download date: 24. sep.. 2021 A reprint from American Scientist the magazine of Sigma Xi, The Scientific Research Honor Society This reprint is provided for personal and noncommercial use. For any other use, please send a request to Permissions, American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709, U.S.A., or by electronic mail to [email protected]. ©Sigma Xi, The Scientific Research Hornor Society and other rightsholders Scientists’ Nightstand has been the most successful theory of nature, and quantum mechanics The Scientists’ Nightstand, A Realist Vision precludes the sort of realism to which American Scientist’s books of the Quantum Smolin aspires. He describes three dif- section, offers reviews, review ferent kinds of anti-realists: The radical essays, brief excerpts, and more. World anti-realists, such as Niels Bohr, who For additional books coverage, believe that the properties we ascribe please see our Science Culture Helge Kragh to atoms and elementary particles are blog channel, which explores EINSTEIN’S UNFINISHED REVOLUTION: not inherent in them but are created by how science intersects with other The Search for What Lies Beyond the our interactions with them and exist areas of knowledge, entertain- Quantum.
    [Show full text]
  • Peircean Cosmogony's Symbolic Agapistic Self-Organization As an Example of the Influence of Eastern Philosophy on Western Thinking
    Peircean Cosmogony's Symbolic Agapistic Self-organization as an Example of the Influence of Eastern Philosophy on Western Thinking Brier, Søren Document Version Accepted author manuscript Published in: Progress in Biophysics & Molecular Biology DOI: 10.1016/j.pbiomolbio.2017.09.010 Publication date: 2017 License CC BY-NC-ND Citation for published version (APA): Brier, S. (2017). Peircean Cosmogony's Symbolic Agapistic Self-organization as an Example of the Influence of Eastern Philosophy on Western Thinking. Progress in Biophysics & Molecular Biology, (131), 92-107. https://doi.org/10.1016/j.pbiomolbio.2017.09.010 Link to publication in CBS Research Portal General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us ([email protected]) providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Peircean Cosmogony's Symbolic Agapistic Self-organization as an Example of the Influence of Eastern Philosophy on Western Thinking Søren Brier Journal article (Accepted manuscript) CITE: Brier, S. (2017). Peircean Cosmogony's Symbolic Agapistic Self-organization as an Example of the Influence of Eastern Philosophy on Western Thinking. Progress in Biophysics & Molecular
    [Show full text]
  • Is There a Darwinian Evolution of the Cosmos?
    Is there a Darwinian Evolution of the Cosmos? Some Comments on Lee Smolinüs Theory of the Origin of Universes by Means of Natural Selection Ru diger Vaas Zentrum fu r Philosophie und Grundlagen der Wissenschaft Justus-Liebig-Universitat Gie%en, Germany [email protected] “Many worlds might have been botched and bungled, throughout an eternity, üere this system was struck out. Much labour lost: Many fruitless trials made: And a slow, but continued improvement carried out during infinite ages in the art of world-making.– David Hume (1779) 1 Abstract and Introduction For Lee Smolin [54-58], our universe is only one in a much larger cosmos (the Multiverse) è a member of a growing community of universes, each one being born in a bounce following the formation of a black hole. In the course of this, the values of the free parameters of the physical laws are reprocessed and slightly changed. This leads to an evolutionary picture of the Multiverse, where universes with more black holes have more descendants. Smolin concludes, that due to this kind of Cosmological Natural Selection our own universe is the way it is. The hospitality for life of our universe is seen as an offshot of this self-organized process. This paper outlines Smolinüs hypothesis, its strength, weakness and limits, and comments on the hypothesis from different points of view: physics, biology, philosophy of science, philosophy of nature, and metaphysics. __________________________________________________________________ This paper is the extended version of a contribution to the MicroCosmos è MacroCosmos conference in Aachen, Germany, September 2-5 1998.
