Final Report: Detection, Prediction, Impact, and Management of Invasive Plants Using Gis

Total Page:16

File Type:pdf, Size:1020Kb

Final Report: Detection, Prediction, Impact, and Management of Invasive Plants Using Gis FINAL REPORT: DETECTION, PREDICTION, IMPACT, AND MANAGEMENT OF INVASIVE PLANTS USING GIS Keith T. Weber, editor GIS Director Idaho State University GIS Training and Research Center Pocatello, Idaho 83209-8130 FINAL REPORT: DETECTION, PREDICTION, IMPACT, AND MANAGEMENT OF INVASIVE PLANTS USING GIS Keith T. Weber, Editor Contributing Investigators Keith T. Weber, Principal Investigator ([email protected]), Idaho State University, GIS Training and Research Center, Campus Box 8130, Pocatello, ID 83209-8130. Nancy F. Glenn, Co-Principal Investigator ([email protected]), Idaho State University, Department of Geosciences, Campus Box 8072, Pocatello, ID 83209-8072. Matthew Germino, Co-Principal Investigator ([email protected]), Idaho State University, Department of Biological Sciences, Campus Box 8007, Pocatello, ID 83209- 8007. Project web-site: http://giscenter.isu.edu/research/techpg/nasa_weeds/template.htm All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means without the prior permission of the editor. ACKNOWLEDGEMENTS This study was made possible by a grant from the National Aeronautics and Space Administration Goddard Space Flight Center. ISU would also like to acknowledge the Idaho Delegation for their assistance in obtaining this grant. Recommended citation style: Streutker, D. R., and N. F. Glenn. 2006. LiDAR Measurement of Sagebrush Steppe Vegetation Heights. Pages 33-50 in K. T. Weber (Ed), Final Report: Detection, Prediction, Impact, and Management of Invasive Plants Using GIS. 196 pp. Table of Contents Chapter Title Page Executive Summary 1 Rangeland Health Modeling with Quickbird 1 3 Imagery Mapping Sagebrush Distribution Using Fusion of 2 17 Hyperspectral and LiDAR Classifications LiDAR Measurement of Sagebrush Steppe 3 33 Vegetation Heights Interactive Effects of Fire, Grazing, and 4 Precipitation on Long-Term Variability in 51 Remotely Sensed Indices of Vegetation Challenges of Integrating Geospatial Technologies 5 65 into Rangeland Research and Management 6 Modeling Cheatgrass using Quickbird Imagery 77 Range Vegetation Assessment in the Big Desert, 7 85 Upper Snake River Plain, Idaho Ecological Syndromes of Invasion in Semiarid 8 Rangelands and their Implications for Land 91 Management and Restoration. Spatial and Temporal Patterns of Sagebrush 9 (Artemesia tridentata ssp.vaseyana) Establishment 99 Following Fire Measuring Early Vegetation Changes after Fire in 10 Mountain Big Sagebrush (Artemesia tridentate 111 Nutt. ssp. vaseyana [Rydb] Beetle) Rangelands Correlation of Neighborhood Relationships, Carbon 11 Assimilation, and Water Status of Sagebrush 131 Seedlings Establishing After Fire Analysis of LiDAR-Derived Topographic 12 Information for Characterizing and Differentiating 141 Landslide Morphology and Activity Advantages in Water Relations Contribute to 13 Greater Photosynthesis in Centaurea maculosa 161 Compared with Established Grasses 14 Comparing GPS Receivers: A Field Study 177 A Comparison Between Multi-Spectral and 15 Hyperspectral Platforms for Early Detection of 185 Leafy Spurge in Southeastern Idaho Final Report: Detection, Prediction, Impact, and Management of Invasive Plants Using GIS DETECTION, PREDICTION, IMPACT, AND MANAGEMENT OF INVASIVE PLANTS USING GIS Executive Summary Significant Findings and Achievements • While high spatial resolution satellite imagery seems to offer numerous advantages to the scientific community to assess and monitor rangeland ecosystems, they are currently of limited application due to cost and, more importantly, unreliable accuracy of patchy targets. This is a function of geo-registration error (RMS~5.0m) that routinely exceeds the absolute spatial resolution of the imagery (2.4m) (chapters 1, 5, and 6). • High spatial resolution satellite imagery has limited applicability for large study areas because the method in which these data are acquired is not systematic, but rather scheduled. A large study area may be imaged over a period of several weeks. While the imagery can be atmospherically corrected to achieve a seamless and “color- balanced” product, this temporal resolution