Issues in Handling Cable Signals Within Digital Optical Interconnect Networks

Total Page:16

File Type:pdf, Size:1020Kb

Issues in Handling Cable Signals Within Digital Optical Interconnect Networks ISSUES IN HANDLING CABLE SIGNALS WITHIN DIGITAL OPTICAL INTERCONNECT NETWORKS James 0. Farmer Electronic System Products An Antec Corporation Business Edward J. Callahan Antec Corporation INTRODUCTION headends may be connected. Two architectures are shown. Figure 1 (A) shows a single master As cable systems seek to add telephony headend connecting with three hubs, or sub setvices and interconnect headends for opera­ headends. Fiber cables interconnecting the tional efficiencies, they will migrate toward use headends are routed two ways, so if one path is of digital fiber optics for the interconnections. interrupted, for example by a car hitting a pole, This is true even of systems which expect to the other path can be used. Figure 1 (B) shows continue to deliver analog programming to the a modified concept in which the headends are home for the immediate future. When develop­ connected in rings. Signals travel around the ing a digital optical interconnection system, one ring in both clockwise and counterclockwise may choose either proprietary systems, or may directions, passing through each headend on the select compatible standard systems available way to the next. In this case two master from a number of manufacturers. Here-in the headends are used. Signals are routed com­ case is made for the latter approach, in which pletely around the ring in two directions. As in standard systems, originally developed for (A), if one path is interrupted, the path around telephony applications, are used to transport ....---*~HU video and ancillary signals from one headend location to another. Interface issues include not only video, but also audio setvices, addressable data, con­ trol and new data setvices. The versatility of the network is enhanced by integrating cable television's needs with standard multiplexing A. INTERCONNECTION systems. Multiplexing is explained, and the USING DIVERSE ROUTING hierarchies in common usage are introduced. Finally, a short space is devoted to describing some of the quality issues in hybrid ana­ log/digital networks. INTERCONNECfiNG HEADENDS B. SONET RING WITH DUAL Headend interconnection is becoming MASTER HEADENDS popular today to allow efficiencies of operation, more controllable advertising insertion and Figure 1. Options in Interconnection improved reliability. Figure 1 shows how 1994 NCTA TECHNICAL PAPERS --325 the ring in the other direction is available to occurs during transmission or switching.i Of carry signals. Further, if something happens at course we can and do pick up distortion in the one headend, there is a second master headend process of digitizing (and compressing) a sig­ to take over, so that service is interrupted, if at nal. That distortion is a trade-off in how few all, to only one node. bits we use to represent the signal, the quality of the signal and our ingenuity in compressing the video. TO DIGITAL FIBER OPTIC TRANSMISSION SYSTEM In the future the industry is likely to begin switching sig­ nals more, as we subdivide Figure 2. Simplified Master Headend systems into fiber nodes to which we can route different The preferred method used to transmit signals and as we provide more customized the signals is the SONET ~ynchronous Optical cable features and transmission path back-up. Network. It is a fiber optic based system with These will require more switching and routing digital transmission of all signals. Figure 2 of signals. These operations can be done much shows the basic conditioning of a video signal better if the signals are in digital format, since at the master headend. Signals are converted to we don't have to worry about signal degrada­ baseband and supplied to encoders, which tion. convert to digital and compress the signal. At this time MPEG compression is not being used Video file servers, big brothers to the due to the cost of the encoders, though this file servers used in local area networks (I.ANs) may change in time. The digital signals are today, will, in future years, become commonly multiplexed (described below) onto a single used for storage of programs. The programs data stream for transmission throughout the will then be transmitted to subscribers, either on network. At each node, the signals are passed a subscription basis or on demand. File servers through with provision to drop and add signals store video digitally, so in many cases it will if necessary. The signals are demultiplexed and make sense to transmit the signals in digital converted to NTSC for modulation and con­ form, at least part way to the subscriber. The ventional transmission to subscribers. trick will be to balance the cost of transmission against the cost of converting the signal back to WHY DIGITAL SIGNAL TRANSMISSION? NTSC. Within the network, there