NACCB 2012 St North Biology Americacongress Forconservation Society Biology Forconservation North America Section

Total Page:16

File Type:pdf, Size:1020Kb

NACCB 2012 St North Biology Americacongress Forconservation Society Biology Forconservation North America Section NACCB 2012 Abstracts 1st North America Congress for Conservation Biology Bridging the Gap: Connecting People, Nature, and Climate Society for Conservation Biology North America Section NACCB 2012 Society for Conservation Biology North America Section North America Congress for Conservation Biology Congress Abstracts Ordered by surname of first author. Author index at the end of the book. The Inaugural SCB North American Congress for Conservation Biology · Oakland, California · July 15-18, 2012 Monday, July 16 9:45 Can Brain Size Help using a novel application of multinomial logistic Predict Conservation Status Of Mammalian regression. The output of this method is a vector of Species? the relative probability of occupancy by each of a Abelson, Eric*, Stanford University set of vegetation types, for each pixel in the As global anthropogenic pressure on wildlife landscape. The overall vulnerability of vegetation mounts, conservationists are faced with finding to climate change can then be quantified as the salient characteristics that predict population change in modeled probabilities between the decline in mammals. Confounding the ability to vectors modeled under present versus future preserve mammalian species is the complexity of climates. These changes capture the likelihood of traits and behaviors that influence their ability to long-term climate-driven vegetation change for thrive in changing landscapes. While the brain is each pixel, without relying on specific predictions the seat of information processing, storage and the of present and future vegetation types. Based on origination of behaviors, the importance of neural this model, we find that the vegetation patches physiology to conservation is poorly understood. with greatest vulnerability to climate change are Encephalization (here defined as brain size those that lie close to the edge of the climate corrected for body size and phylogeny) has been suitability envelopes for their respective vegetation shown to be correlated with behavioral flexibility in types. In some cases, these climatically marginal birds as well as to predict the success of introduced populations occur on cool, north-facing slopes, mammals in novel habitats. However, the challenging the idea that cool micro-environments relationship between encephalization and will necessarily serve as in-situ refugia. For most of conservation status has not been applied directly the projected vegetation transitions, the new to understanding how mammals fare in a changing vegetation type predicted to occupy a site already world. I specifically describe how encephalization occurs within a short distance (< 5 km), so long- in mammalian species from the Americas relate to distance dispersal is not required. These results current trends in endangerment and also examine highlight the importance of fine-scale spatial the role that brain size has played in carnivore heterogeneity to provide local propagule sources persistence over the last 40 million years. These that will facilitate transitions among native results underscore the importance of incorporating vegetation types. encephalization into models predicting future faunal loss. Monday, July 16 Connecting Conservation, Maps, And People At USAID: New Applications Of Wednesday, July 18 9:30 Climate Change Geospatial Information Applied To Conservation Impacts On Vegetation In The San Francisco Bay And Development Area: A New Modeling Approach And Implications Adeney, Marion* For Conservation Geospatial information and analyses are critical Ackerly, David* tools long used by conservation scientists to inform Climate change is expected to profoundly impact our work. These tools illuminate natural terrestrial vegetation. Understanding spatial phenomena, changes resulting from interactions variability of these impacts is critical to between people and nature, and benefits people development of conservation strategies and receive from natural systems. The US Agency for projections of ecosystem services under future International Development (USAID) is increasing climates. We present a model of the projected both emphasis on the importance of nature responses of vegetation in the San Francisco Bay conservation for development results and on the Area to 21st century climate change scenarios, use of science, technology, and innovation to 1 The Inaugural SCB North American Congress for Conservation Biology · Oakland, California · July 15-18, 2012 inform development. As part of this effort, the important that scientific investigations benefit USAID GeoCenter, launched in November 2011, is from transdisciplinarity through collaborations working to build capacity for geospatial analysis between ecologists, modelers, veterinarians, public