The Pennsylvanian System of Southeastern Arizona
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Brachiopod Antiquatonia Coloradoensis (Girty) from the Upper Morrowan and Atokan (Lower Middle Pennsylvanian) of the United States
U.S. Department of the Interior U.S. Geological Survey The Brachiopod Antiquatonia coloradoensis (Girty) from the Upper Morrowan and Atokan (Lower Middle Pennsylvanian) of the United States U.S. Geological Survey Professional Paper 1588 The Brachiopod Antiquatonia coloradoensis (Girty) from the Upper Morrowan and Atokan (Lower Middle Pennsylvanian) of the United States By Thomas W. Henry T OF EN TH U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1588 TM E R I A N P T E E D R . I O S . R Taxonomic and biostratigraphic analysis of a widespread and U stratigraphically restricted, semireticulate productid brachiopod M 9 A 8 4 R C H 3, 1 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Schaefer, Interim Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Henry, Thomas W. The brachiopod Antiquatonia coloradoensis (Girty) from the upper Morrowan and Atokan (lower Middle Pennsylvanian) of the United States / by Thomas W. Henry. p. cm.—(U.S. Geological Survey professional paper ; 1588) Includes bibliographical references (p. – ). 1. Antiquatonia coloradoensis—United States. 2. Paleontology—Pennsylvanian. 3. Animals, Fossil—United States. I. Title. II. Series. QE797.S89H46 1988 564′.68—dc21 97–42005 CIP CONTENTS -
A Quantitative Study of Benthic Faunal Patterns Within the Pennsylvanian and Early Permian
PALAIOS, 2006, v. 21, p. 316–324 Research Report DOI: 10.2110/palo.2005.P05-82e A QUANTITATIVE STUDY OF BENTHIC FAUNAL PATTERNS WITHIN THE PENNSYLVANIAN AND EARLY PERMIAN NICOLE BONUSO* AND DAVID J. BOTTJER Department of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, Los Angeles, California, 90089-0740, USA e-mail: [email protected] ABSTRACT primary literature. Mudge and Yochelson’s (1962) monograph describes the stratigraphy and paleontology of the Pennsylvanian–Permian Mid- Using abundance data, this study explores quantitative patterns from continent of Kansas using over 300 fossil collections. Yancey and Stevens marine benthos, including implications for paleogeography, deposi- (1981) studied the Early Permian of Nevada and Utah extensively, re- tional environment, stratigraphic position, taxonomic groups (bra- corded abundance data from 55 localities, and identified paleocommun- chiopod or mollusc), substrate preferences, and ecological niches. ities based on the faunal comparisons and relative abundances within each Twenty-nine brachiopod- and bivalve-dominated fossil assemblages sample collected. As a result, three groups of commonly occurring com- from the Pennsylvanian and Early Permian of North and South Amer- munities emerged: (1) nearshore, mollusc-dominated; (2) open-shelf, non- ica, Thailand, and Australia were analyzed from carbonate-platform molluscan; and (3) deeper water, offshore mollusc-dominated. More re- environments; specifically, Nevada, Kansas, Oklahoma, Texas, Utah, cently, Olszewski and Patzkowsky (2001) documented the reoccurrence New Mexico, Venezuela, Kanchanaburi (Thailand), and Queensland of Pennsylvanian–Permian Midcontinent brachiopod and bivalve associ- (Australia). Samples were categorized by paleogeographic location, de- ations through time (Olszewski and Patzkowsky, 2001). Using a combi- positional environment, and age to help differentiate factors control- nation of data from Mudge and Yochelson (1962) and their own data, ling the faunal patterns. -
Brachiopods from the Mobarak Formation, North Iran