    [Show full text]
  • The Quantum Mechanics of the Present
    The quantum mechanics of the present Lee Smolina and Clelia Verdeb a Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2J 2Y5, Canada and Department of Physics and Astronomy, University of Waterloo and Department of Philosophy, University of Toronto bCorso Concordia, 20129 - Milano April 21, 2021 Abstract We propose a reformulation of quantum mechanics in which the distinction be- tween definite and indefinite becomes the fundamental primitive. Inspired by suggestions of Heisenberg, Schrodinger and Dyson that the past can’t be described in terms of wavefunctions and operators, so that the uncertainty prin- ciple does not apply to past events, we propose that the distinction between past, present and future is derivative of the fundamental distinction between indefinite and definite. arXiv:2104.09945v1 [quant-ph] 20 Apr 2021 We then outline a novel form of presentism based on a phenomonology of events, where an event is defined as an instance of transition between indefinite and definite. Neither the past nor the future fully exist, but for different reasons. We finally suggest reformulating physics in terms of a new class of time coordinates in which the present time of a future event measures a countdown to the present moment in which that event will happen. 1 Contents 1 Introduction 2 2 Constructions of space and time 3 3 A phenomonology of present events 4 3.1 Thedefiniteandtheindefinite. .... 5 3.2 Thepast ....................................... 6 3.3 Thefuture ...................................... 6 3.4 Causalitywithoutdeterminism . ..... 7 4 Thequantummechanicsofdefiniteandindefinite 7 5 Theframeofreferenceforanobserverinapresentmoment 10 6 Closing remarks 11 1 Introduction The idea we will discuss here has arisin from time to time since the invention of quan- tum mechanics.
    [Show full text]
  • Loop Quantum Gravity
    QUANTUM GRAVITY Loop gravity combines general relativity and quantum theory but it leaves no room for space as we know it – only networks of loops that turn space–time into spinfoam Loop quantum gravity Carlo Rovelli GENERAL relativity and quantum the- ture – as a sort of “stage” on which mat- ory have profoundly changed our view ter moves independently. This way of of the world. Furthermore, both theo- understanding space is not, however, as ries have been verified to extraordinary old as you might think; it was introduced accuracy in the last several decades. by Isaac Newton in the 17th century. Loop quantum gravity takes this novel Indeed, the dominant view of space that view of the world seriously,by incorpo- was held from the time of Aristotle to rating the notions of space and time that of Descartes was that there is no from general relativity directly into space without matter. Space was an quantum field theory. The theory that abstraction of the fact that some parts of results is radically different from con- matter can be in touch with others. ventional quantum field theory. Not Newton introduced the idea of physi- only does it provide a precise mathemat- cal space as an independent entity ical picture of quantum space and time, because he needed it for his dynamical but it also offers a solution to long-stand- theory. In order for his second law of ing problems such as the thermodynam- motion to make any sense, acceleration ics of black holes and the physics of the must make sense.
    [Show full text]
  • Phenomena at the Border Between Quantum Physics and General Relativity
    Phenomena at the border between quantum physics and general relativity by Valentina Baccetti A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Mathematics, Statistics and Operations Research. Victoria University of Wellington 2014 Abstract In this thesis we shall present a collection of research results about phenomena that lie at the interface between quantum physics and general relativity. The motivation behind our research work is to find alternative ways to tackle the problem of a quantum theory of/for gravitation. In the general introduction, we shall briefly recall some of the characteristics of the well-established approaches to this problem that have been developed since the beginning of the middle of the last century. Afterward we shall illustrate why one would like to engage in alternative paths to better understand the problem of a quantum theory of/for gravitation, and the extent to which they will be able to shed some light into this problem. In the first part of the thesis, we shall focus on formulating physics without Lorentz invariance. In the introduction to this part we shall describe the motiva- tions that are behind such a possible choice, such as the possibility that the physics at energies near Planck regime may violate Lorentz symmetry. In the following part we shall first consider a minimalist way of breaking Lorentz invariance by renouncing the relativity principle, that corresponds to the introduction of a preferred frame, the aether frame. In this case we shall look at the transformations between a generic inertial frame and the aether frame still requiring the transformations to be linear.
