A New Species of Phalanger (Phalangeridae: Marsupialia) from Montane Western Papua New Guinea

Total Page:16

File Type:pdf, Size:1020Kb

A New Species of Phalanger (Phalangeridae: Marsupialia) from Montane Western Papua New Guinea AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Flannery, Tim F., 1987. A new species of Phalanger (Phalangeridae: Marsupialia) from montane western Papua New Guinea. Records of the Australian Museum 39(4): 183–193. [30 September 1987]. doi:10.3853/j.0067-1975.39.1987.169 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1987) Vo!. 39: 183-193. ISSN 0067 1975 183 A New Species of Phalanger (Phalangeridae: Marsupialia) from Montane Western Papua New Guinea TIM FLANNERY Australian Museum P.G. Box A285, Sydney South, NSW 2000, Australia ABSTRACT. Phalanger matanim n.sp. is a plesiomorphic species of Phalanger, thus far known from only three specimens taken in the Telefomin area at altitudes between 1,550 and 2,600 m. Retention of a well-developed preparacrista on M2/, the presence of small simple molars, and having the periotic visible on the external basicranium in P. matanim are plesiomorphic features not otherwise seen in combination in the genus Phalanger. Although convergent with the other montane Phalanger species (P. vestitus, P. carmelitae and P. interpositus) in several external morphological features, P. matanim does not appear to be closely related to this group. At the upper limit of its altitudinal range, Phalanger matanim is sympatric with P. vestitus and S. leucippus, and at the lower end with these species and also P. interpositus and P. carmelitae. FLANNERY. TIM. 1987. A new species of Phalanger(Phalangeridae: Marsupialia) from Montane Western Papua New Guinea. Records of the Australian Museum 39(4): 183-193 Between 1984 and 1987 the author conducted a taxonomy for phalangerid species followed here is survey of the mammals of southern West Sepik that of George (in press), while Flannery et al. (in Province, Papua New Guinea (Fig. 1). Previously, press) is followed for supraspecific groupings. the mammal fauna of this region was very poorly sampled, and in the course of the work several Materials and Methods undescribed species were encountered. This work is intended as the first in a series of publications Colours, where capitalised, follow Ridgeway dealing with the results of this survey. The first (1886), and dental nomenclature follows Archer specimen of the new Phalangerwas collected during (1976, 1978). AM M is the prefix for Australian the 1985 field season, at a locality where four Museum mammal specimens, CM is the prefix for addi tional phalangerid species (Strigocuscus Australian National Wildlife Collection specimens, leucippus, Phalanger vestitus, P. carmelitae and P. DW is the prefix for Papua New Guinea Division of interpositus) occur sympatrically. At first, it was Wildlife mammal specimens (which will ultimately thought that the specimen could have been a hybrid be housed in the PNG Museum), WSP = West Sepik between two of these species, but further research Province, ESP =East Sepik Province, MBP = Milne and the discovery of two additional specimens has Bay Province, NP = Northern Province, CP = shown that the material indeed represents a distinct Central Province, WHP = Western Highlands and, until now, undescribed species of Phalanger. Province. Measurements were taken using vernier The taxonomy of the genus Phalanger has, until calipers, and weights and measurements were taken recently, been in a state of confusion. In the past on freshly dead specimens in the field. Appendix 1 many forms have been named and then lists the phalangerid specimens (other than P. synonymised without close examination. The matanim) examined during this study. 184 Records of the Australian Museum 39 SYSTEMATICS Etymology. Matanim is the Telefol name for Phalangeridae, Thomas, 1888 this species. This species is named in honour ofthe Phalangerinae Thomas, 1888 people of the Telefomin Valley, whose unceasing Phalanger Storr, 1780 goodwill and assistance allowed me to complete my mammal survey of their homeland. Diagnosis. Phalanger matanim n.sp. can be Phaianger matanim n.sp. distinguished from all other species of Phalanger in Figs 2-4, Table 1 possessing the following features: molars smaller and narrower (Figs 2-6); M21 with well-developed Holotype and type locality. AM M 14186, puppet skin preparacrista that connects with parastyle with skull and dentaries, with P3-M5 erupted, of a (occasionally also seen in P. orientalis); nasals subadult male. Collected by T. Flannery, upper Sol River wedged deeply into frontals in a pattern that is Valley, Telefomin area, West Sepik Province, Papua New unique within the genus (Figs 2,4); nasals narrower Guinea, 5°06'S 141°42'E, 2,600 m, 1 April 1986. Papua New Guinea topographic survey sheet 1-100,000 series, relative to maximum interorbital width than in any No.7282 (Telefomin, see Fig. 1). other member of the genus (Figs 7-8). Paratypes. AM M 14702, puppet skin and skull of an In addition, P. matanim differs from its cogeners adult male, collected by T. Flannery, Nong River Valley, in the following ways: lacking the spotted pelage, 5° II'S 14n5'E, 1,550 m, 9 July 1985, (Fig. 4). DW 8393, and the anterolingual cingulae of the upper molars puppet skin and skull of adult female, collected by F. as seen in P. lullulae; C11 much shorter than that of Kinbag & L. Seri, Tifalmin, 5°08'S 141 °3I'E, 1,600-1,800 P. orientalis and the sexes are similarly coloured and m, 18 Aug 1984 (Fig. 4). similar in size; dorsal stripe broader and more ill- Telefulip• 05·10' 141·45' 1-1--+-+----+- ..........