Bootstrap Prediction Intervals for Linear, Nonlinear and Nonparametric Autoregressions

Total Page:16

File Type:pdf, Size:1020Kb

Bootstrap Prediction Intervals for Linear, Nonlinear and Nonparametric Autoregressions UC San Diego Recent Work Title Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions Permalink https://escholarship.org/uc/item/67h5s74t Authors Pan, Li Politis, Dimitris N Publication Date 2014 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California arXiv: arXiv:0000.0000 Bootstrap prediction intervals for linear, nonlinear and nonparametric autoregressions Li Pan and Dimitris N. Politis∗ Li Pan Department of Mathematics University of California{San Diego La Jolla, CA 92093-0112, USA e-mail: [email protected] Dimitris N. Politis Department of Mathematics University of California{San Diego La Jolla, CA 92093-0112, USA e-mail: [email protected] Abstract: In order to construct prediction intervals without the cumbersome|and typically unjustifiable—assumption of Gaussianity, some form of resampling is necessary. The regres- sion set-up has been well-studied in the literature but time series prediction faces additional difficulties. The paper at hand focuses on time series that can be modeled as linear, nonlinear or nonparametric autoregressions, and develops a coherent methodology for the construction of bootstrap prediction intervals. Forward and backward bootstrap methods using predictive and fitted residuals are introduced and compared. We present detailed algorithms for these different models and show that the bootstrap intervals manage to capture both sources of variability, namely the innovation error as well as estimation error. In simulations, we compare the prediction intervals associated with different methods in terms of their achieved coverage level and length of interval. Keywords and phrases: Confidence intervals, forecasting, time series.. 1. Introduction Statistical inference is not considered complete if it is not accompanied by a measure of its inherent accuracy. With point estimators, the accuracy is measured either by a standard error or a confidence interval. With (point) predictors, the accuracy is measured either by the predictor error variance or by a prediction interval. In the setting of an i.i.d. (independent and identically distributed) sample, the problem of predic- tion is not interesting. However, when the i.i.d. assumption no longer holds, the prediction problem is both important and intriguing; see Geisser (1993)[20] for an introduction. Typical situations where the i.i.d. assumption breaks down include regression and time series. The literature on predictive intervals in regression is not large; see e.g. Caroll and Ruppert (1991) [12], Patel (1989) [32], Schmoyer (1992)[36] and the references therein. Note that to avoid the cum- bersome (and typically unjustifiable) assumption of Gaussianity, some form of resampling is nec- essary. The residual-based bootstrap in regression is able to capture the predictor variability due to errors in model estimation. Nevertheless, bootstrap prediction intervals in regression are often characterized by finite-sample undercoverage. As a remedy, Stine (1985)[37] suggested resampling the studentized residuals but this modification does not fully correct the problem; see the discussion ∗Research partialy supported by NSF grants DMS 13-08319 and DMS 12-23137. 1 L. Pan and D. Politis/Bootstrap prediction intervals for autoregressions 2 in Olive (2007)[30]. Politis(2013)[33] recently proposed the use of predictive (as opposed to fitted) residuals to be used in resampling which greatly alleviates the finite-sample undercoverage. Autoregressive (AR) time series models, be it linear, nonlinear, or nonparametric, have a formal resemblance to the analogous regression models. Indeed, AR models can typically be successfully fitted by the same methods used to estimate a regression, e.g., ordinary Least Square (LS) regression methods for parametric models, and scatterplot smoothing for nonparametric ones. The practitioner has only to be careful regarding the standard errors of the regression estimates but the model-based, i.e., residual-based, bootstrap should in principle be able to capture those. Therefore, it is not surprising that model-based resampling for regression can be extended to model-based resampling for auto-regression. Indeed, standard errors and confidence intervals based on resampling the residuals from a fitted AR model has been one of the first bootstrap approaches for time series; cf. Freedman (1984) [19], Efron and Tibshirani (1986) [15], and Bose (1988) [6]. However, the situation as regards prediction intervals is not as clear; for example, the conditional nature of the predictive inference in time series poses a difficulty. There are several papers on prediction intervals for linear AR models but the literature seems scattered and there are many open questions: (a) how to implement the model-based bootstrap for prediction, i.e., how to generate bootstrap series; (b) how to construct prediction intervals given the availability of many bootstrap series already generated; and lastly (c) how to evaluate asymptotic