S-Acylation Regulates the Trafficking and Stability of the Unconventional Q-SNARE STX19
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
VAMP3 and VAMP8 Regulate the Development and Functionality of 5 Parasitophorous Vacuoles Housing Leishmania Amazonensis
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.09.195032; this version posted July 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 VAMP3 and VAMP8 regulate the development and functionality of 5 parasitophorous vacuoles housing Leishmania amazonensis 6 7 8 Olivier Séguin1, Linh Thuy Mai1, Sidney W. Whiteheart2, Simona Stäger1, Albert Descoteaux1* 9 10 11 12 1Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 13 Laval, Québec, Canada 14 15 2Department of Molecular and Cellular Biochemistry, University of Kentucky College of 16 Medicine, Lexington, Kentucky, United States of America 17 18 19 *Corresponding author: 20 E-mail: [email protected] 21 22 23 24 Short title: SNAREs and Leishmania-harboring communal parasitophorous vacuoles 25 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.09.195032; this version posted July 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 26 ABSTRACT 27 28 To colonize mammalian phagocytic cells, the parasite Leishmania remodels phagosomes into 29 parasitophorous vacuoles that can be either tight-fitting individual or communal. The molecular 30 and cellular bases underlying the biogenesis and functionality of these two types of vacuoles are 31 poorly understood. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Genome-Wide Rnai Screens Identify Genes Required for Ricin and PE Intoxications
Developmental Cell Article Genome-Wide RNAi Screens Identify Genes Required for Ricin and PE Intoxications Dimitri Moreau,1 Pankaj Kumar,1 Shyi Chyi Wang,1 Alexandre Chaumet,1 Shin Yi Chew,1 He´ le` ne Chevalley,1 and Fre´ de´ ric Bard1,* 1Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore *Correspondence: [email protected] DOI 10.1016/j.devcel.2011.06.014 SUMMARY In the lumen of the ER, these toxins are thought to interact with elements of the ER-associated degradation (ERAD) pathway, Protein toxins such as Ricin and Pseudomonas which targets misfolded proteins in the ER for degradation. exotoxin (PE) pose major public health challenges. This interaction is proposed to allow translocation to the cytosol Both toxins depend on host cell machinery for inter- without resulting in toxin degradation (Johannes and Ro¨ mer, nalization, retrograde trafficking from endosomes 2010). to the ER, and translocation to cytosol. Although Obviously, this complex set of membrane-trafficking and both toxins follow a similar intracellular route, it is membrane-translocation events involves many host proteins, some of which have already been described (Johannes and unknown how much they rely on the same genes. Ro¨ mer, 2010; Sandvig et al., 2010). Altering the function of these Here we conducted two genome-wide RNAi screens host proteins could in theory provide a toxin antidote. identifying genes required for intoxication and Consistently, inhibition of retrograde traffic by drugs such as demonstrating that requirements are strikingly Brefeldin A (Sandvig et al., 1991)(Yoshida et al., 1991) or Golgi- different between PE and Ricin, with only 13% over- cide A (Sa´ enz et al., 2009) and Retro-1 and 2 (Stechmann et al., lap. -
Regular Article
From www.bloodjournal.org by guest on April 6, 2015. For personal use only. Regular Article IMMUNOBIOLOGY Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion Waldo A. Spessott,1 Maria L. Sanmillan,1 Margaret E. McCormick,1 Nishant Patel,2 Joyce Villanueva,3 Kejian Zhang,4 Kim E. Nichols,5 and Claudio G. Giraudo1 1Department of Pathology and Laboratory Medicine, and 2Division of Oncology, Department of Pediatrics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA; 3Division of Bone Marrow Transplant and Immune Deficiency, and 4Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; and 5Division of Cancer Predisposition, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN Key Points Familial hemophagocytic lymphohistiocytosis (F-HLH) and Griscelli syndrome type 2 (GS) are life-threatening immunodeficiencies characterized by impaired cytotoxic T lymphocyte • Monoallelic STXBP2 mutations (CTL) and natural killer (NK) cell lytic activity. In the majority of cases, these disorders are affecting codon 65 impair caused by biallelic inactivating germline mutations in genes such as RAB27A (GS) and PRF1, lymphocyte cytotoxicity and UNC13D, STX11,andSTXBP2 (F-HLH). Although monoallelic (ie, heterozygous) mutations contribute to hemophagocytic have been identified in certain patients, the clinical significance and molecular mechanisms lymphohistiocytosis. by which these mutations influence CTL and NK cell function remain poorly understood. • Munc18-2R65Q/W mutant Here, we characterize 2 novel monoallelic hemophagocytic lymphohistiocytosis (HLH)- associated mutations affecting codon 65 of STXPB2, the gene encoding Munc18-2, a member proteins function in a dominant- of the SEC/MUNC18 family. -