----<1 km o 5 Fig. 1. Map showing the Telefomin Valley and localities where P. matanim has been captured. Flannery: New species of Phalanger 185 Fig. 2. Skull of the holotype of Phalanger matanim (AM M 14186) in A, dorsal, B, ventral (both stereo pairs) and C, lateral view. D, dentary of above in occlusal (stereopair) and E, lateral view. 186 Records of the Australian Museum 39 Fig. 3. Puppet skin of the holotype of Phalanger matanim (AM M14186) in A, dorsal and B, ventral views. Flannery: New species of Phalanger 187 defined, and fur longer and laxer than in P. a fissure placed just lingual to protocone. Several orientalis; ears much shorter than those of P. ridgelets and cuspules visible between this structure interpositus and P. orientalis; tail much shorter and paracone. Midlink interrupted at its lowest relative to head-body length than in P. carmelitae point by a fissure. It is a simple structure, arising (see Tables 1-2); external surface of ear almost from protocone and hypocone apices, the two naked, especially around margin, in strong contrast sections almost meeting in the interloph valley to densely furred ears of P. vestitus, P. carmelitae slightly buccal of these conids. Slight kink, and P. interpositus; greyish colouration and broad suggestive of presence of reduced stylar cusp, in dark dorsal stripe differ markedly from black posterior end of postparacrista, and larger stylar (dorsum) and white (venter) colouration seen in P. cusp immediately posterior to this, blocking buccal vestitus and P. carmelitae; basal part of naked end of interloph valley. Slight bulge in premetacrista portion of tail much more strongly tuberculated in suggests presence of a third stylar cusp. Hypoloph male of P. matanim than in P. vestitus and P. better developed than protoloph, and is interpositus. uninterrupted by fissures. Posterior cingulum V-shaped, composed of well-developed posthypocrista and weaker postmetacrista. No evidence of stylar cusp posterior to metacone, a Description structure usually present in Phalanger species. Lophs subequal in width. Skull and dentition. Skull of holotype has P31 M31 differs from M21 in the following ways: and M2-S1 erupted but little worn. Thus, although parastyle and all suggestions of stylar cusps absent; the animal was not sexually mature, full adult preparacrista forms much broader arc, enclosing dentition was in place. V-shaped basin similar in morphology to that III projects below level of 121 to approximately enclosed by posterior cingulum; protoloph slightly same extent as does ClI, and differs little in wider than hypoloph. morphology from III in other species of Phalanger. M41 differs from M31 in the following ways: 121 subovate in occlusal outline, and much larger smaller, hypoloph relatively narrower, and basin than either III or 13/. 131 tiny with long axis parallel enclosed by posterior cingulum deeper. to that of 121. ClI short and abuts 131; similar in MSI differs from M41 in the following ways: no morphology to that of other montane Phalanger hypoloph, and protoloph poorly developed; small species. If I does not differ in morphology from that cingulum present at base of posterolingual corner of of other phalangerids. tooth; MSI much smaller than M4/; posterior P 11 short and caniniform; single rooted but has moiety relatively narrower. very slight posterior expansion at its base. P21 M!2 of P. matanim a narrow, elongate tooth. miniscule; situated just anterior and slightly medial Trigonid in particular extremely narrow. to P3/. Long axis of P31 only slightly deflected Paracristid straight and elongate. Slight change in outwards relative to long axis of molar row; this slope in its anterior section suggests the presence of a orientation being closer to that of a species of paraconid. Poorly developed and lower metaconid Spilocuscus than Phalanger; sub ovate in occlusal lingual to tall protoconid. No sign of protostylid, outline; occlusal edge ornamented by three small although slight groove on rear face of trigonid cuspules. Anterior, buccal and lingual ridgelets present where the protostylid is separated from the extend towards crown base from anteriormost protoconid in other phalangerid species. Cristid cuspule, and much shorter buccal and lingual obliqua poorly developed with only slight ridgelets extend likewise from the more posteriorly suggestion of a kink anterior to hypoconid.
