132 Supernumerary Right Renal Vein Draining Inferior
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Endocrine Block اللهم ال سهل اال ما جعلته سهل و أنت جتعل احلزن اذا شئت سهل
OSPE ENDOCRINE BLOCK اللهم ﻻ سهل اﻻ ما جعلته سهل و أنت جتعل احلزن اذا شئت سهل Important Points 1. Don’t forget to mention right and left. 2. Read the questions carefully. 3. Make sure your write the FULL name of the structures with the correct spelling. Example: IVC ✕ Inferior Vena Cava ✓ Aorta ✕ Abdominal aorta ✓ 4. There is NO guarantee whether or not the exam will go out of this file. ممكن يأشرون على أجزاء مو معلمه فراح نحط بيانات إضافية حاولوا تمرون عليها كلها Good luck! Pituitary gland Identify: 1. Anterior and posterior clinoidal process of sella turcica. 2. Hypophyseal fossa (sella turcica) Theory • The pituitary gland is located in middle cranial fossa and protected in sella turcica (hypophyseal fossa) of body of sphenoid. Relations Of Pituitary Gland hypothalamus Identify: 1. Mamillary body (posteriorly) 2. Optic chiasma (anteriorly) 3. Sphenoidal air sinuses (inferior) 4. Body of sphenoid 5. Pituitary gland Theory • If pituitary gland became enlarged (e.g adenoma) it will cause pressure on optic chiasma and lead to bilateral temporal eye field blindness (bilateral hemianopia) Relations Of Pituitary Gland Important! Identify: 1. Pituitary gland. 2. Diaphragma sellae (superior) 3. Sphenoidal air sinuses (inferior) 4. Cavernous sinuses (lateral) 5. Abducent nerve 6. Oculomotor nerve 7. Trochlear nerve 8. Ophthalmic nerve 9. Trigeminal (Maxillary) nerve Structures of lateral wall 10. Internal carotid artery Note: Ophthalmic and maxillary are both branches of the trigeminal nerve Divisions of Pituitary Gland Identify: 1. Anterior lobe (Adenohypophysis) 2. Optic chiasma 3. Infundibulum 4. Posterior lobe (Neurohypophysis) Theory Anterior Lobe Posterior Lobe • Adenohypophysis • Neurohypophysis • Secretes hormones • Stores hormones • Vascular connection to • Neural connection to hypothalamus by hypothalamus by Subdivisions hypophyseal portal hypothalamo-hypophyseal system (from superior tract from supraoptic and hypophyseal artery) paraventricular nuclei. -
Anatomical Study of the Coexistence of the Postaortic Left Brachiocephalic Vein with the Postaortic Left Renal Vein with a Review of the Literature
Okajimas Folia Anat.Coexistence Jpn., 91(3): of 73–81, postaortic November, veins 201473 Anatomical study of the coexistence of the postaortic left brachiocephalic vein with the postaortic left renal vein with a review of the literature By Akira IIMURA1, Takeshi OGUCHI1, Masato MATSUO1 Shogo HAYASHI2, Hiroshi MORIYAMA2 and Masahiro ITOH2 1Dental Anatomy Division, Department of Oral Science, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-8580, Japan 2Department of Anatomy, Tokyo Medical University, 6-1-1 Shinjuku-ku, Tokyo, 160, Japan –Received for Publication, December 11, 2014– Key Words: venous anomaly, postaortic vein, left brachiocephalic vein, left renal vein Summary: In a student course of gross anatomy dissection at Kanagawa Dental University in 2009, we found an extremely rare case of the coexistence of the postaortic left brachiocephalic vein with the postaortic left renal vein of a 73-year-old Japanese male cadaver. The left brachiocephalic vein passes behind the ascending aorta and connects with the right brachio- cephalic vein, and the left renal vein passes behind the abdominal aorta. These two anomalous cases mentioned above have been reported respectively. There have been few reports discussing coexistence of the postaortic left brachiocephalic vein with the postaortic left renal vein. We discuss the anatomical and embryological aspect of this anomaly with reference in the literature. Introduction phalic vein (PALBV) with the postaortic left renal vein (PALRV). These two anomalous cases mentioned above Normally, the left brachiocephalic vein passes in have been reported respectively. There have been few or front of the left common carotid artery and the brachio- no reports discussing coexistence of the PALBV with the cephalic artery and connects with the right brachioce- PALRV. -
Variant Adrenal Venous Anatomy in 546 Laparoscopic Adrenalectomies