Clinical Spectrum Ofstx1b-Related Epileptic Disorders
ARTICLE OPEN ACCESS Clinical spectrum of STX1B-related epileptic disorders Stefan Wolking, MD, Patrick May, PhD, Davide Mei, PhD, Rikke S. Møller, PhD, Simona Balestrini, PhD, Correspondence Katherine L. Helbig, MS, Cecilia Desmettre Altuzarra, MD, Nicolas Chatron, PhD, Charu Kaiwar, MD, Dr. Lerche Katharina Stohr,¨ MD, Peter Widdess-Walsh, MB, Bryce A. Mendelsohn, PhD, Adam Numis, MD, holger.lerche@ Maria R. Cilio, PhD, Wim Van Paesschen, MD, Lene L. Svendsen, MD, Stephanie Oates, MD, Elaine Hughes, MD, uni-tuebingen.de Sushma Goyal, MD, Kathleen Brown, MS, Margarita Sifuentes Saenz, MD, Thomas Dorn, MD, Hiltrud Muhle, MD, Alistair T. Pagnamenta, PhD, Dimitris V. Vavoulis, PhD, Samantha J.L. Knight, PhD, Jenny C. Taylor, PhD, Maria Paola Canevini, MD, Francesca Darra, MD, Ralitza H. Gavrilova, MD, Zoe¨ Powis, MS, Shan Tang, PhD, Justus Marquetand, MD, Martin Armstrong, PhD, Duncan McHale, PhD, Eric W. Klee, PhD, Gerhard J. Kluger, MD, Daniel H. Lowenstein, MD, Sarah Weckhuysen, PhD, Deb K. Pal, PhD, Ingo Helbig, MD, Renzo Guerrini, MD, Rhys H. Thomas, PhD, Mark I. Rees, PhD, Gaetan Lesca, PhD, Sanjay M. Sisodiya, PhD, Yvonne G. Weber, MD, Dennis Lal, PhD, Carla Marini, PhD, Holger Lerche, MD, and Julian Schubert, PhD Neurology® 2019;92:e1238-e1249. doi:10.1212/WNL.0000000000007089 Abstract Objective The aim of this study was to expand the spectrum of epilepsy syndromes related to STX1B, encoding the presynaptic protein syntaxin-1B, and establish genotype-phenotype correlations by identifying further disease- related variants. Methods We used next-generation sequencing in the framework of research projects and diagnostic testing. Clinical data and EEGs were reviewed, including already published cases. -
Fluorescence Lifetime Imaging Microscopy Reveals Rerouting Of
RESEARCH ARTICLE Fluorescence Lifetime Imaging Microscopy reveals rerouting of SNARE trafficking driving dendritic cell activation Danie¨ lle Rianne Jose´ Verboogen, Natalia Gonza´ lez Mancha, Martin ter Beest, Geert van den Bogaart* Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands Abstract SNARE proteins play a crucial role in intracellular trafficking by catalyzing membrane fusion, but assigning SNAREs to specific intracellular transport routes is challenging with current techniques. We developed a novel Fo¨ rster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM)-based technique allowing visualization of real-time local interactions of fluorescently tagged SNARE proteins in live cells. We used FRET-FLIM to delineate the trafficking steps underlying the release of the inflammatory cytokine interleukin-6 (IL-6) from human blood- derived dendritic cells. We found that activation of dendritic cells by bacterial lipopolysaccharide leads to increased FRET of fluorescently labeled syntaxin 4 with VAMP3 specifically at the plasma membrane, indicating increased SNARE complex formation, whereas FRET with other tested SNAREs was unaltered. Our results revealed that SNARE complexing is a key regulatory step for cytokine production by immune cells and prove the applicability of FRET-FLIM for visualizing SNARE complexes in live cells with subcellular spatial resolution. DOI: 10.7554/eLife.23525.001 *For correspondence: geert. [email protected] Introduction Competing interests: The One of the central paradigms in cell biology is that all intracellular membrane fusion, except for authors declare that no mitochondrial fusion, is catalyzed by soluble NSF (N-ethylmaleimide-sensitive fusion protein) attach- competing interests exist. ment protein receptor (SNARE) proteins (Hong, 2005; Jahn and Scheller, 2006). -
Human VAMP3 Suppresses Or Negatively Regulates Bax Induced Apoptosis in Yeast