throughout the agency in areas from planning and health specialists and infectious disease biologists. strategy to evidence-based monitoring and We should focus on key host species and evaluation of our programs. Here, we show the pathogens in selected ecosystems (aquatic and example of the Regional Development Mission in terrestrial), and should include epidemiological Asia, which is using applied geospatial analyses to assessment, dynamic food-web modeling and inform mandatory assessments of the effectiveness experimental studies to develop adaptive of biodiversity and forestry programs and to aid in strategies on new disease transmission patterns in regional-scale strategic planning for climate change wildlife affecting domestic animals and humans. programming. We also discuss the advantages and challenges of applying these types of scientific tools in a large traditional development agency and discuss how the conservation community can best Monday, July 16 3:15 Life History Traits And contribute to and benefit from this effort. Range Shifts Interact To Determine Species' Vulnerability To Climate Change Akcakaya, H. Resit*, Stony Brook University , Aiello- Lammens, Matthew , Stanton, Jessica , Ryu, Hae Monday, July 16 9:00 Changing Patterns In Yeong , Shoemaker, Kevin , Horning, Ned , Ersts, Emerging Diseases Of Wildlife Linked To Climate Peter , Pearson, Richard Change Assessing the vulnerability of species to climate Aguirre, Alonso*, George Mason University change presents several challenges. Determining Changing patterns in emerging infectious diseases life history traits that make species vulnerable to of wildlife have been recently linked to climate extinction often leads to circularity in analysis change. These include changes in prevalence, when the data on extinction risk is based in part on abundance, hosts, geographic range, and wildlife these life history traits. Assessing the effect of host-pathogen interactions. We have observed range shifts in response to climate change often movement of West Nile virus, avian malaria and ignores life history and landscape-specific avian pox and other arboviruses to higher ranges information; and the results lack relevance to linked to warmer temperatures. Hantavirus in the extinction risk. To address these challenges, we Americas has been linked to changing drought and developed a novel modeling approach, which links rain patterns. Possible effects, that are harder to downscaled global climate model ensembles, predict, include invasions of new pathogens in a ecological niche models (ENM), and generic life large number of wildlife hosts. In addition, this may history models. We develop ENMs using a also affect the overall dynamics of aquatic and combination of dynamic climatic variables, and terrestrial ecosystems, Specific research priorities "static" variables such as land cover and hydrology. to predict impacts of climate change on wildlife The results of ENMs are linked to generic life diseases include collection of baseline data on history models, which are standardized stochastic health parameters, as well as distribution, models with upper and lower bounds for each of a epidemiology and effects of pathogens and standard set of life history parameters. These life diseases in wildlife; studies separating the effects history models are sampled with a Latin hypercube of different climate variables on the dynamics of design and each sampled model is linked with pathogens and disease in animals and humans; and results of an ENM to form stochastic forecasting temporal and spatial effects of climate metapopulation models with dynamic spatial change on pathogen and host populations. It is structure. Analysis of simulation results reveals 2 The Inaugural SCB North American Congress for Conservation Biology · Oakland, California · July 15-18, 2012 interacting effects of life history changes and range Monday, July 16 Effect Of Farming Method On shifts on the vulnerability of species to climate Arbuscular Mycorrhiza Formation In Two Coffee change. This approach is demonstrated by using Growing Regions Of Costa Rica distributional and demographic data on 40 species Aldrich-Wolfe, Laura*, Concordia College Biology of North American reptiles and amphibians to Department , Schmaltz, Logan, Concordia College analyze their vulnerability to climate change. Biology Department , Mcglynn, Riley, Concordia College Biology Department Coffee (Coffea arabica) is one of many plant species that form mutualistic associations with Wednesday, July 18 10:15 Bridging The Gap: arbuscular mycorrhizal fungi in which the plants Walking The Talk exchange sugars from photosynthesis for enhanced * Albright, Whitney , Pairis, Amber , Choudhury, uptake of phosphorus and other poorly mobile soil Arpita nutrients and protection
Recommended publications
  • Smithsonian Institution Archives (SIA)