ORIGINAL ARTICLE Variant Adrenal Venous Anatomy in 546 Laparoscopic Adrenalectomies Anouk Scholten, MD; Robin M. Cisco, MD; Menno R. Vriens, MD, PhD; Wen T. Shen, MD; Quan-Yang Duh, MD Importance: Knowing the types and frequency of ad- Results: Variant venous anatomy was encountered in renal vein variants would help surgeons identify and con- 70 of 546 adrenalectomies (13%). Variants included no trol the adrenal vein during laparoscopic adrenalec- main adrenal vein identifiable (n=18), 1 main adrenal tomy. vein with additional small veins (n=11), 2 adrenal veins (n=20), more than 2 adrenal veins (n=14), and vari- Objectives: To establish the surgical anatomy of the main ants of the adrenal vein drainage to the inferior vena cava vein and its variants for laparoscopic adrenalectomy and and hepatic vein or of the inferior phrenic vein (n=7). to analyze the relationship between variant adrenal ve- Variants occurred more often on the right side than on nous anatomy and tumor size, pathologic diagnosis, and the left side (42 of 250 glands [17%] vs 28 of 296 glands operative outcomes. [9%], respectively; P=.02). Patients with variant anatomy compared with those with normal anatomy had larger Design, Setting, and Patients: In a retrospective re- tumors (mean, 5.1 vs 3.3 cm, respectively; PϽ.001), more view of patients at a tertiary referral hospital, 506 patients pheochromocytomas (24 of 70 [35%] vs 100 of 476 [21%], underwent 546 consecutive laparoscopic adrenalecto- respectively; P=.02), and more estimated blood loss mies between April 22, 1993, and October 21, 2011. Pa- (mean, 134 vs 67 mL, respectively; P=.01). -
Double Inferior Vena Cava Associated with Double Suprarenal and Testicular Venous Anomalies: a Rare Case Report
THIEME Brief Communication 221 Double Inferior Vena Cava Associated with Double Suprarenal and Testicular Venous Anomalies: A Rare Case Report Kimaporn Khamanarong1 Jarupon Mahiphot1 Sitthichai Iamsaard1,2 1 Department of Anatomy, Faculty of Medicine of Khon Kaen Address for correspondence Sitthichai Iamsaard, PhD, Department University, Khon Kaen, Thailand of Anatomy, Faculty of Medicine of Khon Kaen University, Khon Kaen, 2 Center for Research and Development of Herbal Health Products, Thailand, 40002 (e-mail: [email protected]). Faculty of Pharmaceutical Sciences of Khon Kaen University, Khon Kaen, Thailand J Morphol Sci 2018;35:221–224. Abstract Introduction The variant courses of blood vessels are very important in considera- tions for retroperitoneal surgeries or interventional radiology. The present study attempted to describe a very rare case of double inferior vena cava (IVC) associated with double left suprarenal veins (LSRVs) and double right testicular veins (RTVs) in a Thai male embalmed cadaver. Material and Methods A 70-year-old Thai male cadaver was systemically dissected and observed for the vascular distributions during gross anatomy teaching for medical students at the anatomy department of the faculty of medicine of the Khon Kaen University. Keywords Results We found that the double IVCs were connected with the transverse interiliac ► double inferior vena vein. While the upper LSRV is a tributary of the IVC, the lower LSRV is a tributary of the cava left renal vein. The RTV bifurcates at about the height of the iliac cristae to form the ► double suprarenal medial and lateral RTVs, which drain into the right IVC at different heights. veins Conclusion All these duplications and associated anomalies are assumed to occur ► double right during the embryological development. -
Blood Vessels
Exercise 21 – Anatomy of blood vessels 1. Fig 21.1 – pay attention to structure of arteries, capillaries and veins. 2. Major arteries In Fig 21.2 – read and remember organs supplied by these arteries 3. aorta left and right coronary artery 4. aortic arch 1 brachiocephalic 2 left common carotid 3 left subclavian 5. Brachiocephalic 1 right subclavian 2 right common carotid 6. Thoracic aorta esophagus, inter costal muscles and diaphragm 7. Abdominal aorta 1 celiac trunk 2 superior and inferior mesenteric arteries 3 suprarenals 4 gonadial 8. Abdominal aorta divides into 2 common iliacs that supply blood to pelvis and leg of its side. 9. Main veins – fig 21.6 – External jugular from head and neck, axillary from the arm, both join to form subclavian veins. 10. Subclavians open into Brachicephalic veins that also receive vertebral and internal jugular veins. 