GeoArabia, 2011, v. 16, no. 3, p. 129-192 Gulf PetroLink, Bahrain Tournaisian (Mississippian) brachiopods from the Mobarak Formation, North Iran Maryamnaz Bahrammanesh, Lucia Angiolini, Anselmo Alessandro Antonelli, Babak Aghababalou and Maurizio Gaetani ABSTRACT Following detailed stratigraphic work on the Mississippian marlstone and bioclastic limestone of the Mobarak Formation of the Alborz Mountains in North Iran, forty-eight of the most important brachiopod taxa are here systematically described and illustrated. The ranges of the taxa are given along the Abrendan and Simeh Kuh stratigraphic sections, located north of Damgham. The examined brachiopod species date the base of the Mobarak Formation to the Tournaisian, in absence of age-diagnostic foraminifers. Change in brachiopod settling preferences indicates a shift from high energy, shallow-water settings with high nutrient supply in the lower part of the formation to quieter, soft, but not soppy substrates, with lower nutrient supply in the middle part of the Mobarak Formation. Brachiopod occurrence is instead scanty at its top. The palaeobiogeographic affinity of the Tournaisian brachiopods from North Iran indicates a closer relationship to North America, Western Europe and the Russian Platform than to cold-water Australian faunas, confirming the affinity of the other biota of the Alborz Mountains. This can be explained by the occurrence of warm surface-current gyres widely distributing brachiopod larvae across the Palaeotethys Ocean, where North Iran as other peri- Gondwanan blocks acted as staging-posts. INTRODUCTION The Mississippian Mobarak Formation of the Alborz Mountains (North Iran) has been recently revised by Brenckle et al. (2009) who focused mainly on its calcareous microfossil biota and refined its biostratigraphy, chronostratigraphy and paleogeography. -
Download Date 30/12/2018 22:47:41
Stratigraphy and paleontology of the Naco Formation in the southern Dripping Spring Mountains, near Winkelman, Gila County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Reid, Alastair Milne, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 30/12/2018 22:47:41 Link to Item http://hdl.handle.net/10150/551821 STRATIGRAPHY AND PALEONTOLOGY OF THE NACO FORMATION IN THE SOUTHERN DRIPPING SPRING MOUNTAINS, NEARWINKELMAN, GILA COUNTY, ARIZONA by Ala stair M. Reid A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1966 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of require ments for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests of permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judg ment the proposed use of the material is in the interests of scholarship. -
A Thesis Submitted to the Faculty of The
Stratigraphy and structure of the northeastern part of the Tucson Mountains Item Type text; Thesis-Reproduction (electronic) Authors Whitney, Richard Lee, 1929- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 02:05:00 Link to Item http://hdl.handle.net/10150/551280 STRATIGRAPHY AND STRUCTURE OF THE NORTHEASTERN PART OF THE TUCSON MOUNTAINS by Richard L. Whitney / Qy w 'r' -- - A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College UNIVERSITY OF ARIZONA 1957 j i j 9S7 52, This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the library. Brief quotations from this thesis are allowable with- out special permission, provided that accurate acknowledge ment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. -
Shell Microstructures in Lopingian Brachiopods: Implications for Fabric Evolution and Calcification
Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 123(3): 541-560. November 2017 SHELL MICROSTRUCTURES IN LOPINGIAN BRACHIOPODS: IMPLICATIONS FOR FABRIC EVOLUTION AND CALCIFICATION CLAUDIO GARBELLI State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, Jiangsu 210008, P.R. China. Dipartimento di Scienze della Terra A. Desio, Università di Milano, Via Mangiagalli 34, 20133 Milan, Italy. E-mail: [email protected] To cite this article: Garbelli C. (2017) - Shell microstructures in Lopingian brachiopods: implications for fabric evolution and calcification. Riv. It. Paleontol. Strat., 123(3): 541-560. Keywords: Rhynchonelliformea; Strophomenata; biomineralization; taxonomy; columnar layer. Abstract. The study of the shell microstructure of brachiopods is fundamental to understand their evolu- tionary history and their