Recommended publications
  • Vernacular Name GLIDER, SUGAR (Aka: Sugar Squirrel, Lesser Flying Squirrel, Short-Headed Or Lesser Flying Phalanger, Lesser Glider, Wrist-Winged Glider)
    1/4 Vernacular Name GLIDER, SUGAR (aka: sugar squirrel, lesser flying squirrel, short-headed or lesser flying phalanger, lesser glider, wrist-winged glider) GEOGRAPHIC RANGE Eastern Australia, Moluccas, New Guinea and nearby islands HABITAT Wooded areas, preferably open forest. Forests of all types, provided there are enough trees for nesting. CONSERVATION STATUS IUCN: Least Concern (2016). COOL FACTS Sugar gliders can glide for at least 160'. They are accomplished acrobats that weave and maneuver gracefully between trees, landing with precision by swooping upwards. By skillfully adjusting their vertical and lateral angles of attack and twisting their gliding membranes in mid-air, Sugar gliders are able to take advantage of aerodynamic forces. Their tails are also used for carrying nest material. Hanging from branches by their hind feet, the animals break off leaves with their forefeet, pass the leaves from the forefeet to the hind feet to the tail which then coils around the nest material. Used this way, the tail cannot be used in gliding, so the animal transports the leaves by running along the tree branches to the nest They can tolerate wide ranges of temperatures by (1) huddling with others in their leafy nests to help save energy and (2) falling into dormancy and torpor (brief hibernation). They will also fall into torpor during long periods of food scarcity. They bite holes in a tree's bark to get the sweet sap. Since they can make sufficiently large holes to satisfy the carbohydrate requirements of a large group for a whole year, it is sufficient to defend a single tree.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • 3.Pdf Open Access
    Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.13/November-2020/3.pdf Open Access Genetic characterization and phylogenetic study of Indonesian cuscuses from Maluku and Papua Island based on 16S rRNA gene Rini Widayanti1 , Richo Apriladi Bagas Pradana1 , Rony Marsyal Kunda2 and Suhendra Pakpahan3 1. Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; 2. Biology Study Program, Faculty of Mathematics and Natural Sciences, Universitas Pattimura, Ambon, Indonesia; 3. Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, West Java, Indonesia. Corresponding author: Suhendra Pakpahan, e-mail: [email protected] Co-authors: RW: [email protected], RABP: [email protected], RMK: [email protected] Received: 04-06-2020, Accepted: 22-09-2020, Published online: 04-11-2020 doi: www.doi.org/10.14202/vetworld.2020.2319-2325 How to cite this article: Widayanti R, Pradana RAB, Kunda RM, Pakpahan S (2020) Genetic characterization and phylogenetic study of Indonesian cuscuses from Maluku and Papua Island based on 16S rRNA gene, Veterinary World, 13(11): 2319-2325. Abstract Background and Aim: Indonesian cuscuses are now becoming scarce because of the reduction of habitat and poaching. Further, molecular characterization of Indonesian cuscuses is still very lacking. This study aimed to determine genetic markers and phylogenetic relationships of Indonesian cuscuses based on 16S rRNA gene sequences. Materials and Methods: This study used 21 cuscuses caught from two provinces and 16 islands: 13 from Maluku and eight from Papua. Cuscus samples were taken by biopsy following ethics guidelines for animals.
    [Show full text]
  • A Species-Level Phylogenetic Supertree of Marsupials
    J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology.