are excellent Once we have a signal digitized and reasons for transmitting TV signals digitally. compressed, the next effort is route the signal Digital transmission can be less costly when to a given subscriber, along with other signals. applied intelligently. Because fiber transmit­ Simultaneously other signals will be routed to ters for baseband digital signals don't have to other subscribers. The process of combining all control distortion (be linear), they are poten­ of the signals for transmission is the subject of tially lower in cost. Receivers are also poten­ this paper. We call this combining process tially less costly. Of course realization of the "multiplexing." cost savings will depend on volume, which cable television may drive in the future. Another reason for digital transmission is that, within limits, no video degradation 1994 NCTA TECHNICAL PAPERS --326 INTRODUCTION TO DIGITAL more than a different way of putting signals MULTIPLEXING together on a single cable. Rather than putting each signal on its own unique RF carrier fre· As we move into a world in which video quency and multiplexing by combining the is carried in digital form, we encounter the term signals on a cable, we assign each signal to its multiplexing. This is another way of saying own unique time slot, switching from one that we are combining signals. In the cable signal to another at the appropriate time. AMPLITUDE FDM SIGNAL TO DISTRIBUTION SYSTEM 000 ~~~----~---+FREQUENCY CH 2 CH 78 A. FREQUENCY DIVISION MULTIPLEXING (COMBINING) AMPLITUDE DIGITAL SIGNAL 1 --+ TOM SIGNAL TO DIGITAL SIGNAL 2--+ TRANSMISSION SYSTEM 0 (MAY OR MAY NOT BE 0 ETC. MODULATED ON RF DIGITAL SIGNAL 78 __:_. CARRIER) ~--...J...._--L----L----1~--L-+TIME (OR WHATEVER) MULTIPLEXER ("MUX") SYNC (SEE TEXT) 1 1 DIGITAL SIGNAL 1 --+0 DIGITALSIGNAL2-+0 ~ DIGITAL SIGNAL 78 --+0 (OR WHATEVER) B. TIME DIVISION MULTIPLEXING Figure 3. Concept of Multiplexing television world, we are accustomed to combin­ Figure 3 compares time and frequency ing RF signals in a combiner, which puts many division multiplexing. In (A) we are doing signals together on a single cable. In traditional frequency division multiplexing at a headend, cable television, these signals are put together by sending each signal (on its own frequency) using a technique called frequency division to a combiner. The spectrum diagram shows multiplexing (FDM). In FDM, we put several what the resulting signal looks like. We have signals together on one cable by assigning each the familiar diagram of each channel in its place its unique band of frequencies. The same idea on the cable. In order to recover one of the is practiced in the digital world, except instead signals, we tune it with circuits that can differ­ of employing FDM we normally use time divi­ entiate one frequency band from another. sion multiplexing (TDM). TDM is nothing 1994 NCTA TECHNICAL PAPERS --327 In contrast, (B) shows time division arbitrary numbers: we shall encounter them multiplexing, as practiced in the types of sys­ again. tems discussed here. Each digital signal (a series of ones and zeros coming one after the SPECTRUM other) is applied to a multiplexer (commonly called a "mux"), which serves an analogous The spectrum of a digital signal extends function to the combiner in a conventional to at least one half the bit rate of the data headend. The amplitude vs. time diagram stream: if we transmitted a one followed by a shows the result. A short segment (one or zero, we would have one cycle of a square more bits) of Signal 1 is transmitted, followed wave. In some cases, we want to filter the by a short segment of Signal 2 and so on. signal so we have nothing above the minimum Notice that, as in all digital systems, everything frequency required to get ·data through. In has the same amplitude: amplitude data is other cases, we would handle the signal as a carried as a series of bits which represent the square wave, with a spectrum much wider than numerical amplitude. In order to recover the required. individual signals, we apply the data stream to a demultiplexer ("demux"), which takes the signal Figure 4 shows a sample sequence of a back apart, into its individual data streams. The baseband digital signal and the resulting spec­ demux does this by switching Signal 1 to its trum. In (A) we see a sequence of bits that "bin," then switching Signal 2 to its bin and so starts out with the sequence 1010, followed by on. In order to let the demux know when a a sequence 11001100, then a random sequence. particular signal is being sent, we must add The 1010 sequence represents the highest synchronization (analogous to vertical and frequency the system will be called on to horizontal sync in TV) to the data stream. The transmit. As shown, two bits, a one followed sync is shown in the diagram. Depending on by a zero (or vice-versa), make up one cycle of the system, sync may be part of each data a periodic waveform.