is not satisfactory for rangeland applications where the phenological state of plants changes fairly rapidly throughout the growing season. • The accuracy of invasive weed classifications is strongly influenced by co-registration between imagery and field training sites. Since most training sites are acquired using GPS, the accuracy and precision of GPS receivers is extremely important (chapters 5 and 14). • Reliable classification of rangeland ecosystems is a function of minimum target cover. It appears that targets need to exist at a percent cover of nearly 1/3rd (33%) within each pixel to assure reliable classification results (>70% users accuracy). • We developed LiDAR statistical tools for detection and characterization of rangeland vegetation (chapter 3). LiDAR routinely underestimated the height of vegetation and it appears that a minimum mass of vegetation (i.e., the interior of the shrub rather than the surface canopy) was required to return the LiDAR signal. This known and consistent underestimation allows LiDAR data to be applied to numerous rangeland ecosystems studies. • We developed LiDAR/hyperspectral data fusion methods for rangeland vegetation (chapter 2). This methodology increased overall classification accuracy (from 74% to 89%) and provided vegetation structure information previously unavailable with standard image classification techniques. • We are applying the LiDAR methodologies pioneered by this study to areas with wind erosion/deposition. Two proposals have been submitted to continue this research. • The effect of livestock grazing on vegetation composition in rangeland ecosystems is dependent upon stocking level and spatial distribution. As a result, we have begun investigating the temporal effect of livestock grazing animals on sagebrush-steppe rangelands. 1 Final Report: Detection, Prediction, Impact, and Management of Invasive Plants Using GIS • Vegetation structure and cover becomes variable in space and time after fire, particularly when sites were grazed extensively before the fire. We predict that where and when vegetation indices are low during the growing season, there must be resources available to exotic plants, making invasions possible (chapters 4 and 9). • Soil water becomes more available after fire --at depth-- due primarily to the loss of sagebrush (chapter 10). • Spotted knapweed, which appears representative of Eurasian forbs, has major growth advantages over other plants. The extra advantages arise from its ability to tap into deep soil water that is available when sagebrush or other deep-rooted species are not present (e.g., following fire). This growth advantage is linked to superior photosynthesis and morphological features of knapweed (and probably most exotic forbs of rangelands) conferring greater efficiency in its use of soil resources. Soil resources are a key driver of invasions (chapter 13). • We addressed how invasive plants persist in the long term and felt it was necessary to first investigate factors affecting reestablishment of the community existing before fire. Herbs come back immediately (chapter 10), but sagebrush is slow to reestablish. We found recovery of mountain sagebrush is negatively affected by neighboring herbs, particularly forbs (chapters 8 and 9). The effect appears linked more to competition over nitrogen (or similar elements) rather than water (WNAN). As rangelands become enriched with forbs as a result of invasive plants like knapweed and other Eurasian forbs, we expect sagebrush recovery after fire to be more sluggish than it currently is. • One student completed his Graduate Certificate in Geotechnologies (Luke Sander) through this research, while two others completed their Master degree (Ryan Baum and Katie DeCristina). Three students were partially funded by this study which ultimately will result in completion of doctoral degrees (Bhushan Gokhale, Judson Hill, and Erik Jackson) (degrees are expected to be conferred in August 2006). • Public outreach events associated with this study were very successful. Over 200 people (ranchers, range scientists, range managers, and geospatial scientists) were exposed to our research at the annual Geo-spatial and Range Sciences Conference. Several have become very involved and have used products produced through our research in the ranch/range planning. 