    SMITHSONIAN OPPORTUNITIES FOR RESEARCH AND STUDY 2020 Office of Fellowships and Internships Smithsonian Institution Washington, DC The Smithsonian Opportunities for Research and Study Guide Can be Found Online at http://www.smithsonianofi.com/sors-introduction/ Version 2.0 (Updated January 2020) Copyright © 2020 by Smithsonian Institution Table of Contents Table of Contents .................................................................................................................................................................................................. 1 How to Use This Book .......................................................................................................................................................................................... 1 Anacostia Community Museum (ACM) ........................................................................................................................................................ 2 Archives of American Art (AAA) ....................................................................................................................................................................... 4 Asian Pacific American Center (APAC) .......................................................................................................................................................... 6 Center for Folklife and Cultural Heritage (CFCH) ...................................................................................................................................... 7 Cooper-Hewitt,
    [Show full text]
  • Proceedings of the Seventeenth Wildlife Damage Management Conference, Orange Beach, AL, February 26-March 1, 2017
    PROCEEDINGS SEVENTEENTH WILDLIFE DAMAGE MANAGEMENT CONFERENCE Perdido Beach Resort Orange Beach, AL February 26 – March 1, 2017 Sponsored by USDA APHIS Wildlife Services Tomahawk Live Trap ALFA Alabama Farmers Federation Facilitated by Wildlife Damage Management Working Group of The Wildlife Society Alabama Cooperative Extension System School of Forestry and Wildlife Sciences, Auburn University USDA Wildlife Services-Alabama Editors Dana J. Morin Michael J. Cherry Published at Southern Illinois University, Carbondale, IL USA i Conference Committees Conference Chair Mark D. Smith, Alabama Cooperative Extension System, School of Forestry and Wildlife Sciences, Auburn University Program Committee Jim Armstrong (Chair)—Alabama Cooperative Extension System, School of Forestry and Wildlife Sciences, Auburn University Ken Gruver—UDSA Wildlife Services-Alabama Bronson Strickland—Mississippi State University Extension, Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University Brian Dorr—USDA/APHIS/Wildlife Services, National Wildlife Research Center Michael Mengak—Warnell School of Forestry and Natural Resources, University of Georgia Field Trip Coordinator Leif Stephens—UDSA Wildlife Services-Alabama Proceedings Co-Editors Dana J. Morin, Cooperative Wildlife Research Laboratory, Southern Illinois University Michael J. Cherry, Department of Fish and Wildlife Conservation, Virginia Tech ii The Wildlife Society - Wildlife Damage Management Working Group Officers and Board Members Chair – Joe Caudell; Indiana Department of
    [Show full text]
  • Integrated Pest Management: Current and Future Strategies
    Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P.
    [Show full text]
  • Fleas, Hosts and Habitat: What Can We Predict About the Spread of Vector-Borne Zoonotic Diseases?
    2010 Fleas, Hosts and Habitat: What can we predict about the spread of vector-borne zoonotic diseases? Ph.D. Dissertation Megan M. Friggens School of Forestry I I I \, l " FLEAS, HOSTS AND HABITAT: WHAT CAN WE PREDICT ABOUT THE SPREAD OF VECTOR-BORNE ZOONOTIC DISEASES? by Megan M. Friggens A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Forest Science Northern Arizona University May 2010 ?Jii@~-~-u-_- Robert R. Parmenter, Ph. D. ~",l(*~ l.~ Paulette L. Ford, Ph. D. --=z:r-J'l1jU~ David M. Wagner, Ph. D. ABSTRACT FLEAS, HOSTS AND HABITAT: WHAT CAN WE PREDICT ABOUT THE SPREAD OF VECTOR-BORNE ZOONOTIC DISEASES? MEGAN M. FRIGGENS Vector-borne diseases of humans and wildlife are experiencing resurgence across the globe. I examine the dynamics of flea borne diseases through a comparative analysis of flea literature and analyses of field data collected from three sites in New Mexico: The Sevilleta National Wildlife Refuge, the Sandia Mountains and the Valles Caldera National Preserve (VCNP). My objectives were to use these analyses to better predict and manage for the spread of diseases such as plague (Yersinia pestis). To assess the impact of anthropogenic disturbance on flea communities, I compiled and analyzed data from 63 published empirical studies. Anthropogenic disturbance is associated with conditions conducive to increased transmission of flea-borne diseases. Most measures of flea infestation increased with increasing disturbance or peaked at intermediate levels of disturbance. Future trends of habitat and climate change will probably favor the spread of flea-borne disease.