biomedicines Article Human VAMP3 Suppresses or Negatively Regulates Bax Induced Apoptosis in Yeast Damilare D. Akintade 1,2,* and Bhabatosh Chaudhuri 2 1 School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK 2 Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; [email protected] * Correspondence: [email protected] Abstract: Apoptosis is an essential process that is regulated genetically and could lead to a serious disease condition if not well controlled. Bax is one of the main proapoptotic proteins and actively involved in programmed cell death. It has been suggested that Bax induced apoptosis in yeast could be obstructed by enhancing vesicular membrane trafficking. Plasma membrane proteins and lipid oxidation were reduced by a vesicle-associated membrane protein (VAMP) when expressed in yeast, suggesting its potential role in repairing membranes. Membrane integrity is crucial, as the loss of membrane integrity will result in the leakage of ions from mitochondria, and ultimately cell death due to overproduction of reactive oxygen species (ROS). Expression of Arabidopsis’ VAMP has been linked to antiapoptosis activity. Since plant VAMP has been associated with antiapoptotic activities, this study investigates the possible participation of human VAMP3 in blocking human Bax mediated apoptosis. Some novel genes were identified to rescue Bax’s proapoptotic effects, in a yeast-based human hippocampal cDNA library screen. VAMP3 (a gene code for proteins involved in protein secretion) gene was chosen for further study to confirm its role in inhibiting apoptosis. VAMP3 was coexpressed with a chromosomally integrated Bax gene expression cassette driven by the GAL1 promoter. -
Supplementary Table 1
Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7 -
Identification of a Novel Autophagy-Related Gene Signature
Identication of a novel autophagy-related gene signature for predicting metastasis and survival in patients with osteosarcoma Guangzhi Zhang Lanzhou University Second Hospital https://orcid.org/0000-0003-3193-0297 Yajun Deng Lanzhou University Second Hospital Zuolong Wu Lanzhou University Second Hospital Enhui Ren Lanzhou University Second Hospital Wenhua Yuan Lanzhou University Second Hospital Qiqi Xie ( [email protected] ) Lanzhou University Second Hospital https://orcid.org/0000-0003-4099-5287 Primary research Keywords: osteosarcoma, autophagy-related genes, signature, survival, metastasis Posted Date: March 26th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-19384/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Background: Osteosarcoma (OS) is a bone malignant tumor that occurs in children and adolescents. Due to a lack of reliable prognostic biomarkers, the prognosis of OS patients is often uncertain. This study aimed to construct an autophagy-related gene signature to predict the prognosis of OS patients. Methods: The gene expression prole data of OS and normal muscle tissue samples were downloaded separately from the Therapeutically Applied Research To Generate Effective Treatments (TARGET) and Genotype-Tissue Expression (GTEx) databases . The differentially expressed autophagy-related genes (DEARGs) in OS and normal muscle tissue samples were screened using R software, before being subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. A protein-protein interaction (PPI) network was constructed and hub autophagy-related genes were screened. Finally, the screened autophagy-related genes were subjected to univariate Cox regression, Lasso Cox regression, survival analysis, and clinical correlation analysis. -
Syntaxin Binding Mechanism and Disease-Causing Mutations In
Syntaxin binding mechanism and disease-causing PNAS PLUS mutations in Munc18-2 Yvonne Hackmanna, Stephen C. Grahama,1,2, Stephan Ehlb, Stefan Höningc, Kai Lehmbergd, Maurizio Aricòe, David J. Owena, and Gillian M. Griffithsa,2 aCambridge Institute for Medical Research, University of Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom; bCentre of Chronic Immunodeficiency, 79106 Freiburg, Germany; cInstitute for Biochemistry I and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; dDepartment of Paediatric Haematology and Oncology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; and ePediatric Hematology Oncology Network, Istituto Toscana Tumori, 50139 Florence, Italy Edited* by Peter Cresswell, Yale University School of Medicine, New Haven, CT, and approved October 11, 2013 (received for review July 18, 2013) Mutations in either syntaxin 11 (Stx11) or Munc18-2 abolish Munc18-2 belongs to the Sec1/Munc18-like (SM) protein cytotoxic T lymphocytes (CTL) and natural killer cell (NK) cytotox- family, whose members are all ∼600 residues long and are in- icity, and give rise to familial hemophagocytic lymphohistiocytosis volved in regulation of SNARE-mediated membrane fusion (FHL4 or FHL5, respectively). Although Munc18-2 is known to events (9, 10). The two closest homologs of Munc18-2 are interact with Stx11, little is known about the molecular mecha- Munc18-1, which is crucial for neurotransmitter secretion in nisms governing the specificity of this interaction or how in vitro neurons (11, 12), and Munc18-3, which is more widely expressed IL-2 activation leads to compensation of CTL and NK cytotoxicity. and is involved in Glut4 translocation (13). -