Recommended publications
  • Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems
    Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems Paul Sabatino, [email protected] This paper details the impact of new advances in residential broadband networking, including ADSL, HDSL, VDSL, RADSL, cable modems. History as well as future trends of these technologies are also addressed. OtherReports on Recent Advances in Networking Back to Raj Jain's Home Page Table of Contents ● 1. Introduction ● 2. DSL Technologies ❍ 2.1 ADSL ■ 2.1.1 Competing Standards ■ 2.1.2 Trends ❍ 2.2 HDSL ❍ 2.3 SDSL ❍ 2.4 VDSL ❍ 2.5 RADSL ❍ 2.6 DSL Comparison Chart ● 3. Cable Modems ❍ 3.1 IEEE 802.14 ❍ 3.2 Model of Operation ● 4. Future Trends ❍ 4.1 Current Trials ● 5. Summary ● 6. Glossary ● 7. References http://www.cis.ohio-state.edu/~jain/cis788-97/rbb/index.htm (1 of 14) [2/7/2000 10:59:54 AM] Digital Subscriber Lines and Cable Modems 1. Introduction The widespread use of the Internet and especially the World Wide Web have opened up a need for high bandwidth network services that can be brought directly to subscriber's homes. These services would provide the needed bandwidth to surf the web at lightning fast speeds and allow new technologies such as video conferencing and video on demand. Currently, Digital Subscriber Line (DSL) and Cable modem technologies look to be the most cost effective and practical methods of delivering broadband network services to the masses. <-- Back to Table of Contents 2. DSL Technologies Digital Subscriber Line A Digital Subscriber Line makes use of the current copper infrastructure to supply broadband services.
    [Show full text]
  • Copyright © GE Multilin Inc. 2001-2010
    Issue 5 July 2010 JungleMUX SONET Multiplexer SONET 101 FOR JUNGLEMUX USERS Self-Paced Workbook Copyright © GE Multilin Inc. 2001-2010 Issue 5 GE Multilin July 2010 Page 2 SONET 101 for JungleMUX Users Self-Paced Workbook Information in this workbook is provided solely for training purposes of JungleMUX equipment users. Neither the workbook nor any portion of the workbook may be reproduced in any form without written permission. For information, contact GE Multilin − Lentronics Multiplexers at (604) 421-8695 or (604) 421-8716. Copyright © GE Multilin Inc. 2001-2010 Issue 5 July 2010 Page 3 TABLE OF CONTENTS SECTION PAGE 1. BEFORE YOU START….....................................4 Learning Objectives.............................................................................4 Prerequisites ........................................................................................4 2. INTRODUCTION TO SONET ..............................5 Digital Hierarchy...................................................................................5 STS-1 Frame Format ............................................................................6 Sub-STS-1 Synchronous Signals .......................................................7 STS Concatenation ..............................................................................8 SONET Layers ......................................................................................9 Overhead Information.........................................................................11 Pointers................................................................................................12
    [Show full text]
  • Tdmandt-Carriers
    ELEX 4550 : Wide Area Networks 2017 Fall Session TDM and T-Carriers is lecture describes the earliest commonly-used time-division multiplex (TDM) scheme for transmission of digitized speech signals. e T1 signal carries 24 64 kb/s channels. First introduced in the early 1960’s it is still used today. Aer this lecture you should be able to: multiplex/de-multiplex a PCM channel to/from a T1 bit stream; compute the payload and channel bit rates for T1 and T3 carriers; compute the time between frame slips; convert between a bit stream and B8ZS coded waveforms. Introduction T1/E1 Multiplex Time Division Multiplexing shares a transmission e T1 TDM system time-division multiplexes 24 channel by interleaving data from different sources in 64 kb/s PCM channels by sequentially transmitting time. 8 bits from each PCM channel. Each set of 24 × e best-known example is probably the T1 TDM 8 bits/channel = 192 bits per 125 μs frame is followed system developed in the 1960s for transmission of by a single synchronization bit resulting in an overall multiple PCM speech signals between central offices. bit rate of 193×8 kHz = 1.544 Mb/s A TDM system combines bits or bytes from e data stream delivered by a T1 carrier signal is multiple “tributaries” into one signal. A “frame” is called a DS1 (digital signal 1). the smallest time interval that contains data from all e main purpose of the framing bit is to detect tributaries. correct framing. e receiver looks at this bit to see if e term “synchronous” has three different it is still frame synchronized.