biomineralization process. Here, species of forty Lopingian brachiopods genera, represen- tative of twenty-seven different families, are investigated using the Scanning Electron Microscope. The investiga- ted specimens come from different paleogeographic localities in the Palaeotethys/Neotethys oceans. The studied brachiopods show a large variability of the shell fabric, which is mainly related to the organization of its structural units: laminae, fibers and columns, possibly crossed by pseudopunctae or punctae. For the Strophomenata, the laminar fabric of Productida is crossed by pseudopunctae with taleolae and the laminae are often organized in packages, with the blades oriented about perpendicular to each other; this feature is less evident in the laminar Or- thotetida, which bear pseudopunctae without taleoae. For the Rhynchonellata, fibrous fabrics are either impuctate in the Spiriferida, most Athyridida and Rhynchonellida, or with punctae, as observed in the Orthida, Terebratulida and in the Neoretziidae (Athyridida). -
Palaeobiogeography of the Late Carboniferous Brachiopoda from Velebit Mt
2016 | 69/2 | 177–185 | 10 Figs. | 2 Tabs. | www.geologia-croatica Journal of the Croatian Geological Survey and the Croatian Geological Society Palaeobiogeography of the Late Carboniferous brachiopoda from Velebit Mt. (Croatia) Mirko Japundžić1 and Jasenka Sremac2 1 Gruška 16, 10 000 Zagreb, Hrvatska; ([email protected]) 2 University of Zagreb, Department of Geology, Division of Geology and Paleontology, Horvatovac 102a, 10 000 Zagreb, Croatia; (corresponding author: [email protected]) doi: 10.4154/gc.2016.23 Abstract Article history: An abundant and diverse Late Carboniferous brachiopod fauna from Velebit Mt. (Croatia) com- Manuscript received September 30, 2015 prises 63 brachiopod taxa dominated by Productida and Spiriferida. The Spiriferinida, Athyridida, Revised manuscript accepted June 21, 2016 Orthotethida and Rhynchonellata are less common, while the Orthida, Dictyonellida and Tere- Available online June 29, 2016 bratulida occur in very small numbers. Brachiopods are mostly preserved as casts and moulds in shales, limestones and sandstones. Associated fusulinid foraminifera and calcareous algae Keywords: Brachiopoda, palaeobiogeography, indicate a Kasimovian to Gzhelian age for the brachiopod–bearing deposits. The global biogeo- palaeoecology, Late Carboniferous, Velebit Mt., graphic distribution of brachiopod taxa indicates the probable seaways and brachiopod migra- Croatia. tion routes, along the Euramerican shelves. 1. INTRODUCTION Brachiopods are common marine macrofossils in the Late Car- to 6 km wide, representing the core of an anticline, with a NW– boniferous sedimentary rocks of Velebit Mt. They have been col- SE strike (Fig. 1). They exhibit a variety of ancient environments lected since the beginning of the 19th century and stored in the varying from shoreline forests and swamps, through coastal and Croatian Natural History Museum. -
Geology of the South Pavant Range, Millard and Sevier Counties, Utah
GEOLOGY OF THE SOUTH PAVANT RANGE MILLARD AND SEVIER COUNTIES, UTAH A Thesis Submitted to the Faculty of the Department of Geology Brigham Young University In Partial Fulfillment of the Requirements for the Degree Naster of Science by Gary Wayne Crosby August 1959 ACKNOWLED GMENTS Drs. Lehi F. Hintze and Harold J. Bissell served in an advisory capacity to the author during the project of mapping and reporting the peology of the south end of the Pavant Range, and assisted in solving stratigraphic and structural problems both in the field and in the laboratory, Dr. J, Keit,h Rigby aided in fossil identifications, The staff of the American Sulfur and Refining Company at Sulfurdale, Utah made available information on the sulfur and fluorspar deposits in the area investigated, The townspeople of Kanosh gave friend] y assis-. tance in many ways. Mr. Boyd W. Bobo, Jr, helped in rncssuring stratigraphic sections. Dixie Lin Crosby, the author's :\rife, gave help and encouragement. The author is aware of the time and personal expense re- quired of those who aided and takes this opportunity to express his gratitude for their assistance; however the auttlc?r assumes full responsibility for the facts and conclusions given in t.his paper, TABLE OF CONTENTS ACKNOWLEDGI\iENTS ....................... i LIST OF ILLUSTRATlONS AND TABLES ..............iii ABSTRACT O... o.................