11. 2 brachiocephalic veins form Superior Vena cava that receive Azygos system – collects blood from chest. Superior vena cava opens into right atrium. 12. Femoral and other veins of leg form Common Iliac vein on each side. 13. Common Iliac veins join to form Inferior vena cava. 14. Inferior vena cava receives blood from 4 veins. 1. suprarenal veins adrenal gland 2. gonadial from ovary or testis 3. renal veins from kidney on each side 4. hepatic veins from liver. 15. Hepatic Portal System : Note that Inferior vena cava does not receive blood from any digestive organs other than liver. Hepatic Portal Vein is formed of 2 main veins, Superior Mesenteric and Splenic vein. 1. Superior Mesenteric collects blood from small intestine, and parts of colon and stomach. -
Cat Dissection
Cat Dissection Muscular Labs Tibialis anterior External oblique Pectroalis minor Sartorius Gastrocnemius Pectoralis major Levator scapula External oblique Trapezius Gastrocnemius Semitendinosis Trapezius Latissimus dorsi Sartorius Gluteal muscles Biceps femoris Deltoid Trapezius Deltoid Lumbodorsal fascia Sternohyoid Sternomastoid Pectoralis minor Pectoralis major Rectus abdominis Transverse abdominis External oblique External oblique (reflected) Internal oblique Lumbodorsal Deltoid fascia Latissimus dorsi Trapezius Trapezius Trapezius Deltoid Levator scapula Deltoid Trapezius Trapezius Trapezius Latissimus dorsi Flexor carpi radialis Brachioradialis Extensor carpi radialis Flexor carpi ulnaris Biceps brachii Triceps brachii Biceps brachii Flexor carpi radialis Flexor carpi ulnaris Extensor carpi ulnaris Triceps brachii Extensor carpi radialis longus Triceps brachii Deltoid Deltoid Deltoid Trapezius Sartorius Adductor longus Adductor femoris Semimembranosus Vastus Tensor fasciae latae medialis Rectus femoris Vastus lateralis Tibialis anterior Gastrocnemius Flexor digitorum longus Biceps femoris Tensor fasciae latae Semimembranosus Semitendinosus Gluteus medius Gluteus maximus Extensor digitorum longus Gastrocnemius Soleus Fibularis muscles Brachioradiallis Triceps (lateral and long heads) Brachioradialis Biceps brachii Triceps (medial head) Trapezius Deltoid Deltoid Levator scapula Trapezius Deltoid Trapezius Latissimus dorsi External oblique (right side cut and reflected) Rectus abdominis Transversus abdominis Internal oblique Pectoralis -
Biology 2710 Unit #3 Lab Objectives - Online Histology - Blood
Biology 2710 Unit #3 Lab Objectives - Online Histology - blood Objectives Source Erythrocyte (red blood cell), Leukocyte (white blood cell), Platelet Anatomy & Physiology Revealed (Connect) Tissues/Blood NOTE: know general functions of above formed elements Smartbook (Connect). Ch. 18 Anatomy of Heart Objectives Source Aorta, pulmonary trunk, superior vena cava, ligamentum arteriosum, Practice Atlas (Connect) left atrium, left auricle, left ventricle, right atrium, right auricle, right ventricle, Cardiovascular System/Heart/ right atrium, left atrium, right ventricle, left ventricle, bicuspid (mitral) valve, -great vessels of the heart, ANT. & POST. chordae tendoneae, fossa ovalis, interatrial septum, interventricular septum, -external heart chambers, ANT. & POST. papillary muscle, pulmonary semilunar valve, tricuspid valve, -internal heart chambers, all views anterior interventricular artery, right coronary artery, coronary sinus, marginal -coronary circulation, anterior/inferior artery, circumflex artery, left coronary artery, posterior interventricular artery, cardiac vein (any) Membranes – Heart and Lungs Objectives Source Parietal Pericardium, Parietal Pleura, Pericardial Cavity, Pleural Cavity, Anatomy & Physiology Revealed (Connect) Visceral Pericardium, Visceral Pleura Body Orientation/Body Cavities/ -Anterior and Lateral -Pleura and Pericardium Arteries Objectives Source Arch of aorta, thoracic (descending) aorta, brachiocephalic trunk, left common Practice Atlas (Connect) carotid artery, right common carotid artery, left subclavian -
Pelvic Venous Disorders