validity of a prediction interval. In addition, little seems to be known regarding prediction intervals for nonlinear and nonparametric autoregressions. In the paper at hand we attempt to give answers to the above, and provide a comprehensive approach towards bootstrap prediction intervals for linear, nonlinear, or nonparametric autoregres- sions. The models we will consider are of the general form: • AR model with homoscedastic errors Xt = m(Xt−1; :::; Xt−p) + t (1.1) • AR model with heteroscedastic errors Xt = m(Xt−1; :::; Xt−p) + σ(Xt−1; :::; Xt−p)t: (1.2) In the above, m(·) and σ(·) are unknown; if they can be are assumed to belong to a finite-dimensional, parametric family of functions, then the above describe a linear or nonlinear AR model. If m(·) and σ(·) are only assumed to belong to a smoothness class, then the above models describe a nonparametric autoregression. Regarding the errors, the following assumption is made: 2 1; 2; ··· are i.i.d. (0; σ ); and such that t is independent from fXs; s < tg for all t; (1.3) in conjuction with model (1.2), we must further assume that σ2 = 1 for identifiability. Note, that under either model (1.1) or (1.2), the causality assumption (1.3) ensures that E(XtjfXs; s < tg) = m(Xt−1; :::; Xt−p) gives the optimal predictor of Xt given fXs; s < tg; here optimality is with respect to Mean Squared Error (MSE) of prediction. Section2 describes the foundations of our approach. Pseudo-series can be generated by either a forward or backward bootstrap, using either fitted or predictive residuals|see Section 2.1 for a discussion. Predictive roots are defined in Section 2.2 while Sections 2.3 and 2.4 discuss notions of asymptotic validity. Section3 goes in depth as regards bootstrap prediction intervals for linear AR models. Section 4 addresses the nonlinear case using two popular nonlinear models as concrete examples. Finally, Section 5 introduces bootstrap prediction intervals for nonparametric autoregres- sions. Appendix A contains some technical proofs. A short conclusions section recapitulates the main findings making the point that the forward bootstrap with fitted or predictive residuals serves as the unifying principle across all types of AR models, linear, nonlinear or nonparametric. L. Pan and D. Politis/Bootstrap prediction intervals for autoregressions 3 2. Bootstrap prediction intervals: laying the foundation 2.1. Forward and backward bootstrap for prediction As previously mentioned, an autoregression can be formally viewed as regression. However, in pre- diction with an AR(p) model, linear or nonlinear, an additional difficulty is that the one-step-ahead prediction is done conditionally on the last p observed values that are themselves random. To fix ideas, suppose X1; ··· ;Xn are data from the linear AR(1) model: Xt = φ1Xt−1 + t where jφ1j < 1 and the t are i.i.d. with mean zero. Given the data, the MSE{optimal predictor of Xn+1 ^ given the data is φ1Xn which is approximated in practice by plugging-in an estimator, say φ1, for ∗ ∗ φ1. Generating bootstrap series X1 ;X2 ; ··· from the fitted AR model enables us to capture the ^ ∗ ∗ variability of φ1 when the latter is re-estimated from bootstrap datasets such as X1 ; ··· ;Xn. For the application to prediction intervals, note that the bootstrap also allows us to generate ∗ ^ Xn+1 so that the statistical accuracy of the predictor φ1Xn can be gauged. However, none of these ∗ bootstrap series will have their last value Xn exactly equal to the original value Xn as needed for ^ prediction purposes. Herein lies the problem, since the behavior of the predictor φ1Xn needs to be captured conditionally on the original value Xn. To avoid this difficulty, Thombs and Schucany(1990)[39] proposed to generate the bootstrap data ∗ ∗ ∗ X1 ; ··· ;Xn going backwards from the last value that is fixed at Xn = Xn. This is the backward bootstrap method that was revisited by Breidt, Davis and Dunsmuir(1995)[10] who gave the correct ∗ algorithm of finding the backward errors. Note that the generation of Xn+1 is still done in a forward fashion using the fitted AR model conditionally on the value Xn. Nevertheless, the natural way autoregressions evolve is forward in time, i.e., given Xt−1, the next observation is generated as Xt = φ1Xt−1 + t, and so on. Thus, it is intuitive to construct bootstrap ∗ procedures that run forward in time, i.e., given Xt−1, the next bootstrap observation is generated as ∗ ^ ∗ ∗ Xt = φ1Xt−1 + t ; (2.1) and so on. Indeed, most (if not all) of the literature on bootstrap confidence intervals for AR models uses the natural time order to generate bootstrap series. It would be nice to be able to build upon this large body of work in order to construct prediction intervals. However, recall that predictive inference is to be conducted conditionally on the last value Xn in order to be able to place prediction bounds ^ ∗ ∗ ^ ∗ around the point predictor φ1Xn. So how can one ensure that Xn = Xn so that Xn+1 = φ1Xn+n+1? Aided by the additive structure of the AR model, it is possible to \have our cake and eat it too", ∗ i.e., generate bootstrap series forward in time but also ensure that Xn+1 is constructed correctly.