    [Show full text]
  • Wildlife Parasitology in Australia: Past, Present and Future
    CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 286–305 Review https://doi.org/10.1071/ZO19017 Wildlife parasitology in Australia: past, present and future David M. Spratt A,C and Ian Beveridge B AAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia. BVeterinary Clinical Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic. 3030, Australia. CCorresponding author. Email: [email protected] Abstract. Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Cercartetus Lepidus (Diprotodontia: Burramyidae)
    MAMMALIAN SPECIES 842:1–8 Cercartetus lepidus (Diprotodontia: Burramyidae) JAMIE M. HARRIS School of Environmental Science and Management, Southern Cross University, Lismore, New South Wales, 2480, Australia; [email protected] Abstract: Cercartetus lepidus (Thomas, 1888) is a burramyid commonly called the little pygmy-possum. It is 1 of 4 species in the genus Cercartetus, which together with Burramys parvus form the marsupial family Burramyidae. This Lilliputian possum has a disjunct distribution, occurring on mainland Australia, Kangaroo Island, and in Tasmania. Mallee and heath communities are occupied in Victoria and South Australia, but in Tasmania it is found mainly in dry and wet sclerophyll forests. It is known from at least 18 fossil sites and the distribution of these reveal a significant contraction in geographic range since the late Pleistocene. Currently, this species is not listed as threatened in any state jurisdictions in Australia, but monitoring is required in order to more accurately define its conservation status. DOI: 10.1644/842.1. Key words: Australia, burramyid, hibernator, little pygmy-possum, pygmy-possum, Tasmania, Victoria mallee Published 25 September 2009 by the American Society of Mammalogists Synonymy completed 2 April 2008 www.mammalogy.org Cercartetus lepidus (Thomas, 1888) Little Pygmy-possum Dromicia lepida Thomas, 1888:142. Type locality ‘‘Tasma- nia.’’ E[udromicia](Dromiciola) lepida: Matschie, 1916:260. Name combination. Eudromicia lepida Iredale and Troughton, 1934:23. Type locality ‘‘Tasmania.’’ Cercartetus lepidus: Wakefield, 1963:99. First use of current name combination. CONTEXT AND CONTENT. Order Diprotodontia, suborder Phalangiformes, superfamily Phalangeroidea, family Burra- myidae (Kirsch 1968). No subspecies for Cercartetus lepidus are currently recognized.
    [Show full text]
  • Case Et Al. 2008 a Pre-Neogene Phalangerid Possum from South
    A PRE-NEOGENE PHALANGERID POSSUM FROM SOUTH AUSTRALIA JUDD A. CASE, 1 ROBERT W. MEREDITH, 2 AND JEFF PERSON3 1College of Science, Health & Engineering, Eastern Washington University, Cheney, WA 99004-2408; [email protected] 2Department of Biology, University of California, Riverside, CA 92521; [email protected] 3North Dakota Geological Survey, 600 East Boulevard, Bismarck, ND 58505; [email protected] ABSTRACT--Phalangeridae is one of the most widely dispersed families of possums (Marsupialia, Dirprotodontia) in the Australasian region, extending from Tasmania in the southeast to Sulawesi of the Greater Sunda Islands of Indonesia in the northwest. Yet this one family of possums has generated the most morphological and biochemical phylogenetic uncertainties of any family within Order Diprotodontia. The various phylogenetic relationships for the family have led to different biogeographic models in regard to the site of origin and directions of dispersal for taxa within the family. The recovery of a maxilla from faunal zone B of the late Oligocene Etadunna Formation at Lake Palankarinna, South Australia (ca. 25 mya), results in the oldest known phalangerid to date, some ten million years older than the numerous Middle Miocene fossil phalangerids described from Riversleigh, Queensland. Whereas the Riversleigh phalangerids are similar enough to modern taxa to have originally been included in modern genera, the Etadunna specimen has morphologies that are very plesiomorphic for the family. These include a bladed P3 with a central main cusp that has denticles posteriorly, but no ridges; P3 aligned with tooth row; M1 with parastyle shear aligned with blade of P3; and M2 and M3 more square in occlusal outline.