2 Final Report: Detection, Prediction, Impact, and Management of Invasive Plants Using GIS Rangeland Health Modeling with Quickbird Imagery Bhushan Gokhale. Idaho State University, GIS Training and Research Center, Campus Box 8130, Pocatello, Idaho 83209-8130. ([email protected]) Keith T. Weber. Idaho State University, GIS Training and Research Center, Campus Box 8130, Pocatello, Idaho 83209-8130. ([email protected]) ABSTRACT Rangeland health is very important for ranchers, farmers and land management agencies. It is also important to identify different rangeland health parameters and evaluate their impact on rangeland health. This study obtained various data describing rangeland health conditions in southeastern Idaho and prepared a rangeland health model using Quickbird multispectral satellite imagery. Five elements were chosen to evaluate rangeland health: presence of cheatgrass (Bromus tectorum), bare ground exposure, litter, percent shrub cover, and percent grass cover. A field survey collected information (percentage, dimensions
Recommended publications
  • Modèle Document
    AVISO DT CorSSH and DT SLA Product Handbook Reference: CLS-DOS-NT-08.341 Nomenclature: - Issue: 2 rev 0 Date: October 2012 Aviso Altimetry 8-10 rue Hermès, 31520 Ramonville St Agne, France – [email protected] DT CorSSH and DT SLA Product Handbook CLS-DOS-NT-08.341 Iss :2.9 - date : 28/02/2012 - Nomenclature: - i.1 Chronology Issues: Issue: Date: Reason for change: 1.0 2005/07/18 1st issue 1.1 2005/11/08 Processing of ERS-2 data 1.2 2005/10/17 Processing of GFO data 1.3 2008/06/10 New standards for corrections and models for Jason-1 1.4 2008/08/07 New standards for corrections and models for Envisat after cycle 65. 1.5 2008/12/18 New standards for corrections and models for Jason-1 GDR-C. 1.6 2010/03/05 New standards for Jason-2 1.7 2010/06/08 New standards for corrections and/or models Processing of ERS-1 data 1.8 2011/04/14 Correction of table 2 1.9 2012/02/28 Specification of the reading routines for SLA files only 2.0 2012/10/16 New geodetic orbit for Jason-1 (c≥500) New version D for Jason-2 (c≥146) D : page deleted I : page inserted M : page modified DT CorSSH and DT SLA Product Handbook CLS-DOS-NT-08.341 Iss :2.9 - date : 28/02/2012 - Nomenclature: - i.2 List of Acronyms: ATP Along Track Product Aviso Archiving, Validation and Interpretation of Satellite Oceanographic data Cersat Centre ERS d’Archivage et de Traitement CLS Collecte, Localisation, Satellites CMA Centre Multimissions Altimetriques Cnes Centre National d’Etudes Spatiales CorSSH Corrected Sea Surface Height Doris Doppler Orbitography and Radiopositioning Integrated
    [Show full text]
  • Chronology of NASA Expendable Vehicle Missions Since 1990
    Chronology of NASA Expendable Vehicle Missions Since 1990 Launch Launch Date Payload Vehicle Site1 June 1, 1990 ROSAT (Roentgen Satellite) Delta II ETR, 5:48 p.m. EDT An X-ray observatory developed through a cooperative program between Germany, the U.S., and (Delta 195) LC 17A the United Kingdom. Originally proposed by the Max-Planck-Institut für extraterrestrische Physik (MPE) and designed, built and operated in Germany. Launched into Earth orbit on a U.S. Air Force vehicle. Mission ended after almost nine years, on Feb. 12, 1999. July 25, 1990 CRRES (Combined Radiation and Release Effects Satellite) Atlas I ETR, 3:21 p.m. EDT NASA payload. Launched into a geosynchronous transfer orbit for a nominal three-year mission to (AC-69) LC 36B investigate fields, plasmas, and energetic particles inside the Earth's magnetosphere. Due to onboard battery failure, contact with the spacecraft was lost on Oct. 12, 1991. May 14, 1991 NOAA-D (TIROS) (National Oceanic and Atmospheric Administration-D) Atlas-E WTR, 11:52 a.m. EDT A Television Infrared Observing System (TIROS) satellite. NASA-developed payload; USAF (Atlas 50-E) SLC 4 vehicle. Launched into sun-synchronous polar orbit to allow the satellite to view the Earth's entire surface and cloud cover every 12 hours. Redesignated NOAA-12 once in orbit. June 29, 1991 REX (Radiation Experiment) Scout 216 WTR, 10:00 a.m. EDT USAF payload; NASA vehicle. Launched into 450 nm polar orbit. Designed to study scintillation SLC 5 effects of the Earth's atmosphere on RF transmissions. 114th launch of Scout vehicle.