Recommended publications
  • CONFIDENCE Vs PREDICTION INTERVALS 12/2/04 Inference for Coefficients Mean Response at X Vs
    STAT 141 REGRESSION: CONFIDENCE vs PREDICTION INTERVALS 12/2/04 Inference for coefficients Mean response at x vs. New observation at x Linear Model (or Simple Linear Regression) for the population. (“Simple” means single explanatory variable, in fact we can easily add more variables ) – explanatory variable (independent var / predictor) – response (dependent var) Probability model for linear regression: 2 i ∼ N(0, σ ) independent deviations Yi = α + βxi + i, α + βxi mean response at x = xi 2 Goals: unbiased estimates of the three parameters (α, β, σ ) tests for null hypotheses: α = α0 or β = β0 C.I.’s for α, β or to predictE(Y |X = x0). (A model is our ‘stereotype’ – a simplification for summarizing the variation in data) For example if we simulate data from a temperature model of the form: 1 Y = 65 + x + , x = 1, 2,..., 30 i 3 i i i Model is exactly true, by construction An equivalent statement of the LM model: Assume xi fixed, Yi independent, and 2 Yi|xi ∼ N(µy|xi , σ ), µy|xi = α + βxi, population regression line Remark: Suppose that (Xi,Yi) are a random sample from a bivariate normal distribution with means 2 2 (µX , µY ), variances σX , σY and correlation ρ. Suppose that we condition on the observed values X = xi. Then the data (xi, yi) satisfy the LM model. Indeed, we saw last time that Y |x ∼ N(µ , σ2 ), with i y|xi y|xi 2 2 2 µy|xi = α + βxi, σY |X = (1 − ρ )σY Example: Galton’s fathers and sons: µy|x = 35 + 0.5x ; σ = 2.34 (in inches).
    [Show full text]
  • Choosing a Coverage Probability for Prediction Intervals
    Choosing a Coverage Probability for Prediction Intervals Joshua LANDON and Nozer D. SINGPURWALLA We start by noting that inherent to the above techniques is an underlying distribution (or error) theory, whose net effect Coverage probabilities for prediction intervals are germane to is to produce predictions with an uncertainty bound; the nor- filtering, forecasting, previsions, regression, and time series mal (Gaussian) distribution is typical. An exception is Gard- analysis. It is a common practice to choose the coverage proba- ner (1988), who used a Chebychev inequality in lieu of a spe- bilities for such intervals by convention or by astute judgment. cific distribution. The result was a prediction interval whose We argue here that coverage probabilities can be chosen by de- width depends on a coverage probability; see, for example, Box cision theoretic considerations. But to do so, we need to spec- and Jenkins (1976, p. 254), or Chatfield (1993). It has been a ify meaningful utility functions. Some stylized choices of such common practice to specify coverage probabilities by conven- functions are given, and a prototype approach is presented. tion, the 90%, the 95%, and the 99% being typical choices. In- deed Granger (1996) stated that academic writers concentrate KEY WORDS: Confidence intervals; Decision making; Filter- almost exclusively on 95% intervals, whereas practical fore- ing; Forecasting; Previsions; Time series; Utilities. casters seem to prefer 50% intervals. The larger the coverage probability, the wider the prediction interval, and vice versa. But wide prediction intervals tend to be of little value [see Granger (1996), who claimed 95% prediction intervals to be “embarass- 1.