~.... V INTKODUCTlON ........................ 1 Location and Accessibility ............... 1 Physical Reatures and Water Resources ......... 1 Climateandvegetation ................ -
Abstract and Content In
1 PERMIAN AND TRIASSIC STRATIGRAPHY AND FOSSILS OF THE HIMALAYA IN NORTHERN NEPAL By J. B. WATERHOUSE Earthwise volume 6 2 ISBN 0-476-004180-7 Date of Publication March 31, 2004 Copyright J. B. Waterhouse Reproduction in full or in part, with acknowledgement, is authorized. Printed by Brackens, Oamaru 3 PREFACE This study focuses on Permian stratigraphy of the Manang district, north-central Nepal, and Carboniferous and Permian brachiopods significant from a regional Himalayan and world perspective. Fossiliferous Late Paleozoic rocks in the Manang district of north-central Nepal are exposed north of the Annapurna Range along the north side of the Marsyangdi valley from east of Braga settlement (11500ft, 3505m) to beyond Manang settlement (11650ft, 3551m), south of the peaks of Chulu (21672ft, 6630m and 20321ft, 6200m). The rocks persist westwards for 15km across Puchenpra Peak (16883ft, 4950m) and an unnamed peak at 17315ft, 5146m, along the north and west side of a huge glacial amphitheatre called Plateau of Lakes, and continue to Mesokanto Pass (16730ft, 5099m), then descend 5km along the Thini River valley to the Kali Gandaki River and the settlement of Jomson (8900ft, 2713m). Further west lies the region of Dolpo in northwest Nepal, where similar Permian-Triassic rocks are exposed north of the Dhaulagiri massif (Fuchs 1967, 1975, 1977, Waterhouse 1977, 1978). Overall these geological observations on Late Paleozoic and Early Mesozoic rocks and fossils extend over 160km, in a band 5-20km broad. General geological studies and maps of the Manang region by Bordet et al. (1975) and Fuchs et al. (1988) provide critical data on the regional setting, and Garzanti et al. -
Intense Drilling in the Carboniferous Brachiopod Cardiarina Cordata Cooper, 1956
Intense drilling in the Carboniferous brachiopod Cardiarina cordata Cooper, 1956 ALAN P. HOFFMEISTER, MICHAs KOWALEWSKI, RICHARD K. BAMBACH AND TOMASZ K. BAUMILLER Hoffmeister, A.P., Kowalewski, M., Bambach, R.K. & Baumiller, T.K. 2003 06 12: In- tense drilling in the Carboniferous brachiopod Cardiarina cordata Cooper, 1956. Lethaia, Vol. 36, pp. 107±118. Oslo. ISSN 0024-1164. The brachiopod Cardiarina cordata, collected from a Late Pennsylvanian (Virgilian) limestone unit in Grapevine Canyon (Sacramento Mts., New Mexico), reveals frequent drillings: 32.7% (n = 400) of these small, invariably articulated specimens (<2 mm size) display small (<0.2 mm), round often beveled holes that are typically single and pene- trate one valve of an articulated shell. The observed drilling frequency is comparable with frequencies observed in the Late Mesozoic and Cenozoic. The drilling organism displayed high valve and site selectivity, although the exact nature of the biotic interac- tion recorded by drill holes (parasitism vs. predation) cannot be established. In addi- tion, prey/host size may have been an important factor in the selection of prey/host taxa by the predator/parasite. These results suggest that drilling interactions occasion- ally occurred at high (Cenozoic-like) frequencies in the Paleozoic. However, such anomalously high frequencies may have been restricted to small prey/host with small drill holes. Small drillings in C. cordata, and other Paleozoic brachiopods, may record a different guild of predators/parasites than the larger, but less common, drill holes pre- viously documented for Paleozoic brachiopods, echinoderms, and mollusks. & Brachio- pod, Carboniferous, drilling, parasitism, predation. A.P. Hoffmeister [[email protected]], Department of Geological Sciences, Indiana University, 1001 E. -