    [Show full text]
  • Mammals of the Avon Region
    Mammals of the Avon Region By Mandy Bamford, Rowan Inglis and Katie Watson Foreword by Dr. Tony Friend R N V E M E O N G T E O H F T W A E I S L T A E R R N A U S T 1 2 Contents Foreword 6 Introduction 8 Fauna conservation rankings 25 Species name Common name Family Status Page Tachyglossus aculeatus Short-beaked echidna Tachyglossidae not listed 28 Dasyurus geoffroii Chuditch Dasyuridae vulnerable 30 Phascogale calura Red-tailed phascogale Dasyuridae endangered 32 phascogale tapoatafa Brush-tailed phascogale Dasyuridae vulnerable 34 Ningaui yvonnae Southern ningaui Dasyuridae not listed 36 Antechinomys laniger Kultarr Dasyuridae not listed 38 Sminthopsis crassicaudata Fat-tailed dunnart Dasyuridae not listed 40 Sminthopsis dolichura Little long-tailed dunnart Dasyuridae not listed 42 Sminthopsis gilberti Gilbert’s dunnart Dasyuridae not listed 44 Sminthopsis granulipes White-tailed dunnart Dasyuridae not listed 46 Myrmecobius fasciatus Numbat Myrmecobiidae vulnerable 48 Chaeropus ecaudatus Pig-footed bandicoot Peramelinae presumed extinct 50 Isoodon obesulus Quenda Peramelinae priority 5 52 Species name Common name Family Status Page Perameles bougainville Western-barred bandicoot Peramelinae endangered 54 Macrotis lagotis Bilby Peramelinae vulnerable 56 Cercartetus concinnus Western pygmy possum Burramyidae not listed 58 Tarsipes rostratus Honey possum Tarsipedoidea not listed 60 Trichosurus vulpecula Common brushtail possum Phalangeridae not listed 62 Bettongia lesueur Burrowing bettong Potoroidae vulnerable 64 Potorous platyops Broad-faced
    [Show full text]
  • Terrestrial Native Mammals of Western Australia
    TERRESTRIALNATIVE MAMMALS OF WESTERNAUSTRALIA On a number of occasionswe have been asked what D as y ce r cus u ist ica ud q-Mul Aara are the marsupialsof W.A. or what is the scientiflcname Anlechinusfla.t,ipes Matdo given to a palticular animal whosecommon name only A n t ec h i nus ap i ca I i s-Dlbbler rs known. Antechinusr osemondae-Little Red Antechinus As a guide,the following list of62 speciesof marsupials A nteclt itus mqcdonneIlens is-Red-eared Antechi nus and 59 speciesof othersis publishedbelow. Antechinus ? b ilar n i-Halney' s Antechinus Antec h in us mqculatrJ-Pismv Antechinus N ingaui r idei-Ride's Nirfaui - MARSUPALIA Ningauirinealvi Ealev's-KimNinsaui Ptaiigole*fuilissima beiiey Planigale Macropodidae Plani gale tenuirostris-Narrow-nosed Planigate Megaleia rufa Red Kangaroo Smi nt hopsis mu rina-Common Dulnart Macropus robustus-Etro Smin t hop[is longicaudat.t-Long-tailed Dunnart M acr opus fu Ii g inos,s-Western Grey Kangaroo Sminthops is cras sicaudat a-F at-tailed Dunnart Macrcpus antilo nus Antilope Kangaroo S-nint hopsi s froggal//- Larapinla Macropu"^agi /rs Sandy Wallaby Stnintllopsirgranuli,oer -Whire-railed Dunnart Macrcpus rirra Brush Wallaby Sninthopsis hir t ipes-Hairy -footed Dunnart M acro ptrs eugenii-T ammar Sminthopsiso oldea-^f r oughton's Dunnart Set oni x brac ltyuru s-Quokka A ntec h inomys lanrger-Wuhl-Wuhl On y ch oga I ea Lng uife r a-Kar r abul M.yr nte c o b ius fasc ialrls-N umbat Ony c hogalea Iunq ta-W \rrur.g Notoryctidae Lagorchest es conspic i Ilat us,Spectacied Hare-Wallaby Notorlctes
    [Show full text]
  • Marsupials and Rodents of the Admiralty Islands, Papua New Guinea Front Cover: a Recently Killed Specimen of an Adult Female Melomys Matambuai from Manus Island