    [Show full text]
  • STATS 305 Notes1
    STATS 305 Notes1 Art Owen2 Autumn 2013 1The class notes were beautifully scribed by Eric Min. He has kindly allowed his notes to be placed online for stat 305 students. Reading these at leasure, you will spot a few errors and omissions due to the hurried nature of scribing and probably my handwriting too. Reading them ahead of class will help you understand the material as the class proceeds. 2Department of Statistics, Stanford University. 0.0: Chapter 0: 2 Contents 1 Overview 9 1.1 The Math of Applied Statistics . .9 1.2 The Linear Model . .9 1.2.1 Other Extensions . 10 1.3 Linearity . 10 1.4 Beyond Simple Linearity . 11 1.4.1 Polynomial Regression . 12 1.4.2 Two Groups . 12 1.4.3 k Groups . 13 1.4.4 Different Slopes . 13 1.4.5 Two-Phase Regression . 14 1.4.6 Periodic Functions . 14 1.4.7 Haar Wavelets . 15 1.4.8 Multiphase Regression . 15 1.5 Concluding Remarks . 16 2 Setting Up the Linear Model 17 2.1 Linear Model Notation . 17 2.2 Two Potential Models . 18 2.2.1 Regression Model . 18 2.2.2 Correlation Model . 18 2.3 TheLinear Model . 18 2.4 Math Review . 19 2.4.1 Quadratic Forms . 20 3 The Normal Distribution 23 3.1 Friends of N (0; 1)...................................... 23 3.1.1 χ2 .......................................... 23 3.1.2 t-distribution . 23 3.1.3 F -distribution . 24 3.2 The Multivariate Normal . 24 3.2.1 Linear Transformations . 25 3.2.2 Normal Quadratic Forms .
    [Show full text]
  • Inference in Normal Regression Model
    Inference in Normal Regression Model Dr. Frank Wood Remember I We know that the point estimator of b1 is P(X − X¯ )(Y − Y¯ ) b = i i 1 P 2 (Xi − X¯ ) I Last class we derived the sampling distribution of b1, it being 2 N(β1; Var(b1))(when σ known) with σ2 Var(b ) = σ2fb g = 1 1 P 2 (Xi − X¯ ) I And we suggested that an estimate of Var(b1) could be arrived at by substituting the MSE for σ2 when σ2 is unknown. MSE SSE s2fb g = = n−2 1 P 2 P 2 (Xi − X¯ ) (Xi − X¯ ) Sampling Distribution of (b1 − β1)=sfb1g I Since b1 is normally distribute, (b1 − β1)/σfb1g is a standard normal variable N(0; 1) I We don't know Var(b1) so it must be estimated from data. 2 We have already denoted it's estimate s fb1g I Using this estimate we it can be shown that b − β 1 1 ∼ t(n − 2) sfb1g where q 2 sfb1g = s fb1g It is from this fact that our confidence intervals and tests will derive. Where does this come from? I We need to rely upon (but will not derive) the following theorem For the normal error regression model SSE P(Y − Y^ )2 = i i ∼ χ2(n − 2) σ2 σ2 and is independent of b0 and b1. I Here there are two linear constraints P ¯ ¯ ¯ (Xi − X )(Yi − Y ) X Xi − X b1 = = ki Yi ; ki = P(X − X¯ )2 P (X − X¯ )2 i i i i b0 = Y¯ − b1X¯ imposed by the regression parameter estimation that each reduce the number of degrees of freedom by one (total two).