Shiga Toxin Stimulates Clathrin-Independent Endocytosis Of
© 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 128, 2891-2902 doi:10.1242/jcs.171116 RESEARCH ARTICLE Shiga toxin stimulates clathrin-independent endocytosis of the VAMP2, VAMP3 and VAMP8 SNARE proteins Henri-François Renard1,2,3, Maria Daniela Garcia-Castillo1,2,3, Valérie Chambon1,2,3, Christophe Lamaze2,3,4 and Ludger Johannes1,2,3,* ABSTRACT existence of endocytic processesthat operate independentlyof clathrin Endocytosis is an essential cellular process that is often hijacked by (reviewed in Blouin and Lamaze, 2013; Doherty and McMahon, pathogens and pathogenic products. Endocytic processes can be 2009; Mayor et al., 2014; Sandvig et al., 2011), including the cellular classified into two broad categories, those that are dependent on uptake of the bacterial Shiga toxin (STx) (Renard et al., 2015; Römer clathrin and those that are not. The SNARE proteins VAMP2, VAMP3 et al., 2007). and VAMP8 are internalized in a clathrin-dependent manner. Shiga toxin is composed of two subunits, A and B (Johannes and However, the full scope of their endocytic behavior has not yet Romer, 2010). The catalytic A-subunit modifies ribosomal RNA in been elucidated. Here, we found that VAMP2, VAMP3 and VAMP8 the cytosol of target cells, leading to protein biosynthesis inhibition. are localized on plasma membrane invaginations and very early To reach the cytosol, the A-subunit non-covalently interacts with the uptake structures that are induced by the bacterial Shiga toxin, which homopentameric B-subunit (STxB). STxB binds to the cellular enters cells by clathrin-independent endocytosis. We show that toxin toxin receptor, the glycosphingolipid Gb3, and then shuttles the trafficking into cells and cell intoxication rely on these SNARE holotoxin through the retrograde route from the plasma membrane proteins. -
Syntaxin 13 Mediates Cycling of Plasma Membrane Proteins Via Tubulovesicular Recycling Endosomes Rytis Prekeris,* Judith Klumperman,‡ Yu A
Syntaxin 13 Mediates Cycling of Plasma Membrane Proteins via Tubulovesicular Recycling Endosomes Rytis Prekeris,* Judith Klumperman,‡ Yu A. Chen,* and Richard H. Scheller* *Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5428; and ‡Medical School, University of Utrecht, Institute for Biomembranes, 3584CX Utrecht, The Netherlands Abstract. Endocytosis-mediated recycling of plasma oles, where it is often found in clathrin-coated mem- membrane is a critical vesicle trafficking step important brane areas. Furthermore, anti-syntaxin 13 antibody in- in diverse biological processes. The membrane traffick- hibits transferrin receptor recycling in permeabilized ing decisions and sorting events take place in a series of PC12 cells. Immunoprecipitation of syntaxin 13 re- heterogeneous and highly dynamic organelles, the en- vealed that, in Triton X-100 extracts, syntaxin 13 is dosomes. Syntaxin 13, a recently discovered member of present in a complex(es) comprised of bSNAP, VAMP the syntaxin family, has been suggested to play a role in 2/3, and SNAP-25. This complex(es) binds exogenously mediating endosomal trafficking. To better understand added aSNAP and NSF and dissociates in the presence the function of syntaxin 13 we examined its intracellu- of ATP, but not ATPgS. These results support a role lar distribution in nonpolarized cells. By confocal im- for syntaxin 13 in membrane fusion events during the munofluorescence and electron microscopy, syntaxin recycling of plasma membrane proteins. 13 is primarily found in tubular early and recycling en- dosomes, where it colocalizes with transferrin receptor. Key words: vesicular transport • endosomes • protein Additional labeling is also present in endosomal vacu- recycling • membrane trafficking • syntaxin iological membranes are used to establish func- dermal growth factor (38, 39, 59) become highly concen- tional compartments in eucaryotic organisms.