A Contribution on Modeling Methodologies for Multibody Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analytical Mechanics
A Guided Tour of Analytical Mechanics with animations in MAPLE Rouben Rostamian Department of Mathematics and Statistics UMBC [email protected] December 2, 2018 ii Contents Preface vii 1 An introduction through examples 1 1.1 ThesimplependulumàlaNewton ...................... 1 1.2 ThesimplependulumàlaEuler ....................... 3 1.3 ThesimplependulumàlaLagrange.. .. .. ... .. .. ... .. .. .. 3 1.4 Thedoublependulum .............................. 4 Exercises .......................................... .. 6 2 Work and potential energy 9 Exercises .......................................... .. 12 3 A single particle in a conservative force field 13 3.1 The principle of conservation of energy . ..... 13 3.2 Thescalarcase ................................... 14 3.3 Stability....................................... 16 3.4 Thephaseportraitofasimplependulum . ... 16 Exercises .......................................... .. 17 4 TheKapitsa pendulum 19 4.1 Theinvertedpendulum ............................. 19 4.2 Averaging out the fast oscillations . ...... 19 4.3 Stabilityanalysis ............................... ... 22 Exercises .......................................... .. 23 5 Lagrangian mechanics 25 5.1 Newtonianmechanics .............................. 25 5.2 Holonomicconstraints............................ .. 26 5.3 Generalizedcoordinates .......................... ... 29 5.4 Virtual displacements, virtual work, and generalized force....... 30 5.5 External versus reaction forces . ..... 32 5.6 The equations of motion for a holonomic system . ... -
Lagrangian Mechanics - Wikipedia, the Free Encyclopedia Page 1 of 11
Lagrangian mechanics - Wikipedia, the free encyclopedia Page 1 of 11 Lagrangian mechanics From Wikipedia, the free encyclopedia Lagrangian mechanics is a re-formulation of classical mechanics that combines Classical mechanics conservation of momentum with conservation of energy. It was introduced by the French mathematician Joseph-Louis Lagrange in 1788. Newton's Second Law In Lagrangian mechanics, the trajectory of a system of particles is derived by solving History of classical mechanics · the Lagrange equations in one of two forms, either the Lagrange equations of the Timeline of classical mechanics [1] first kind , which treat constraints explicitly as extra equations, often using Branches [2][3] Lagrange multipliers; or the Lagrange equations of the second kind , which Statics · Dynamics / Kinetics · Kinematics · [1] incorporate the constraints directly by judicious choice of generalized coordinates. Applied mechanics · Celestial mechanics · [4] The fundamental lemma of the calculus of variations shows that solving the Continuum mechanics · Lagrange equations is equivalent to finding the path for which the action functional is Statistical mechanics stationary, a quantity that is the integral of the Lagrangian over time. Formulations The use of generalized coordinates may considerably simplify a system's analysis. Newtonian mechanics (Vectorial For example, consider a small frictionless bead traveling in a groove. If one is tracking the bead as a particle, calculation of the motion of the bead using Newtonian mechanics) mechanics would require solving for the time-varying constraint force required to Analytical mechanics: keep the bead in the groove. For the same problem using Lagrangian mechanics, one Lagrangian mechanics looks at the path of the groove and chooses a set of independent generalized Hamiltonian mechanics coordinates that completely characterize the possible motion of the bead. -
Introduction to Analytical Mechanics