    [Show full text]
  • Sieve Bootstrap-Based Prediction Intervals for Garch Processes
    SIEVE BOOTSTRAP-BASED PREDICTION INTERVALS FOR GARCH PROCESSES by Garrett Tresch A capstone project submitted in partial fulfillment of graduating from the Academic Honors Program at Ashland University April 2015 Faculty Mentor: Dr. Maduka Rupasinghe, Assistant Professor of Mathematics Additional Reader: Dr. Christopher Swanson, Professor of Mathematics ABSTRACT Time Series deals with observing a variable—interest rates, exchange rates, rainfall, etc.—at regular intervals of time. The main objectives of Time Series analysis are to understand the underlying processes and effects of external variables in order to predict future values. Time Series methodologies have wide applications in the fields of business where mathematics is necessary. The Generalized Autoregressive Conditional Heteroscedasic (GARCH) models are extensively used in finance and econometrics to model empirical time series in which the current variation, known as volatility, of an observation is depending upon the past observations and past variations. Various drawbacks of the existing methods for obtaining prediction intervals include: the assumption that the orders associated with the GARCH process are known; and the heavy computational time involved in fitting numerous GARCH processes. This paper proposes a novel and computationally efficient method for the creation of future prediction intervals using the Sieve Bootstrap, a promising resampling procedure for Autoregressive Moving Average (ARMA) processes. This bootstrapping technique remains efficient when computing future prediction intervals for the returns as well as the volatilities of GARCH processes and avoids extensive computation and parameter estimation. Both the included Monte Carlo simulation study and the exchange rate application demonstrate that the proposed method works very well under normal distributed errors.
    [Show full text]
  • On Small Area Prediction Interval Problems
    ASA Section on Survey Research Methods On Small Area Prediction Interval Problems Snigdhansu Chatterjee, Parthasarathi Lahiri, Huilin Li University of Minnesota, University of Maryland, University of Maryland Abstract In the small area context, prediction intervals are often pro- √ duced using the standard EBLUP ± zα/2 mspe rule, where Empirical best linear unbiased prediction (EBLUP) method mspe is an estimate of the true MSP E of the EBLUP and uses a linear mixed model in combining information from dif- zα/2 is the upper 100(1 − α/2) point of the standard normal ferent sources of information. This method is particularly use- distribution. These prediction intervals are asymptotically cor- ful in small area problems. The variability of an EBLUP is rect, in the sense that the coverage probability converges to measured by the mean squared prediction error (MSPE), and 1 − α for large sample size n. However, they are not efficient interval estimates are generally constructed using estimates of in the sense they have either under-coverage or over-coverage the MSPE. Such methods have shortcomings like undercover- problem for small n, depending on the particular choice of age, excessive length and lack of interpretability. We propose the MSPE estimator. In statistical terms, the coverage error a resampling driven approach, and obtain coverage accuracy of such interval is of the order O(n−1), which is not accu- of O(d3n−3/2), where d is the number of parameters and n rate enough for most applications of small area studies, many the number of observations. Simulation results demonstrate of which involve small n.
    [Show full text]
  • Bayesian Prediction Intervals for Assessing P-Value Variability in Prospective Replication Studies Olga Vsevolozhskaya1,Gabrielruiz2 and Dmitri Zaykin3
    Vsevolozhskaya et al. Translational Psychiatry (2017) 7:1271 DOI 10.1038/s41398-017-0024-3 Translational Psychiatry ARTICLE Open Access Bayesian prediction intervals for assessing P-value variability in prospective replication studies Olga Vsevolozhskaya1,GabrielRuiz2 and Dmitri Zaykin3 Abstract Increased availability of data and accessibility of computational tools in recent years have created an unprecedented upsurge of scientific studies driven by statistical analysis. Limitations inherent to statistics impose constraints on the reliability of conclusions drawn from data, so misuse of statistical methods is a growing concern. Hypothesis and significance testing, and the accompanying P-values are being scrutinized as representing the most widely applied and abused practices. One line of critique is that P-values are inherently unfit to fulfill their ostensible role as measures of credibility for scientific hypotheses. It has also been suggested that while P-values may have their role as summary measures of effect, researchers underappreciate the degree of randomness in the P-value. High variability of P-values would suggest that having obtained a small P-value in one study, one is, ne vertheless, still likely to obtain a much larger P-value in a similarly powered replication study. Thus, “replicability of P- value” is in itself questionable. To characterize P-value variability, one can use prediction intervals whose endpoints reflect the likely spread of P-values that could have been obtained by a replication study. Unfortunately, the intervals currently in use, the frequentist P-intervals, are based on unrealistic implicit assumptions. Namely, P-intervals are constructed with the assumptions that imply substantial chances of encountering large values of effect size in an 1234567890 1234567890 observational study, which leads to bias.