    [Show full text]
  • Configuring Mediant™ MSBR for WAN & LAN Access
    Configuration Note Multi-Service Business Routers (MSBR) Product Series Configuring Mediant™ MSBR for WAN & LAN Access Version 7.2 Configuration Note Contents Table of Contents 1 Introduction ......................................................................................................... 7 2 Cellular Interfaces (3G vs. 4G) ........................................................................... 9 2.1 Examples ............................................................................................................. 10 3 PPP and PPPoE ................................................................................................. 13 3.1 Examples ............................................................................................................. 14 4 ADSL/VDSL ........................................................................................................ 15 4.1 ADSL Examples ................................................................................................... 16 4.2 Examples ............................................................................................................. 17 5 ATM-based Interfaces and Encapsulation ...................................................... 19 5.1 Examples ............................................................................................................. 20 6 EFM Interfaces ................................................................................................... 23 6.1 Examples ............................................................................................................
    [Show full text]
  • Chapter 1 Principles of Transmission
    ® Chapter 1 Principles of Transmission Chapter 1 focuses on the main concepts related to signal transmission through metallic and optical fiber transmission media. Among those concepts, this chapter discusses types of signals and their properties, types of transmission, and performance of different types of transmission media. The appendix provides additional information about signals provided in North America and Europe. This chapter has been updated to reflect current best practices, codes, standards, and technology. Chapter 1: Principles of Transmission Table of Contents SECTION 1: METALLIC MEDIA Metallic Media . 1-1 Overview . 1-1 Electrical Conductors . 1-2 Overview . 1-2 Description of Conductors . 1-2 Comparison of Solid Conductors . 1-3 Solid Conductors versus Stranded Conductors . 1-4 Composite Conductor . 1-4 American Wire Gauge (AWG) . 1-5 Overview . 1-5 Insulation . 1-5 Overview . 1-5 Electrical Characteristics of Insulation Materials . 1-6 Balanced Twisted-Pair Cables . 1-8 Overview . 1-8 Pair Twists . 1-8 Tight Twisting . 1-8 Environmental Considerations . 1-9 Electromagnetic Interference (EMI) . 1-9 Temperature Effects . 1-9 Cable Shielding . 1-13 Description . 1-13 Shielding Effectiveness . 1-13 Types of Shields . 1-14 Solid Wall Metal Tubes . 1-14 Conductive Nonmetallic Materials . 1-14 Selecting a Cable Shield . 1-14 Comparison of Cable Shields . 1-15 Drain Wires . 1-16 Overview . 1-16 Applications . 1-16 Specifying Drain Wire Type . 1-16 TDMM, 13th edition 1-PB © 2014 BICSI® © 2014 BICSI® 1-i TDMM, 13th edition Chapter 1: Principles of Transmission Analog Signals . 1-17 Overview . 1-17 Sinusoidal Signals . 1-17 Standard Frequency Bands .
    [Show full text]
  • Alcatel-Lucent Master Glossary
    Alcatel-Lucent Master Glossary 3EM13742AA 02 Issue 2 July 2011 Alcatel, Lucent, Alcatel-Lucent and the Alcatel-Lucent logo are trademarks of Alcatel-Lucent. All other trademarks are the property of their respective owners. The information presented is subject to change without notice. Alcatel-Lucent assumes no responsibility for inaccuracies contained herein. Copyright © 2003 and 2011 Alcatel-Lucent. All Rights Reserved. Master Glossary Reason for revision Update Master Glossary to incorporate Alcatel-Lucent templates. Issue Issue Date Section Reason 01 February 2003 Entire manual New Release 02 July 2011 Entire manual Update manual Symbols μm Micrometer. Numerics 1:1 A 1:N system where N=1. 1:N (Pronounced “one for N”) N+1 full-duplex channels, N main and one standby (or protection). The main channels provide service: If a main channel fails, the standby channel switches to provide service in place of failed channel. Switching is revertive, which permits extra traffic to be carried on the standby channel. (For example, when the main channel is repaired, service will be switched back to it, thus making the standby channel available to protect a subsequent failure.) 1+1, 1P1 Non-expandable protection scheme; (Pronounced “one plus one.”). Two full-duplex channels: one active, one standby; either can provide service. Protection switching behavior may be revertive or nonrevertive (normal case). When active channel fails, traffic is switched to standby channel. In revertive, one channel is the preferred active; when preferred channel is repaired, traffic switches back to it. In nonrevertive neither channel is preferred, and switch-back does not occur. 1301 NMX Alcatel-Lucent Network Manager Explorer.