    [Show full text]
  • Assabet River National Wildlife Refuge Final Comprehensive Conservation Plan January 2005
    U.S. Fish & Wildlife Service Assabet River National Wildlife Refuge Final Comprehensive Conservation Plan January 2005 This goose, designed by J.N. “Ding” Darling, has become the symbol of the National Wildlife Refuge System The U.S. Fish and Wildlife Service is the principle federal agency for conserving, protecting, and enhancing fish and wildlife in their habitats for the continuing benefit of the American people. The Service manages the 96-million acre National Wildlife Refuge System comprised of 544 national wildlife refuges and thousands of waterfowl production areas. It also operates 65 national fish hatcheries and 78 ecological services field stations. The agency enforces federal wildlife laws, manages migratory bird populations, restores significant fisheries, conserves and restores wildlife habitat such as wetlands, administers the Endangered Species Act, and helps foreign governments with their conservation efforts. It also oversees the Federal Aid program which distributes hundreds of millions of dollars in excise taxes on fishing and hunting equipment to state wildlife agencies. Comprehensive Conservation Plans provide long term guidance for management decisions; set forth goals, objectives, and strategies needed to accomplish refuge purposes; and, identify the Service’s best estimate of future needs. These plans detail program planning levels that are sometimes substantially above current budget allocations and, as such, are primarily for Service strategic planning and program prioritization purposes. The plans do not constitute
    [Show full text]
  • Investigations on the Abundance of Ectoparasites and Vector-Borne Pathogens in Southwest Madagascar
    Investigations on the abundance of ectoparasites and vector-borne pathogens in southwest Madagascar Dissertation with the aim of achieving a doctoral degree at the Faculty of Mathematics, Informatics and Natural Sciences Department of Biology University of Hamburg submitted by Julian Ehlers Hamburg, 2020 Reviewers: Prof. Dr. Jörg Ganzhorn, Universität Hamburg PD Dr. Andreas Krüger, Centers for Disease Control and Prevention Date of oral defense: 19.06.2020 TABLE OF CONTENTS Table of contents Summary 1 Zusammenfassung 3 Chapter 1: General introduction 5 Chapter 2: Ectoparasites of endemic and domestic animals in 33 southwest Madagascar Chapter 3: Molecular detection of Rickettsia spp., Borrelia spp., 63 Bartonella spp. and Yersinia pestis in ectoparasites of endemic and domestic animals in southwest Madagascar Chapter 4: General discussion 97 SUMMARY Summary Human encroachment on natural habitats is steadily increasing due to the rapid growth of the worldwide population. The consequent expansion of agricultural land and livestock husbandry, accompanied by spreading of commensal animals, create new interspecific contact zones that are major regions of risk of the emergence of diseases and their transmission between livestock, humans and wildlife. Among the emerging diseases of the recent years those that originate from wildlife reservoirs are of outstanding importance. Many vector-borne diseases are still underrecognized causes of fever throughout the world and tend to be treated as undifferentiated illnesses. The lack of human and animal health facilities, common in rural areas, bears the risk that vector-borne infections remain unseen, especially if they are not among the most common. Ectoparasites represent an important route for disease transmission besides direct contact to infected individuals.
    [Show full text]
  • Ecological Responses to Habitat Fragmentation Per Se
    ES48CH01-Fahrig ARI 18 September 2017 16:55 Annual Review of Ecology, Evolution, and Systematics Ecological Responses to Habitat Fragmentation Per Se Lenore Fahrig Geomatics and Landscape Ecology Research Laboratory, Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada; email: [email protected] Annu. Rev. Ecol. Evol. Syst. 2017. 48:1–23 Keywords First published online as a Review in Advance on landscape pattern, landscape structure, landscape configuration, landscape May 31, 2017 complementation, landscape connectivity, landscape heterogeneity, patch The Annual Review of Ecology, Evolution, and area, patch isolation, edge effect, SLOSS Systematics is online at ecolsys.annualreviews.org https://doi.org/10.1146/annurev-ecolsys-110316- Abstract 022612 For this article, I reviewed empirical studies finding significant ecological Copyright c 2017 by Annual Reviews. responses to habitat fragmentation per se—in other words, significant re- All rights reserved sponses to fragmentation independent of the effects of habitat amount (here- after referred to as habitat fragmentation). I asked these two questions: Are most significant responses to habitat fragmentation negative or positive? And do particular attributes of species or landscapes lead to a predominance of negative or positive significant responses? I found 118 studies reporting ANNUAL REVIEWS Further 381 significant responses to habitat fragmentation independent of habitat Click here to view this article's amount. Of these responses, 76% were positive. Most significant fragmen- online features: • Download figures as PPT slides tation effects were positive, irrespective of how the authors controlled for • Navigate linked references • Download citations habitat amount, the measure of fragmentation, the taxonomic group, the type • Explore related articles • Search keywords of response variable, or the degree of specialization or conservation status of the species or species group.