    [Show full text]
  • 4.7 Confidence and Prediction Intervals
    4.7 Confidence and Prediction Intervals Instead of conducting tests we could find confidence intervals for a regression coefficient, or a set of regression coefficient, or for the mean of the response given values for the regressors, and sometimes we are interested in the range of possible values for the response given values for the regressors, leading to prediction intervals. 4.7.1 Confidence Intervals for regression coefficients We already proved that in the multiple linear regression model β^ is multivariate normal with mean β~ and covariance matrix σ2(X0X)−1, then is is also true that Lemma 1. p ^ For 0 ≤ i ≤ k βi is normally distributed with mean βi and variance σ Cii, if Cii is the i−th diagonal entry of (X0X)−1. Then confidence interval can be easily found as Lemma 2. For 0 ≤ i ≤ k a (1 − α) × 100% confidence interval for βi is given by È ^ n−p βi ± tα/2 σ^ Cii Continue Example. ?? 4 To find a 95% confidence interval for the regression coefficient first find t0:025 = 2:776, then p 2:38 ± 2:776(1:388) 0:018 $ 2:38 ± 0:517 The 95% confidence interval for β2 is [1.863, 2.897]. We are 95% confident that on average the blood pressure increases between 1.86 and 2.90 for every extra kilogram in weight after correcting for age. Joint confidence intervals for a set of regression coefficients. Instead of calculating individual confidence intervals for a number of regression coefficients one can find a joint confidence region for two or more regression coefficients at once.
    [Show full text]
  • 1 Confidence Intervals
    Math 143 – Inference for Means 1 Statistical inference is inferring information about the distribution of a population from information about a sample. We’re generally talking about one of two things: 1. ESTIMATING PARAMETERS (CONFIDENCE INTERVALS) 2. ANSWERING A YES/NO QUESTION ABOUT A PARAMETER (HYPOTHESIS TESTING) 1 Confidence intervals A confidence interval is the interval within which a population parameter is believed to lie with a mea- surable level of confidence. We want to be able to fill in the blanks in a statement like the following: We estimate the parameter to be between and and this interval will contain the true value of the parameter approximately % of the times we use this method. What does confidence mean? A CONFIDENCE LEVEL OF C INDICATES THAT IF REPEATED SAMPLES (OF THE SAME SIZE) WERE TAKEN AND USED TO PRODUCE LEVEL C CONFIDENCE INTERVALS, THE POPULATION PARAMETER WOULD LIE INSIDE THESE CONFIDENCE INTERVALS C PERCENT OF THE TIME IN THE LONG RUN. Where do confidence intervals come from? Let’s think about a generic example. Suppose that we take an SRS of size n from a population with mean µ and standard deviation σ. We know that the sampling µ √σ distribution for sample means (x¯) is (approximately) N( , n ) . By the 68-95-99.7 rule, about 95% of samples will produce a value for x¯ that is within about 2 standard deviations of the true population mean µ. That is, about 95% of samples will produce a value for x¯ that √σ µ is within 2 n of . (Actually, it is more accurate to replace 2 by 1.96 , as we can see from a Normal Distribution Table.) ( ) √σ µ µ ( ) √σ But if x¯ is within 1.96 n of , then is within 1.96 n of x¯.