    [Show full text]
  • Master Glossary After-Call Work (ACW) Mode
    Glossary Numerics 10/100 Fast Ethernet IEEE standard for 10-Mbps baseband and 100-Mbps baseband over unshielded twisted-pair wire. 10Base-T See Ethernet. 800 service A toll service that is provided by long distance telephone companies and local telephone companies in the US. With 800 service, the called party, rather than the calling party, is charged for the call. Also called Inward Wide Area Telephone Service (INWATS). See also Wide Area Telecommunications Service (WATS). 802.1AB See Link Layer Discovery Protocol (LLDP). 802.1p/802.1Q IEEE standards for a Layer 2 frame structure that supports virtual local area network (VLAN) identification and a Quality of Service (QoS) mechanism. 911 The digits to dial in an emergency for access to a community public safety answering point (PSAP). A call to 911 call is routed to a PSAP, also known as a 911 operator. The PSAP obtains the location of the caller, and arranges the appropriate emergency response. See also Enhanced 911 (E911). A AAC ATM access concentrator AAR Automatic Alternate Routing abandoned call An incoming call during which the caller hangs up or “abandons” the call before the called party answers the call. When a caller abandons a call, the caller is often waiting in a queue for an appropriate answering position to become available. AC Administered Connection ACA See automatic circuit assurance (ACA). ACB Automatic Callback access code A dial code of 1 digit to 3 digits that a user dials to activate a feature, cancel a feature, or access an outgoing trunk. access endpoint A nonsignaling channel on a digital signal-1 (DS1) interface, or a nonsignaling port on an analog tie trunk circuit pack to which a unique extension is assigned.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0158043 A1 Bodo Et Al
    US 201001580.43A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0158043 A1 Bodo et al. (43) Pub. Date: Jun. 24, 2010 (54) METHOD AND APPARATUS FOR Publication Classification REFORMATTING AND RETMING DIGITAL TELECOMMUNICATIONS DATA FOR (51) Int. Cl. RELABLE RETRANSMISSION VIA USB H04L 29/02 (2006.01) (76) Inventors: Martin J. Bodo, Los Altos Hills, (52) U.S. Cl. ........................................................ 370/466 CA (US); Robert A. Rosenbloom, Santa Cruz, CA (US); Sergey (57) ABSTRACT Bromirsky, Moscow (RU) A method for retiming digital telecommunications data Correspondence Address: received by a digital logger from a plurality of T-carrier type Donald E. Schreiber telephone lines respectively having differing clock sources A Professional Corporation ensures efficient transmission of received digital audio data to Post Office Box 2926 a host computer via a Universal Serial Bus (“USB) interface. Kings Beach, CA 96143-2926 (US) Also the digital logger includes Volatile memory for tempo rarily storing digital audio data received from the plurality of (21) Appl. No.: 12/592,656 T-carrier type telephone lines for: 1. ensuring that the host computer receives digital audio (22) Filed: Nov.30, 2009 data correctly via the USB interface; 2. buffering the digital audio data within the digital logger Related U.S. Application Data during interruptions in transmission of digital audio data (60) Provisional application No. 61/200,448, filed on Nov. from the digital logger via the USB interface; and 28, 2008. 3. reducing audible latency of speech communications. 6PORTRJ45 CONNECTORS TRANSWITCHTEPRO DSNPUTS HOST H.100 ASYNC 816B EXPANSON PARALLEL HEADER INTERFACE 2x2C 3 CHANNEL SP MAN HOS H.100 INTERFACE INTERCONNECT 4 SPORTS HEADER ADBF5480SP MASTERSLAVECONNECTORS MATCHCLOCK NOISE PROBLEM 92 32 MByte FLASH 64 MByte DDR 28 USB 2.0 HS Connector 72 FOURSERIAL PORTS ATAP INTERFACE 20 SDO INTERFACE JTAG EMULATOR KBOILCO INTERFACE l - m re O m Patent Application Publication Jun.
    [Show full text]
  • 2000 Eligible Services List December 18
    CC DOCKET NO. 96- 451 SCHOOLS AND LIBRARIES2, 3 Eligible Services List The primary purpose of the services for which support is sought must be the delivery of services to the classrooms or other places of instruction at schools and libraries that meet the statutory definition of an eligible institution. Support for the administrative functions of library or education programs is permitted so long as the services are part of the network of shared services for learning. Support will be limited to services delivered to the onsite educational facility or facilities.4 The eligibility of a product/service is not solely dependent on the item itself, but also on the use for which it is intended. The use of an otherwise eligible product/service by an ineligible entity, or for an ineligible purpose, is not eligible for discount under the "E-Rate" program. The eligibility of the products/services identified on this list assumes their use is intended to be by eligible entities, for eligible purposes. Items in Bold indicate a modification or clarification of product or service eligibility as of December 18, 2000. SERVICE ELEMENT/DESCRIPTION ELIGIBLE YES/NO 900 "900" is an information service area code, or dial access code, used to reach a No wide range of information providers. Examples of the information that may be provided via a 900 number are adult content programming, weather reports, lottery results, or caller voting for various topics such as television polls. 900 Service calls are charged to the party originating the call. Charges for accessing 900 calls are often included in the toll charges on the local telephone bill.