    [Show full text]
  • The Relationship of the Protoperlaria and the Endopterygota by Phillip A
    THE RELATIONSHIP OF THE PROTOPERLARIA AND THE ENDOPTERYGOTA BY PHILLIP A. ADAMS Department of Biological Sciences University of California, Santa Barbara The first worker to recognize that the Protoperlaria were a group distinct from the Protorthoptera, and probably ancestral to the Plecoptera, was Tillyard (1928a, b). The relationship of these orders has been discussed in more detail by Carpenter (1935). That the Protoperlaria might be of far greater phylogenetic significance has not gen- erally been appreciated. Although the suggestion that the Protoperlaria were close to the ancestral form of the En- dopterygota was made by Bradley (1939, 1942), this re- lationship has not previously been documented. While a comparison was being made between the wings of the protoperlarian, Lemmatophora, and the neuropteran, Sialis, in an effort to determine the venational homologies of the latter, it became apparent that these insects ex- hibited a number of striking similarities. When the sim- ilarity of the wings was noticed, a comparison of other body structures seemed desirable. Since these could not be studied in the fossils, it was necessary to turn instead to the Plecoptera, in the hope that additional resemblances could be found. Such resemblances have been observed, particularly in the sternal region of he thorax, and in the wing articulation; these are discussed briefly below. The Sialidae are extremely archaic insects; the venation has undergone but little change since the Permian. There are some specializations--fusion of MP and CuA in the fore wing, reduction of the anal fan, and lack of nygmata-- but in structure and arrangement of the veins the wing remains primitive.
    [Show full text]
  • Specimen Records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895
    Catalog: Oregon State Arthropod Collection 2019 Vol 3(2) Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895 Jon H. Shepard Paul C. Hammond Christopher J. Marshall Oregon State Arthropod Collection, Department of Integrative Biology, Oregon State University, Corvallis OR 97331 Cite this work, including the attached dataset, as: Shepard, J. S, P. C. Hammond, C. J. Marshall. 2019. Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895. Catalog: Oregon State Arthropod Collection 3(2). (beta version). http://dx.doi.org/10.5399/osu/cat_osac.3.2.4594 Introduction These records were generated using funds from the LepNet project (Seltmann) - a national effort to create digital records for North American Lepidoptera. The dataset published herein contains the label data for all North American specimens of Lycaenidae and Riodinidae residing at the Oregon State Arthropod Collection as of March 2019. A beta version of these data records will be made available on the OSAC server (http://osac.oregonstate.edu/IPT) at the time of this publication. The beta version will be replaced in the near future with an official release (version 1.0), which will be archived as a supplemental file to this paper. Methods Basic digitization protocols and metadata standards can be found in (Shepard et al. 2018). Identifications were confirmed by Jon Shepard and Paul Hammond prior to digitization. Nomenclature follows that of (Pelham 2008). Results The holdings in these two families are extensive. Combined, they make up 25,743 specimens (24,598 Lycanidae and 1145 Riodinidae).
    [Show full text]
  • Arvalis Ross, S. Californica Banks, S. Cornuta Ross, S. Hamata Ross, S
    AN ABSTRACT OF THE THESIS OF ELWIN D. EVANS for the DOCTOR OF PHILOSOPHY (Name) (Degree) in ENTOMOLOGY presented on October 4, 1971 (Major) (Date) Title: A STUDY OF THE MEGALOPTERA OF THE PACIFIC COASTAL REGION ,Or THE UNtjT5D STATES Abstract approved: N. H. /Anderson Nineteen species of Megaloptera occurring in the western United States and Canada were studied.In the Sialidae, the larvae of Sialis arvalis Ross, S. californica Banks, S. cornuta Ross, S. hamata Ross, S. nevadensis Davis, S. occidens Ross and S. rotunda Banks are described with a key for their identification.The female of S. arvalis is described for the first time.Descriptions of the egg masses, hatching, and the egg bursters and first instar larvae are givenfor some species.Data are given on larval habitats, life cycles, distribution and emergence of the adults. An evolutionaryscheme for the Sialidae in the study area and the world genera ishypothesized. In the Corydalidae, Orohermes gen. nov. andProtochauliodes cascadiusse.nov. are described.The adults of Corydalus cognatus Hagen, Dysmicohermes disjunctus Munroe, D. ingens Chandler, Orohermes crepusculus (Chandler), Neohermesfilicornis (Banks), N. californicus (Walker), Protochauliodes aridus Maddux, P. spenceri Munroe, P. montivagus.Chandler, P. simplus Chandler, and P. minimus (Davis) are also described.The larvae of all but three species are described.Keys are presented for identifying the adults and larvae.Egg masses, egg bursters and the mating behavior are given for some species.Pre-genital scent glands were found in the males of the Corydalidae.Data are given on the larval habitats, distribution and adult emergence.Life cycles of five years are estimated for some intermittent stream inhabitants and the cold stream species, 0.
