Coupled Oscillators Concepts of primary interest: Simple Harmonic Motion Coupled Oscillators Eigenvalue problem Developing the equations of Motion: Intuitive Newton’s Law Method Lagrangian Mechanics Hamiltonian Mechanics Work-Energy for Mechanical Engineers Sample calculations: A matched equal mass pair of coupled oscillator – with variable coupling An oscillator pair with unequal masses Initial condition matching for near degenerate modes Comparison of two choices for generalized coordinates Applications Tools of the Trade Cramer’s Rule Coupled Differential Equation Principles Underlying the Coupled Oscillator Procedures Engineers can use this handout by replacing -2 by . A brief discussion of forced couple oscillations will be added. dd example with damping The Plan: A system of coupled linear oscillators is to be studied. To anchor the discussion, the solution to the single simple harmonic oscillator is reviewed. Next a system of two masses coupled by a linear spring is analyzed by guessing the solution. The result is a pair of two-particle sinusoidal oscillation patterns each with its characteristic frequency. More general systems are analyzed by assuming that sinusoidal solution modes exist and applying a diagonalization approach to identify them. The method can be made more formal by noting that it is a particular example of the matrix solution to systems of coupled linear differential equations. At several points, physical interpretations of results are presented that enhance our confidence in the procedure. Contact:
[email protected] Just the single simple harmonic oscillator: The motion of a mass about its equilibrium position while subject to a linear restoring force is well- studied. The model equation is: ma mx kx where x is measured relative to the equilibrium position.