    [Show full text]
  • An Assessment of Quickbird Satellite Data As a Routine Means Of
    An assessment of QuickBird satellite data as a routine means of assessing green macroalgal weed cover within intertidal areas for the purpose of classifying transitional waters for the WFD, OSPAR and UWWTD Final Report June 2006 RS Scientific Edinburgh 1 This report was produced for the Scottish Environment Protection Agency by the RS Scientific. The authors were: Dr Evanthia Karpouzli and Dr Tim Malthus 27/10 Castle Terrace Edinburgh, EH1 2EL This report should be quoted as: Karpouzli, E., Malthus, T.J. (2006). An assessment of QuickBird satellite data as a routine means of assessing green macroalgal weed cover within intertidal areas for the purpose of classifying transitional waters for the WFD, OSPAR and UWWTD. Report produced for the Scottish Environment Protection Agency (SEPA) under Research Contract No R50021PUR 2 Table of contents 1 EXECUTIVE SUMMARY 4 2 INTRODUCTION 6 2.1 Aims and objectives 6 2.2 Background to the Project 6 2.3 Site habitat description 7 3 METHODS 8 3.1 Scientific staff 8 3.2 Field procedures 8 3.2.1 Measurement of ground validation sites 8 3.2.2 Algal biomass sampling 9 3.2.3 Laboratory procedures 9 3.3 Satellite imagery 9 3.3.1 Survey of previous satellite image acquisitions 9 3.3.2 Satellite Image acquisition 11 3.3.3 Field methods 12 3.3.4 Satellite image processing 15 4 RESULTS 22 4.1 Ground survey data 22 4.2 Satellite imagery and maps 25 4.2.1 Quality of the image for algal mapping 25 4.2.2 Initial processing steps 25 4.2.3 Sunglint and surface reflection correction 25 4.3 Green algal biomass cover and classification 29 4.3.1 Results of the discriminant analysis 30 5 DISCUSSION 33 5.1 LESSONS LEARNED 33 6 RECOMMENDATIONS AND FUTURE WORK 36 7 REFERENCES 38 8 LIST OF ACRONYMS 39 9 ANNEX – BIOLOGICAL DATA OBTAINED DURING THE FIELD SURVEY.
    [Show full text]
  • Commercial Spacecraft Mission Model Update
    Commercial Space Transportation Advisory Committee (COMSTAC) Report of the COMSTAC Technology & Innovation Working Group Commercial Spacecraft Mission Model Update May 1998 Associate Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation M5528/98ml Printed for DOT/FAA/AST by Rocketdyne Propulsion & Power, Boeing North American, Inc. Report of the COMSTAC Technology & Innovation Working Group COMMERCIAL SPACECRAFT MISSION MODEL UPDATE May 1998 Paul Fuller, Chairman Technology & Innovation Working Group Commercial Space Transportation Advisory Committee (COMSTAC) Associative Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation TABLE OF CONTENTS COMMERCIAL MISSION MODEL UPDATE........................................................................ 1 1. Introduction................................................................................................................ 1 2. 1998 Mission Model Update Methodology.................................................................. 1 3. Conclusions ................................................................................................................ 2 4. Recommendations....................................................................................................... 3 5. References .................................................................................................................. 3 APPENDIX A – 1998 DISCUSSION AND RESULTS........................................................