    [Show full text]
  • X6010 Network Interface Device (NID)
    Transition Networks ION x6010 User Guide x6010 Managed T1/E1-to-Fiber Network Interface Device (NID) User Guide 33493 Rev. E 33493 Rev. E https://www.transition.com/ Page 1 of 299 Transition Networks ION x6010 User Guide Trademarks All trademarks and registered trademarks are the property of their respective owners. Copyright Notice/Restrictions Copyright © 2010-2018 Transition Networks. All rights reserved. No part of this work may be reproduced or used in any form or by any means (graphic, electronic or mechanical) without written permission from Transition Networks. Printed in the U.S.A. ION System x6010 Managed T1/E1-to-Fiber Network Interface Device (NID) User Guide, 33493 Rev. E Contact Information Transition Networks 10900 Red Circle Drive Minnetonka, MN 55343 USA tel: +1.952.941.7600 | toll free: 1.800.526.9267 | fax: 952.941.2322 Revision History Rev Date Description A 05/23/11 Revised for firmware version 1.1.0. B 09/08/11 Revised for firmware version 1.2.0. C 12/23/16 Revised for firmware version 1.2.6 and updated default and LBO settings. D 3/3/17 Add DoC and update contact information. Update specifications and added optional accessories. Add Local E 11/5/19 Management of Cards in a Remote Un-managed Chassis at FW v 1.2.6. Update for FW v 2.0.1. 33493 Rev. E https://www.transition.com/ Page 2 of 299 Transition Networks ION x6010 User Guide Cautions and Warnings Definitions Cautions indicate that there is the possibility of poor equipment performance or potential damage to the equipment.
    [Show full text]
  • Acronyms and Abbreviations*
    APPENDIX A Acronyms and Abbreviations* a atto (10-18) A ampere A angstrom AAR automatic alternate routing AARTS automatic audio remote test set AAS aeronautical advisory station AB asynchronous balanced (mode) (Link Layer OSI-RM) ABCA American, British, Canadian, Australian armies abs absolute ABS aeronautical broadcast station ABSBH average busy season busy hour ac alternating current AC absorption coefficient access charge access code ACA automatic circuit assurance ACC automatic callback calling ACCS associated common-channel signaling ACCUNET AT&T switched 56-kbps service ACD automatic call distributing automatic call distributor *Alphabetized letter by letter. Uppercase letters follow lowercase letters. All other symbols are ignored, including superscripts and subscripts. Numerals follow Z and Greek letters are at the very end. 1127 Appendix A 1128 ac-dc alternating-current direct-current (ringing) ACE automatic cross-connection equipment ACF/VTAM advanced communications facility (VT AM) ACK acknowledge character acknowledgement ACK/NAK acknowledgement/negative acknowledgement ACS airport control station asynchronous communications system ACSE association control service element ACTS advanced communications technology satellite ACU automatic calling unit AD addendum AID analog to digital A-D analog to digital ADAPT architectures design, analysis, and planning tool ADC analog-to-digital converter automatic digital control ADCCP Advanced Data Communications Control Procedure (ANSI) ADH automatic data handling ADP automatic data processing
    [Show full text]
  • Optical Transport Networking
    Expert’s Guide to Optical Transport Networks: The Utilities Edition Optical Transport Networking by Paul Littlewood Fady Masoud with Malcolm Loro 2 Optical Transport Networking Published by Ciena 7035 Ridge Rd. Hanover, MD 21076 Copyright © 2015 by Ciena Corporation. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photo- copying, recording, scanning or otherwise, without the prior written permis- sion of Ciena Corporation. For information regarding permission, write to: Ciena Experts Books 7035 Ridge Rd Hanover, MD 21076. Trademarks: Ciena, all Ciena logos, and other associated marks and logos are trademarks and/or registered trademarks of Ciena Corporation both within and outside the United States of America, and may not be used without written permission. LIMITATION OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/ OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
    [Show full text]