PELVIC VENOUS DISORDERS Anatomy and Pathophysiology Two Abdomino-Pelvic Compression Syndromes DIAGNOSIS of ABDOMINOO-PELVICP z Nutcracker Syndrome 9 Compression of the left renal vein COMPRESSIONCO SS O SYNDROMES S O with venous congestion of the left (with Emphasis on Duplex Ultrasound) kidney and left ovarian vein reflux R. Eugene Zierler, M.D. z May-Thurner Syndrome 9 Compression of the left common iliac vein by the right common The DD.. EE.. StrandnessStrandness,, JrJr.. Vascular Laboratory iliac artery with left lower University of Washington Medical Center extremity venous stasis and left DivisionDivision of Vascular Surgery internal iliac vein reflux University of Washington, School of Medicine ABDOMINO-PELVIC COMPRESSION Nutcracker Syndrome Left Renal Vein Entrapment z Grant 1937: Anatomical observation “…the left renal vein, as it lies between the aorta and superior mesenteric artery, resembles a nut between the jaws of a nutcracker.” X z El-Sadr 1950: Described first patient with the clinical syndrome X z De Shepper 1972: Named the disorder “Nutcracker Syndrome” Copy Here z Nutcracker Phenomenon z Nutcracker Syndrome 9 Anatomic finding only 9 Hematuria, proteinuria 9 Compression of left renal 9 Flank pain vein - medial narrowing 9 Pelvic pain/congestion with lateral (hilar) dilation 9 Varicocele ABDOMINO-PELVIC COMPRESSION ABDOMINO-PELVIC COMPRESSION Nutcracker Syndrome - Diagnosis Nutcracker Syndrome z Anterior Nutcracker z Posterior Nutcracker z Evaluate the left renal vein for aorto-mesenteric compression 9 Compression between -
The Urinary System Dr
The urinary System Dr. Ali Ebneshahidi Functions of the Urinary System • Excretion – removal of waste material from the blood plasma and the disposal of this waste in the urine. • Elimination – removal of waste from other organ systems - from digestive system – undigested food, water, salt, ions, and drugs. + - from respiratory system – CO2,H , water, toxins. - from skin – water, NaCl, nitrogenous wastes (urea , uric acid, ammonia, creatinine). • Water balance -- kidney tubules regulate water reabsorption and urine concentration. • regulation of PH, volume, and composition of body fluids. • production of Erythropoietin for hematopoieseis, and renin for blood pressure regulation. Anatomy of the Urinary System Gross anatomy: • kidneys – a pair of bean – shaped organs located retroperitoneally, responsible for blood filtering and urine formation. • Renal capsule – a layer of fibrous connective tissue covering the kidneys. • Renal cortex – outer region of the kidneys where most nephrons is located. • Renal medulla – inner region of the kidneys where some nephrons is located, also where urine is collected to be excreted outward. • Renal calyx – duct – like sections of renal medulla for collecting urine from nephrons and direct urine into renal pelvis. • Renal pyramid – connective tissues in the renal medulla binding various structures together. • Renal pelvis – central urine collecting area of renal medulla. • Hilum (or hilus) – concave notch of kidneys where renal artery, renal vein, urethra, nerves, and lymphatic vessels converge. • Ureter – a tubule that transport urine (mainly by peristalsis) from the kidney to the urinary bladder. • Urinary bladder – a spherical storage organ that contains up to 400 ml of urine. • Urethra – a tubule that excretes urine out of the urinary bladder to the outside, through the urethral orifice. -
3-Major Veins of the Body
Color Code Important Major Veins of the Body Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, the student should be able to: ü Define veins and understand the general principle of venous system. ü Describe the superior & inferior Vena Cava: formation and their tributaries ü List major veins and their tributaries in: • head & neck • thorax & abdomen • upper & lower limbs ü Describe the Portal Vein: formation & tributaries. ü Describe the Portocaval Anastomosis: formation, sites and importance Veins o Veins are blood vessels that bring blood back to the heart. o All veins carry deoxygenated blood except: o Pulmonary veins1. o Umbilical veins2. o There are two types of veins*: 1. Superficial veins: close to the surface of the body NO corresponding arteries *Note: 2. Deep veins: found deeper in the body Vein can be classified in 2 With corresponding arteries (venae comitantes) ways based on: o Veins of the systemic circulation: (1) Their location Superior and inferior vena cava with their tributaries (superficial/deep) o Veins of the portal circulation: (2) The circulation (systemic/portal) Portal vein 1: are large veins that receive oxygenated blood from the lung and drain into the left atrium. 2: The umbilical vein is a vein present during fetal development that carries oxygenated blood from the placenta into the growing fetus. Only on the boys’ slides The Histology Of Blood Vessels o The arteries and veins have three layers, but the middle layer is thicker in the arteries than it is in the veins: 1. -