    [Show full text]
  • December 2021
    FORECAST OF UPCOMING ANNIVERSARIES -- DECEMBER 2021 450 Years Ago – 1571 December 27: Astronomer Johannes Kepler born. 120 Years Ago – 1906 December 30: Sergey Korolev born, Zhitomir, Ukraine USSR. 75 Years Ago -- 1946 December 9: Bell X-1 first powered flight. December 17: First night firing in the U.S. of a V-2. Missile No. 17 launched from the White Sands Missile Range, NM. 60 Years Ago – 1961 December 12: Discoverer 36 launched from Vandenberg Air Force Base in California with special payload, OSCAR 1. It was Amateur Radio’s first satellite and the world’s first piggyback satellite. 55 Years Ago – 1966 December 7: ATS 1 launched by Atlas Agena, 9:12 p.m., EST, Cape Canaveral, Fla. December 14: Biosatellite 1 launched by Delta, 2:20 p.m., EST, Cape Canaveral, Fla. December 22: First HL-10 glide flight, Bruce Peterson pilot, DFRF, CA. 50 Years Ago – 1971 December 2: USSR Mars 3 lands on Mars, launched May 28, 1971. First unmanned landing on Mars. December 19: Intelsat 4 F-3 launched by Atlas Centaur, 8:10 p.m., EST, Cape Canaveral, Fla. 40 Years Ago – 1981 December 15: Intelsat 5D F-3 launched by Atlas Centaur, 6:35 p.m., EST, Cape Canaveral, Fla. 35 Years Ago -- 1986 December 4: Fleetsatcom 7 launched by Atlas G Centaur, 9:30 p.m., EST, Cape Canaveral, Fla. 25 Years Ago – 1996 December 4: Mars Pathfinder launched aboard a Delta II 7925 launch vehicle from Cape Canaveral Air Station. Landed on Mars on July 4, 1997. December 24: Bion 11 launched from Plesetsk cosmodrome by a Soyuz-U rocket at 13:50 UTC.
    [Show full text]
  • Validation of OSIRIS Mesospheric Temperatures
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Meas. Tech. Discuss., 5, 5493–5526, 2012 Atmospheric www.atmos-meas-tech-discuss.net/5/5493/2012/ Measurement AMTD doi:10.5194/amtd-5-5493-2012 Techniques © Author(s) 2012. CC Attribution 3.0 License. Discussions 5, 5493–5526, 2012 This discussion paper is/has been under review for the journal Atmospheric Measurement Validation of OSIRIS Techniques (AMT). Please refer to the corresponding final paper in AMT if available. mesospheric temperatures Validation of OSIRIS mesospheric P. E. Sheese et al. temperatures using satellite and ground-based measurements Title Page Abstract Introduction 1 1 2 2 3 P. E. Sheese , K. Strong , E. J. Llewellyn , R. L. Gattinger , J. M. Russell III , Conclusions References C. D. Boone4, M. E. Hervig5, R. J. Sica6, and J. Bandoro6 Tables Figures 1Department of Physics, University of Toronto, Toronto, Ontario, Canada 2ISAS, Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada J I 3Center for Atmospheric Sciences, Hampton University, Hampton, Virginia, USA J I 4Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada 5GATS Inc., Driggs, Idaho, USA Back Close 6Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada Full Screen / Esc Received: 10 July 2012 – Accepted: 26 July 2012 – Published: 13 August 2012 Printer-friendly Version Correspondence to: P. E. Sheese ([email protected]) Interactive Discussion Published by Copernicus Publications on behalf of the European Geosciences Union. 5493 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract AMTD The Optical Spectrograph and InfraRed Imaging System (OSIRIS) on the Odin satel- lite is currently in its 12th year of observing the Earth’s limb.