Witts Springs Formation of Morrow Age in the Snowball Quadrangle North-Central Arkansas
Witts Springs Formation of Morrow Age in the Snowball Quadrangle North-Central Arkansas By ERNEST E. CLICK, SHERWOOD E. FREZON, and MACKENZIE GORDON, JR. CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1194-D Definition, description, stratigraphy, and paleontology of a new formation UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: Glick, Ernest Earwood, 1922- Witts Springs Formation of Morrow age in the Snowball quadrangle, north-central Arkansas, by Ernest E. Glick, Sherwood E. Frezon, and Mackenzie Gordon, Jr. Washing ton, U.S. Govt. Print. Off., 1964. iii, 16 p. maps, diagr. 24 cm. (U.S. Geological Survey. Bulletin 1194-D) Contributions to stratigraphy. Bibliography: p. 16. 1. Geology Arkansas Searcy Co. 2. Geology, Stratigraphic Pennsylvanian. I. Frezon, Sherwood Earl, 1921- joint author. II. Gordon, Mackenzie, 1913- joint author. III. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing OfiBce Washington, D.C. 20402 - Price 10 cents (paper cover) CONTENTS Page Abstract__--_---____-_-------_-__----_-------------__--_---_--- Dl Introduction. ___---____-_-___-_____-._----___-_----________-____--_ 1 Type section._____________________________________________________ 5 Reference section._________________________________________________ 9 General features and stratigraphic relations.__________________________ 11 Fossils and age_----_______-_--______--_----__---_-_-_--_-____----- 13 References.. _ _______-_______-_____-___--------_-__--_-_-_----___-_ 16 ILLUSTRATIONS Page FIGURE 1. Index map showing areas discussed-_______________________ D2 2. Generalized topographic map of Snowball quadrangle.-.----. 3 3. -
GEOLOGÍA DE LA PLANCHA 48 LA JAGUA DE IBIRICO Escala 1:100.000 ¡Siente Tu Bandera, Memoria Explicativa Cree En Tu País! 2003
o 19 20 c . 26 27 v 19 20 33 34 o 27 26 40 41 33 34 g 40 41 47 48 . 47 48 55 56 s 55 56 65 66 a 65 66 75 76 75 76 n 85 86 85 86 i m o e g n i . w w w COLOMBIA GEOLOGÍA DE LA PLANCHA 48 LA JAGUA DE IBIRICO Escala 1:100.000 ¡Siente tu bandera, Memoria Explicativa cree en tu país! 2003 REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA INSTITUTO DE INVESTIGACIÓN E INFORMACIÓN GEOCIENTÍFICA, MINERO AMBIENTAL Y NUCLEAR INGEOMINAS GEOLOGÍA DE LA PLANCHA 48 LA JAGUA DE IBIRICO Escala 1:100.000 MEMORIA EXPLICATIVA Por Marina Hernández Bogotá, D.C., 2003 INSTITUTO DE INVESTIGACIÓN E INFORMACIÓN GEOCIENTÍFICA MINERO AMBIENTAL Y NUCLEAR INGEOMINAS Geología de la plancha 48 La Jagua de Ibirico Diagonal 53 No 34-53, A.A. No 48-65 Bogotá, D.C., Colombia www.ingeominas.gov.co Dirección General Adolfo Alarcón Guzmán Subdirección de Reconocimientos Geocientíficos Georgina Guzmán Proyecto Levantamiento, Compilación y Generación de la Información Geológica y Geomorfológica Alberto Ochoa Subdirección de Información Geocientífica Julián Escallón Silva Proyecto Almacenamiento, Suministro y Divulgación de la Información Geocientífica José Nelson Patiño Pérez Coordinación Producción Editorial Gladys María Pulido Reyes Revisión Editorial Diseño y Diagramación Jacqueline Santofimio Pizo Impresión INGEOMINAS Esta publicación es de INGEOMINAS cofinanciada POR EL FONDO NACIONAL DE REGALÍAS Prohibida la reproducción total o parcial de esta obra, por cualquier medio, sin autorización escrita de INGEOMINAS REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA INSTITUTO DE INVESTIGACIÓN E INFORMACIÓN GEOCIENTÍFICA, MINERO AMBIENTAL Y NUCLEAR INGEOMINAS GEOLOGÍA DE LA PLANCHA 48 LA JAGUA DE IBIRICO Escala 1:100.000 MEMORIA EXPLICATIVA Por Marina Hernández Bogotá, D.C., 2002 CONTENIDO RESUMEN ..........................................................................................................................................