    Occasional Papers Museum of Texas Tech University Number xxx352 2 dayNovember month 20172014 TITLE TIMES NEW ROMAN BOLD 18 PT. MARSUPIALS AND RODENTS OF THE ADMIRALTY ISLANDS, PAPUA NEW GUINEA Front cover: A recently killed specimen of an adult female Melomys matambuai from Manus Island. Photograph courtesy of Ann Williams. MARSUPIALS AND RODENTS OF THE ADMIRALTY ISLANDS, PAPUA NEW GUINEA RONALD H. PINE, ANDREW L. MACK, AND ROBERT M. TIMM ABSTRACT We provide the first account of all non-volant, non-marine mammals recorded, whether reliably, questionably, or erroneously, from the Admiralty Islands, Papua New Guinea. Species recorded with certainty, or near certainty, are the bandicoot Echymipera cf. kalubu, the wide- spread cuscus Phalanger orientalis, the endemic (?) cuscus Spilocuscus kraemeri, the endemic rat Melomys matambuai, a recently described species of endemic rat Rattus detentus, and the commensal rats Rattus exulans and Rattus rattus. Species erroneously reported from the islands or whose presence has yet to be confirmed are the rats Melomys bougainville, Rattus mordax, Rattus praetor, and Uromys neobrittanicus. Included additional specimens to those previously reported in the literature are of Spilocuscus kraemeri and two new specimens of Melomys mat- ambuai, previously known only from the holotype and a paratype, and new specimens of Rattus exulans. The identity of a specimen previously thought to be of Spilocuscus kraemeri and said to have been taken on Bali, an island off the coast of West New Britain, does appear to be of that species, although this taxon is generally thought of as occurring only in the Admiralties and vicinity. Summaries from the literature and new information are provided on the morphology, variation, ecology, and zoogeography of the species treated.
    [Show full text]
  • FIELDIANA Geology
    FIELDIANA Geology Publistied by Field Museum of Natural History New Series, No. 8 THE FAMILIES AND GENERA OF MARSUPIALIA LARRY G.MARSHALL •.981 UBRARY FIELD m^cim July 20, 1981 Publication 1320 THE FAMILIES AND GENERA OF MARSUPIALIA FIELDIANA Geology Published by Field Museum of Natural History New Series, No. 8 THE FAMILIES AND GENERA OF MARSUPIALIA LARRY G.MARSHALL Assistant Curator of Fossil Mammals DqMirtment of Geology Field Museum of Natural History Accepted for publication August 6, 1979 July 20, 1981 Publication 1320 Library of Congress Catalog No.: 81-65225 ISSN 0096-2651 PRINTED IN THE UNITED STATES OF AMERICA CONTENTS Part A 1 i^4troduc^on 1 Review of History and Development of Marsupial Systematics 1 Part B 19 Detailed Classification of Families and Genera of Marsupialia 19 I. New World and European Marsupialia 19 Fam. Didelphidae 19 Subfam. Dideiphinae 19 Subfam. Caluromyinae 21 *Subfam. Glasbiinae 21 *Subfam. Caroloameghiniinae 21 •Fam. Sparassocynidae 21 •Fam. Pediomyidae 21 Fam. Microbiotheriidae 21 •Fam. Stagodonddae 22 •Fam. Borhyaenidae 22 •Subfam. Hathlyacyninae 22 •Subfam. Borhyaeninae 23 •Subfam. Prothylacyninae 23 •Subfam. Proborhyaeninae 23 •Fam. Thylacosmilidae 23 •Fam. Argyrolagidae 24 Fam. Caenolesddae 24 Subfam. Caenolestinae 24 Tribe Caenolestini 24 •Tribe Pichipilini 24 •Subfam. Palaeothentinae 24 •Subfam. Abderitinae 25 •Tribe Parabderitini 25 •Tribe Abderitini 25 •Fam. Polydolopidae 25 •Fam. Groeberiidae 25 Marsupialia incertae sedis 25 Marsupialia(?) 25 II. Australasian Marsupialia 26 Fam. Dasyuridae 26 Subfam. Dasyurinae 26 Tribe Dasyurini 26 Tribe Sarcophilini 26 Fam. Myrmecobiidae 27 •Fam. Thylacinidae 27 Fam. Peramelidae 27 Fam. Thylacomyidae 27 Fam. Notoryctidae 27 Fam. Phalangeridae 27 Subfam. Phalangerinae 27 Subfam. Trichosurinae 28 •Fam.
    [Show full text]