    [Show full text]
  • Financial Operational Losses in Space Launch
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE FINANCIAL OPERATIONAL LOSSES IN SPACE LAUNCH A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By TOM ROBERT BOONE, IV Norman, Oklahoma 2017 FINANCIAL OPERATIONAL LOSSES IN SPACE LAUNCH A DISSERTATION APPROVED FOR THE SCHOOL OF AEROSPACE AND MECHANICAL ENGINEERING BY Dr. David Miller, Chair Dr. Alfred Striz Dr. Peter Attar Dr. Zahed Siddique Dr. Mukremin Kilic c Copyright by TOM ROBERT BOONE, IV 2017 All rights reserved. \For which of you, intending to build a tower, sitteth not down first, and counteth the cost, whether he have sufficient to finish it?" Luke 14:28, KJV Contents 1 Introduction1 1.1 Overview of Operational Losses...................2 1.2 Structure of Dissertation.......................4 2 Literature Review9 3 Payload Trends 17 4 Launch Vehicle Trends 28 5 Capability of Launch Vehicles 40 6 Wastage of Launch Vehicle Capacity 49 7 Optimal Usage of Launch Vehicles 59 8 Optimal Arrangement of Payloads 75 9 Risk of Multiple Payload Launches 95 10 Conclusions 101 10.1 Review of Dissertation........................ 101 10.2 Future Work.............................. 106 Bibliography 108 A Payload Database 114 B Launch Vehicle Database 157 iv List of Figures 3.1 Payloads By Orbit, 2000-2013.................... 20 3.2 Payload Mass By Orbit, 2000-2013................. 21 3.3 Number of Payloads of Mass, 2000-2013.............. 21 3.4 Total Mass of Payloads in kg by Individual Mass, 2000-2013... 22 3.5 Number of LEO Payloads of Mass, 2000-2013........... 22 3.6 Number of GEO Payloads of Mass, 2000-2013..........
    [Show full text]
  • Science @ NASA
    Science @ NASA John M. Grunsfeld PhD Associate Administrator, Science National Aeronautics and Space Administration Our Mission: Innovate Explore Discover Inspire www.nasa.gov Big Scientific Questions: Where did we come from? Where are we going? Are we alone? Science@NASA Science Mission Directorate An Integrated Program of Science A Team Effort NAS EOP NASA Congress Astrophysics Driving Documents http://science.nasa.gov Science Budget Request Summary Actual Enacted Request Notional FY 2015 FY 2016 FY 2017 FY 2018 FY 2019 FY 2020 FY 2021 Science 5,243.0 5,589.4 5,600.5 5,408.5 5,516.7 5,627.0 5,739.6 Earth Science 1,784.1 2,032.2 1,989.5 2,001.3 2,020.9 2,047.7 Earth Science Research 453.2 501.7 472.9 461.3 475.9 484.2 Earth Systematic Missions 827.3 933.0 965.5 1,021.3 1,005.0 1,000.1 Earth System Science Pathfinder 223.8 296.0 248.6 216.7 227.8 245.1 Earth Science Multi-Mission Operations 179.7 191.8 194.3 193.6 197.9 202.6 Earth Science Technology 59.7 61.4 60.4 59.7 62.7 63.7 Applied Sciences 40.4 48.2 47.9 48.7 51.5 52.0 Planetary Science 1,446.7 1,518.7 1,439.7 1,520.1 1,575.5 1,625.7 Planetary Science Research 252.8 284.7 271.6 285.7 281.6 287.3 Discovery 259.7 202.5 277.3 337.4 345.0 405.3 New Frontiers 286.0 144.0 81.6 90.7 142.8 234.0 Mars Exploration 305.0 584.8 588.8 565.0 498.4 279.9 Outer Planets and Ocean Worlds 184.0 137.3 56.0 77.8 128.0 247.3 Technology 159.2 165.5 164.4 163.5 179.7 172.0 Astrophysics 730.7 781.5 761.6 992.4 1,118.6 1,192.5 Astrophysics Research 201.7 226.1 236.3 235.7 248.5 252.0 Cosmic Origins 201.0
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France UNITED NATIONS Tel: +33 1 45 67 42 60 75039 Paris Cedex 01, France E-mail: : [email protected] Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 URL: www.iislweb.com E-mail: [email protected] Fax. + 33 1 44 76 74 37 OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL: http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 V.11-80947—March*1180947* 2011—475 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Genesis Mishap Investigation Board Report, Volume I
    GENESIS MISHAP INVESTIGATION BOARD REPORT VOLUME I National Aeronautics and Space Administration Trade names or manufacturers’ names are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration. GENESIS MISHAP REPORT VOLUME I G ENES I S M I SHA P R E P O R T PAGE PB PAGE I G ENES I S M I SHA P R E P O R T G ENES I S M I SHA P R E P O R T PAGE ii PAGE iii G ENES I S M I SHA P R E P O R T G ENES I S M I SHA P R E P O R T PAGE ii PAGE iii G ENES I S M I SHA P R E P O R T G ENES I S M I SHA P R E P O R T PAGE iv PAGE V G ENES I S M I SHA P R E P O R T G ENES I S M I SHA P R E P O R T PAGE iv PAGE V G ENES I S M I SHA P R E P O R T G ENES I S M I SHA P R E P O R T PAGE ii PAGE iii G ENES I S M I SHA P R E P O R T VOLUME I CONTENTS Signature Page (Board Members) ........................................................................v Advisors, Consultants, and JPL Failure Review Board Members .................... vii Acknowledgements .............................................................................................ix Executive Summary .............................................................................................1 1.