    [Show full text]
  • Correlations & Confidence Intervals
    M140 Introducing Statistics • This tutorial will begin at 7:30pm for about 70 minutes. Correlations & • I will be recording this presentation so please let me know if you have any questions or concerns about this. • Mics will be muted until the end of the tutorial, Confidence when I will also stop recording. • Feel free to use the Chat Box at any time! • I will email slides out after the tutorial and post Intervals them on my OU blog. • Things you might need today: Dr Jason Verrall • M140 Book 4 [email protected] • Calculator 07311 188 800 • Note-taking equipment • Drink of your choice Tutorials are enhanced by your interaction Please vote in the polls and ask questions! M140 Introducing Statistics Correlations & Confidence Intervals • Scatter Plots & Correlations • r values • Correlation & Causation • Confidence Intervals Computer Book has • Prediction Intervals detailed instructions! • Plus Minitab examples But you don’t need Minitab running today 2 Scatter Plots Scatter Plots & Correlations 1) Which is the positive relationship? A Variable 2 Variable Variable 1 B Variable 2 Variable Variable 1 3 Scatter Plots Scatter Plots & Correlations 1) Which is the positive relationship? A Variable 2 Variable Variable 1 B Variable 2 Variable Variable 1 4 Scatter Plots Scatter Plots & Correlations Scatterplots are notoriously tricky to interpret unless very clear, particularly the strength of any relationship 5 Scatter Plots Scatter Plots & Correlations Scatterplots are notoriously tricky to interpret unless very clear, particularly the strength
    [Show full text]
  • Lecture 32 the Prediction Interval Formulas for the Next Observation from a Normal Distribution When Σ Is Unknown
    Lecture 32 The prediction interval formulas for the next observation from a normal distribution when σ is unknown 1 Introduction In this lecture we will derive the formulas for the symmetric two-sided prediction interval for the n + 1-st observation and the upper-tailed prediction interval for the n+1-st observation from a normal distribution when the variance σ2 is unknown.We will need the following theorem from probability theory that gives the distribution of the statistic X − Xn +1. Suppose that X1,X2,...,Xn,Xn+1 is a random sample from a normal distribution with mean µ and variance σ2. − q n+1 Theorem 1. The random variable T =(X Xn+1)/( n S) has t distribution with n − 1 degrees of freedom. 2 The two-sided prediction interval formula Now we can prove the theorem from statistics giving the required prediction interval for the next observation xn+1 in terms of n observations x1,x2, ··· ,xn. Note that it is symmetric around X. This is one of the basic theorems that you have to learn how to prove. There are also asymmetric two-sided prediction intervals. − q n+1 q n+1 Theorem 2. The random interval (X tα/2,n−1 n S,X + tα/2,n−1 n S) is a 100(1 − α)%-prediction interval for xn+1. 1 Proof. We are required to prove rn +1 rn +1 P (X ∈ (X − t S,X + t S)) = 1 − α. n+1 α/2,n−1 n α/2,n−1 n We have rn +1 rn +1 LHS = P (X − t S<X ,X < X + t S)=P (X − X <t α/2,n−1 n n+1 n+1 α/2,n−1 n n+1 α/2,n− rn +1 rn +1 = P (X − X <t S,X − X > −t S) n+1 α/2,n−1 n n+1 α/2,n−1 n rn +1 rn +1 = P ((X − X )/ S<t , (X − X )/ S>−t ) n+1 n α/2,n−1 n+1 n α/2,n−1 =P (T<tα/2,n−1 ,T>−tα/2,n−1)=P (−tα/2,n−1 <T<tα/2,n−1)=1− α To prove the last equality draw a picture.
    [Show full text]
  • Chapters 2 and 10: Least Squares Regression
    Chapters 2 and 10: Least Squares Regression Learning goals for this chapter: Describe the form, direction, and strength of a scatterplot. Use SPSS output to find the following: least-squares regression line, correlation, r2, and estimate for σ. Interpret a scatterplot, residual plot, and Normal probability plot. Calculate the predicted response and residual for a particular x-value. Understand that least-squares regression is only appropriate if there is a linear relationship between x and y. Determine explanatory and response variables from a story. Use SPSS to calculate a prediction interval for a future observation. Perform a hypothesis test for the regression slope and for zero population correlation/independence, including: stating the null and alternative hypotheses, obtaining the test statistic and P-value from SPSS, and stating the conclusions in terms of the story. Understand that correlation and causation are not the same thing. Estimate correlation for a scatterplot display of data. Distinguish between prediction and extrapolation. Check for differences between outliers and influential outliers by rerunning the regression. Know that scatterplots and regression lines are based on sample data, but hypothesis tests and confidence intervals give you information about the population parameter. When you have 2 quantitative variables and you want to look at the relationship between them, use a scatterplot. If the scatter plot looks linear, then you can do least squares regression to get an equation of a line that uses x to explain what happens with y. The general procedure: 1. Make a scatter plot of the data from the x and y variables. Describe the form, direction, and strength.
    [Show full text]