A Retroaortic Left Renal Vein in a Female Cadaver
This is “Advance Publication Article” Kurume Medical Journal, 64, 103-107, 2017 Case Report A Retroaortic Left Renal Vein in a Female Cadaver YOSHIKO FUJISHIMA, KOICHI WATANABE*, YOKO TABIRA*, JOE IWANAGA*,**, †, YUI ODO, TSUYOSHI SAGA*, R. SHANE TUBBS**, ‡ AND KOH-ICHI YAMAKI* Medical student, Kurume University School of Medicine, *Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011 Japan, **Seattle Science Foundation, Seattle, 98122 United States, †Dental and Oral Medical Center, Kurume University School of Medicine, Kurume 830-0011, Japan, ‡Department of Anatomical Sciences, St. George’s University, St. George’s, Grenada. Received 4 October 2017, accepted 23 November 2017 J-STAGE advance publication 21 May 2018 Edited by TOSHI ABE Summary: We encountered a case of retroaortic left renal vein (RLRV) during an anatomical dissection course at our medical school in 2017. The case was a female cadaver who was 88 years old at death. Six roots of the left renal vein (RV) arose from the hilus of the kidney and joined to form one left renal vein, crossed dorsal to the abdominal aorta (AA) at the level of the second lumbar vertebra, and then drained into the inferior vena cava (IVC). Two roots joined at the right renal hilus to become the right RV to then drain into the IVC at the level of the first lumbar vertebral body. The reported frequency of RLRV is approximately 2%. Embryologically, the normal anastomosis of the left and right sub-cardinal veins results in the left RV traveling on the ventral surface of the AA. However, in the case presented here, the left RV traveled on the dorsal side of the AA due to the anastomosis of the left and right supra-cardinal veins and regression of the anastomosis between the left and right sub-cardinal veins. -
(A) Adrenal Gland Inferior Vena Cava Iliac Crest Ureter Urinary Bladder
Hepatic veins (cut) Inferior vena cava Adrenal gland Renal artery Renal hilum Aorta Renal vein Kidney Iliac crest Ureter Rectum (cut) Uterus (part of female Urinary reproductive bladder system) Urethra (a) © 2018 Pearson Education, Inc. 1 12th rib (b) © 2018 Pearson Education, Inc. 2 Renal cortex Renal column Major calyx Minor calyx Renal pyramid (a) © 2018 Pearson Education, Inc. 3 Cortical radiate vein Cortical radiate artery Renal cortex Arcuate vein Arcuate artery Renal column Interlobar vein Interlobar artery Segmental arteries Renal vein Renal artery Minor calyx Renal pelvis Major calyx Renal Ureter pyramid Fibrous capsule (b) © 2018 Pearson Education, Inc. 4 Cortical nephron Fibrous capsule Renal cortex Collecting duct Renal medulla Renal Proximal Renal pelvis cortex convoluted tubule Glomerulus Juxtamedullary Ureter Distal convoluted tubule nephron Nephron loop Renal medulla (a) © 2018 Pearson Education, Inc. 5 Proximal convoluted Peritubular tubule (PCT) Glomerular capillaries capillaries Distal convoluted tubule Glomerular (DCT) (Bowman’s) capsule Efferent arteriole Afferent arteriole Cells of the juxtaglomerular apparatus Cortical radiate artery Arcuate artery Arcuate vein Cortical radiate vein Collecting duct Nephron loop (b) © 2018 Pearson Education, Inc. 6 Glomerular PCT capsular space Glomerular capillary covered by podocytes Efferent arteriole Afferent arteriole (c) © 2018 Pearson Education, Inc. 7 Filtration slits Podocyte cell body Foot processes (d) © 2018 Pearson Education, Inc. 8 Afferent arteriole Glomerular capillaries Efferent Cortical arteriole radiate artery Glomerular 1 capsule Three major renal processes: Rest of renal tubule 11 Glomerular filtration: Water and solutes containing smaller than proteins are forced through the filtrate capillary walls and pores of the glomerular capsule into the renal tubule. Peritubular 2 capillary 2 Tubular reabsorption: Water, glucose, amino acids, and needed ions are 3 transported out of the filtrate into the tubule cells and then enter the capillary blood.