    [Show full text]
  • Five-Day Planetary Waves in the Middle Atmosphere from Odin Satellite Data and Ground-Based Instruments in Northern Hemisphere Summer 2003, 2004, 2005 and 2007
    Ann. Geophys., 26, 3557–3570, 2008 www.ann-geophys.net/26/3557/2008/ Annales © European Geosciences Union 2008 Geophysicae Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007 A. Belova1, S. Kirkwood1, D. Murtagh2, N. Mitchell3, W. Singer4, and W. Hocking5 1Swedish Institute of Space Physics, P.O. Box 812, 98128 Kiruna, Sweden 2Chalmers University of Technology, Gothenburg, Sweden 3University of Bath, Bath, UK 4Leibniz Institute for Atmospheric Physics, Kuhlungsborn,¨ Germany 5University of Western Ontario, London, Ont., N6A 3K7, Canada Received: 13 December 2007 – Revised: 8 July 2008 – Accepted: 10 October 2008 – Published: 17 November 2008 Abstract. A number of studies have shown that 5-day plan- agation in the same hemisphere seems to be ruled out. In all etary waves modulate noctilucent clouds and the closely re- other cases, all or any of the three proposed mechanisms are lated Polar Mesosphere Summer Echoes (PMSE) at the sum- consistent with the observations. mer mesopause. Summer stratospheric winds should inhibit Keywords. Meteorology and atmospheric dynamics (Mid- wave propagation through the stratosphere and, although dle atmosphere dynamics; Waves and tides) some numerical models (Geisler and Dickinson, 1976) do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal prop- 1 Introduction agation of the wave from the winter to the summer hemi- sphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia Large scale Rossby waves, planetary waves with horizon- et al., 2005) that 5-day planetary waves observed in the sum- tal wavelengths of thousands of kilometers and with periods mer mesosphere could be excited in-situ by baroclinic insta- up to several days, form a well-known class of atmospheric bility in the upper mesosphere.
    [Show full text]
  • The Space Shuttle's Return to Flight
    CONTENTS SECTION I: SPACE SHUTTLE SAFETY ENHANCEMENTS OVERVIEW .............................................................................................................................. 1 RETURNING THE SPACE SHUTTLE TO FLIGHT ...................................................................................... 1 IMPROVEMENTS IN TECH EXCELLENCE, COMMUNICATIONS & DECISION-MAKING ............. 3 SPACE FLIGHT LEADERSHIP COUNCIL ................................................................................................. 3 RETURN TO FLIGHT TASK GROUP ........................................................................................................ 4 SPACE SHUTTLE PROGRAM MISSION MANAGEMENT TEAM ................................................................. 5 NASA ENGINEERING AND SAFETY CENTER ........................................................................................... 8 RENEWED COMMITMENT TO EXCELLENCE............................................................................................ 9 SPACE SHUTTLE PROCESSING IMPROVEMENTS.................................................................... 11 REINFORCED CARBON-CARBON WING PANELS AND NOSE CAP ........................................................... 11 WING LEADING EDGE STRUCTURAL SUBSYSTEM ................................................................................ 12 RUDDER SPEED BRAKE........................................................................................................................ 12 FOREIGN OBJECT DEBRIS...................................................................................................................
    [Show full text]