    [Show full text]
  • The Singular Universe and the Reality of Time: a Proposal in Natural Philosophy
    philosophies Book Review The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy. By Roberto Mangabeira Unger and Lee Smolin. Cambridge University Press: Cambridge, UK, 2014; 566 pp.; ISBN-10: 1107074061, ISBN-13: 978-1107074064 Matt McManus ID Politics Science and International Relations, Tecnológico de Monterrey, Toronto, ON M6B 1T2, Canada; [email protected] Received: 14 July 2018; Accepted: 17 July 2018; Published: 18 July 2018 To do genuinely interdisciplinary and transdisciplinary work is the goal of many scholars. Some achieve it better than others. But to engage in truly systematic and all-encompassing scholarship almost seems anachronistic, not to mention a trifle arrogant. Given the complexities involved in mastering even a single discipline, who could have the audacity to claim expertise across them all. Such ambition and systematicity, not to mention the borderline audacity that underlies it, is part of the thrill that comes from reading any book Roberto Unger. Where others might painstakingly tie themselves into knots justifying their right to engage in interdisciplinary and transdisciplinary work, Unger simply steamrolls over all objections to think and write about whatever he wishes. In many, this might simply be intellectual over reach. But Unger is the rare exception. His seemingly encyclopediac capacity for philosophical systematization has moved from impressive to genuinely inspiring in his recent work. Unger began his career at Harvard Law in the 1970s, as a founding member of the critical legal theory movement in American jurisprudence. His youthful manuscript, Knowledge and Politics, remains a minor classic and develops a reasonably novel criticism of liberal legalism.
    [Show full text]
  • Lessons from Einstein's 1915 Discovery of General Relativity
    Lessons from Einstein’s 1915 discovery of general relativity Lee Smolin∗ Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2J 2Y5, Canada December 24, 2015 Abstract There is a myth that Einstein’s discovery of general relativity was due to his fol- lowing beautiful mathematics to discover new insights about nature. I argue that this is an incorrect reading of the history and that what Einstein did was to follow phys- ical insights which arose from asking that the story we tell of how nature works be coherent. This is an expanded version of a text that was originally prepared for, and its Polish translation appeared in, the September 2015 issue of ”Niezbednik inteligenta”. An extract also appears in the Fall/Winter 2015/2016 edition of Inside the Perimeter. Contents 1 The lessons of general relativity 2 2 Following Einstein’s path 6 3 Going beyond the standard model: which legacy to follow? 7 4 The search for new principles 10 5 Einstein’s unique approach to physics 11 ∗[email protected] 1 1 The lessons of general relativity The focus on Einstein’s discovery of general relativity brings to mind two questions: • What can we learn from Einstein’s 1915 discovery of general relativity about how science works? • Are there lessons to be drawn from Einstein’s successes and failures that can help our search for a deeper unification? According to popular accounts of the scientific method, such as Thomas Kuhn’s The Structure of Scientific Revolutions[1], theories are invented to describe phenomena which experimentalists have previously discovered.
    [Show full text]
  • A History of Self-Organization, Part Two. Complexity, Emergence, and Stable Attractors
    HSNS3901_01 1/12/09 4:19 PM Page 1 EVELYN FOX KELLER∗ Organisms, Machines, and Thunderstorms: A History of Self-Organization, Part Two. Complexity, Emergence, and Stable Attractors ABSTRACT Part Two of this essay focuses on what might be called the third and most recent chapter in the history of self-organization, in which the term has been claimed to de- note a paradigm shift or revolution in scientific thinking about complex systems. The developments responsible for this claim began in the late 1960s and came directly out of the physical sciences. They rapidly attracted wide interest and led to yet an- other redrawing of the boundaries between organisms, machines, and naturally oc- curring physical systems (such as thunderstorms). In this version of self-organization, organisms are once again set apart from machines precisely because the latter de- pend on an outside designer, but—in contrast to Kant’s ontology—they are now as- similated to patterns in the inorganic world on the grounds that they, too, like many biological phenomena, arise spontaneously. KEY WORDS: self-organization, organisms, dynamical systems, organized complexity, edge of chaos, dissipative systems, self-organized criticality INTRODUCTION The term self-organization is often used to describe a paradigm shift or revolu- tion in scientific thinking that, according to numerous authors, has been in motion for the last three decades. New theoretical developments, it is argued, have finally enabled scientists to transcend their traditionally static and reduc- tionist worldview, to turn their attention to the global dynamics of complex systems, and to expand their domain of competence from the world of being *Massachusetts Institute of Technology, Program in Science, Technology and Society, 77 Mas- sachusetts Ave., E51-171, Cambridge, MA 02139; [email protected].
    [Show full text]