    [Show full text]
  • Diversidad De Plantas Y Vegetación Del Páramo Andino
    Plant diversity and vegetation of the Andean Páramo Diversidad de plantas y vegetación del Páramo Andino By Gwendolyn Peyre A thesis submitted for the degree of Doctor from the University of Barcelona and Aarhus University University of Barcelona, Faculty of Biology, PhD Program Biodiversity Aarhus University, Institute of Bioscience, PhD Program Bioscience Supervisors: Dr. Xavier Font, Dr. Henrik Balslev Tutor: Dr. Xavier Font March, 2015 Aux peuples andins Summary The páramo is a high mountain ecosystem that includes all natural habitats located between the montane treeline and the permanent snowline in the humid northern Andes. Given its recent origin and continental insularity among tropical lowlands, the páramo evolved as a biodiversity hotspot, with a vascular flora of more than 3400 species and high endemism. Moreover, the páramo provides many ecosystem services for human populations, essentially water supply and carbon storage. Anthropogenic activities, mostly agriculture and burning- grazing practices, as well as climate change are major threats for the páramo’s integrity. Consequently, further scientific research and conservation strategies must be oriented towards this unique region. Botanical and ecological knowledge on the páramo is extensive but geographically heterogeneous. Moreover, most research studies and management strategies are carried out at local to national scale and given the vast extension of the páramo, regional studies are also needed. The principal limitation for regional páramo studies is the lack of a substantial source of good quality botanical data covering the entire region and freely accessible. To meet the needs for a regional data source, we created VegPáramo, a floristic and vegetation database containing 3000 vegetation plots sampled with the phytosociological method throughout the páramo region and proceeding from the existing literature and our fieldwork (Chapter 1).
    [Show full text]
  • A New Fishfly Species (Megaloptera: Corydalidae: Neohermes Banks
    Discovery of New Fishfly Species from North America Introduction The insect order Megaloptera is one of the primitive holometabolous groups with the origin dating back at least in the late Permian [1]. Modern Megaloptera include dobsonflies (Coryda- lidae: Corydalinae), fishflies (Corydalidae: Chauliodinae) and alderflies (Sialidae), comprising more than 380 species represented unevenly in all major biogeographical regions [2,3]. Despite the relatively small number of species, Megaloptera (particularly Corydalidae) are well known insects readily found in general entomological collections because of their large body size and frequent bizarre external appearance, e.g., conspicuously large mandibles in some males. The larvae of Megaloptera are aquatic and inhabit various freshwater habitats (usually clean streams, rivers, ponds, etc.) where they are predaceous on other benthic macroinvertebrates. They are valuable components in aquatic ecosystems especially for fisheries and angling in North America, or consumed as local food and medicine in some Asian countries, as well as widely used in freshwater biomonitoring for stream health [3,4]. Megaloptera are of particular interest for phylogenetic and biogeographic studies due to their apparent primitive morphol- ogy and disjunct geographic distributions. Hence, the taxonomy of Megaloptera has been well studied and most of the world species have been described or re-described in a modern approach by virtue of several neuropterologists, e.g. Ross (American Sialidae) [5], Flint (Ameri- can Chauliodinae) [6,7], Aspöck et al. (European Sialidae) [8], Vshivkova (Caucasus and Sibe- rian Sialidae) [9], Theischinger (Australian Megaloptera) [10], Contreras-Ramos (Neotropical Corydalinae and Sialidae) [11–13], Yang & Liu (Chinese Megaloptera) [2], Liu et al. (southeast- ern Asian Megaloptera) [14–16], and Liu et al.
    [Show full text]