Introduction to Analytical Mechanics Lagrange’s Equations Siamak G. Faal 1/1 07/29/2016 1 Rigid body dynamics Dynamic equations: • Provide a relation between forces and system accelerations • Explain rigid body motion and trajectories Image sources (left to right): https://www.etsy.com/listing/96803935/funnel-shaped-spinning-top-natural-wood https://spaceflightnow.com/2016/06/30/juno-switched-to-autopilot-mode-for-jupiter-final-approach/ https://upload.wikimedia.org/wikipedia/commons/d/d8/NASA_Mars_Rover.jpg 2 http://www.popularmechanics.com/cars/a14665/why-car-suspensions-are-better-than-ever/ Kinematics vs Kinetics Kinematics Kinetics Focuses on pure motion of Relationship between the particles and bodies (without motion of bodies and forces considering masses and and torques forces) Image sources (left to right): https://www.youtube.com/watch?v=PAHjo4DXOjc 3 http://www.timelinecoverbanner.com/facebook-covers/billiard.jpg Dynamic Forces and Reactions Dynamic analysis are essential to determine reaction forces that are cussed by dynamic forces (e.g. Accelerations) Image sources (left to right): http://r.hswstatic.com/w_404/gif/worlds-greatest-roller-coasters-149508746.jpg http://www.murraymitchell.com/wp-content/uploads/2011/04/red_aircraft_performing_aerobatics.jpg 4 Differential Equations of Motion provide a set of differential equations which allow modeling, simulation and control of dynamic mechanical systems Why humanoid robots do not walk or act like humans !? 5 Background Information 6 Notations Throughout this presentation: Parameters -
A Simple Treatment of Constraint Forces and Constraint Moments in the Dynamics of Rigid Bodies
ASME Applied Mechanics Reviews http://dx.doi.org/10.1115/1.4028099 This paper appeared in Vol.67(1), 014801, 2015. (Online: Aug 25, 2014) (8 pages) A Simple Treatment of Constraint Forces and Constraint Moments in the Dynamics of Rigid Bodies Oliver M. O’Reilly · Arun R. Srinivasa November 6, 2014 Abstract In this expository article, a simple concise a set of 3-1-3 Euler angles ψ,θ, and φ, and the vertical treatment of Lagrange’s prescription for constraint forces coordinate zP of the point of contact XP . The coordi- and constraint moments in the dynamics of rigid bodies nate zP is related to the vertical coordinate z of the is presented. The treatment is suited to both Newton- center of mass by the simple relation Euler and Lagrangian treatments of rigid body dynam- 6 ics and is illuminated with a range of examples from q = zP = z − R sin(θ). (1) classical mechanics and orthopedic biomechanics. After choosing the coordinate system, we can calculate Keywords Lagrange’s equations · Constraints · the kinetic T and potential U energies of the disk. For 6 Constraints forces · Constraint moments the disk in motion on the plane, the coordinate q is constrained to be zero. As a result, the equations of motion have a Lagrange multiplier λ on the right hand 1 Introduction side: d ∂T ∂T ∂U − + = ΦΓ , (Γ =1,..., 6) , (2) Consider formulating the equations of motion for the dt ∂q˙Γ ∂qΓ ∂qΓ classical problem of a thin circular disk shown in Fig- ure 1 that is sliding with a point XP in contact with a where the generalized constraint force is smooth horizontal surface. -
Dynamics in About 100 Pages
Intermediate Dynamics in about 100 pages Anindya Chatterjee Department of Mechanical Engineering Indian Institute of Technology Kanpur 208016 This version: November 4, 2014 2 Preface These notes started with a course at the Indian Institute of Science (Bangalore) on the dynamics and control of mechanical systems, of which I taught the “dynamics” part several times. I have since moved to IIT Kanpur via IIT Kharagpur. There are many excellent but fat books on dynamics. My notes, at least, are brief. I hope you will find my treatment of rotation matrices easy and useful (“rotate the body, not the axes”). You might enjoy my discussion of nonholonomic constraints in Lagrangian mechanics (“where do the λ’s come from?”). If you like something else, please send me email. Many students initially struggle with simple dynamics problems. It is like riding a bicycle. It looks easy until you try, and later you wonder what the fuss was about; but a journey lies in between. Several excellent people tried to teach me mechanics. Progress was slow. Professor A. C. Gomes of St. Xavier’s College, Kolkata, taught me well in my impressionable teens (1983-85). Professor Andy Ruina of Cornell University, my last formal teacher, helped a lot (1993-96). I took a long time to understand what I describe in these notes. But then dynamics is a great subject developed by great people. I am just a messenger, trying to bring the story to you. Several students, friends, and colleagues have helped with various parts of these notes (typing, figures, general discussion). I am embarrassed to say that I did not write down their names at the time, and so may miss someone now.