The Arrow of Time

Total Page:16

File Type:pdf, Size:1020Kb

The Arrow of Time THE ARROW OF TIME Why does time never go backw�rd? The answer apparently lies not in the la,vs of nature, which hardly distinguish between past and future, but in the conditions prevailing in the early universe by David Layzer t seems easy to distinguish the past have sprung from an exceedingly dense, scopic view of the world as a system de­ I from the future: memory provides us undifferentiated state in the finite past. generating toward complete disorder nor with a record of the past, but we All these processes have a quality in the microscopic view of the world as a have no certain knowledge of the future. common: they generate order, or infor­ changing but nonevolving system of in­ When events are interpreted according mation; they transform a simpler state teracting particles and fields is required to the most fundamental laws of physics, into a more complex one. In the phrase by fundamental phYSical laws. I submit however, the distinction between past of Sir Arthur Eddington, they indicate that both views derive instead from aux­ and future all but disappears. Intuitively which way "time's arrow" is pointing; iliary assumptions about the nature and we perceive the world as being extended they define what I shall call the "histori­ origin of the universe. I propose to re­ in space but "unfolding" in time; at the cal" arrow of time. place those assumptions with others that atomic scale the world is a four-dimen­ Paradoxically, the direction of time I believe are simpler and equally con­ sional continuum extended in both space can also be defined by a class of dia­ sistent with observation. The resulting and time. We assign special significance metrically opposite processes: those that model of the universe, although differ­ to a particular moment, the present, destroy information and generate disor­ ent from the one accepted by most physi­ which we view as the crest of a wave der. If I drop a lump of sugar into a cup cists, resolves the apparent contradiction continuously transforming potentiality of hot tea and stir, the spatial concentra­ between the historical and the thermo­ into actuality and leaving in its wake the tion of the sugar molecules, the orga­ dynamic arrows of time, and it reconciles dead past. Microscopic physics gives no nized motion of the tea and the differ­ both with the almost time-symmetric special status to any moment, and it dis­ ence in temperature between the tea character of physical laws at the micro­ tinguishes only weakly between the di­ and its surroundings represent macro­ scopic level. The theory implies that the rection of the past and that of the future. scopic information, or order. As the universe is unfolding in time but not un­ Our intuitive perception of the world sugar dissolves and the tea comes to rest raveling; on the contrary, it is becoming as unfolding in time cannot be dismissed and begins to cool, that information constantly more complex and richer in as being merely subjective. It has objec­ gradually disappears. The irreversible information. tive counterparts in a variety of proc­ processes that destroy macroscopic infor­ esses, including biological, geological mation (in this example molecular diffu­ Irreversibility and astronomical ones. There is evi­ sion, viscosity and heat conduction) are dence for it in the physiological proc­ manifestations of the second law of The historical and the thermodynamic esses underlying memory, in the growth, thermodynamics. This law states that all arrows of time both derive from proc­ development and differentiation of liv­ natural processes generate entropy, a esses that always have the same direc­ ing organisms, and in organiC evolution, measure of disorder. The irreversible tion; they are defined by events that can­ where random variation and natural se­ destruction of macroscopic order defines not be undone. What makes these proc­ lection have generated an immense and what I shall therefore call the "thermo­ esses irreversible? All phenomena can constantly increaSing variety of ever dynamic" arrow of time. ultimately be described as .the interac­ more highly organized living forms. The Neither the historical nor the thermo­ tions of elementary particles; if the laws earth's crust records the vicissitudes of dynamic arrow of time can be observed that govern those interactions do not 4.5 billion years of evolutionary change, at the microscopic level. The motion of distinguish between the past and the and the cratered surfaces of the moon, a single sugar or tea molecule generates future, what is the source of the irre­ Mars and Mercury preserve a chrono­ neither information nor entropy. "Order" versibility we observe in the macroscopic logical record of similar duration. Nor­ is a macroscopic concept, a property of world? mal stars, red giants, supernovas and systems made up of many particles; it One possibility is that the underlying white dwarfs represent stages in the evo­ has no meaning when it is applied to in­ microscopic laws are not in fact perfect­ lutionary life cycle of a single star. Final­ dividual atoms or molecules. In the phys­ ly time-symmetric. Evidence that a tem­ ly, the recession of distant galaxies sug­ ics of elementary particles the world poral asymmetry exists at the level of gests that the entire universe is a product changes but does not evolve. subatomic particles can be found in the of an evolutionary process: it seems to I shall argue that neither the macro- decay of the neutral K meson. One of 56 © 1975 SCIENTIFIC AMERICAN, INC .. .. ' ', . ' . .: : 0 " ••" .: ' ' ... ' : : : . .. :', ', : . : . ... " . ... ' '. : : :-: ' ,' " . : .. ., ,,' ... '. ' .. .. , . , . : . , . ' . .' •• . .' . : , : . ": ' ',! :..' : ',: , . ' '. , : . : .. : :. ,' . ' . ' . .' . : : ., , " : . ' ', . ' . .. .. ' . .. '. : ' ,',: . ::. ' . .. : , . ... , , ... , . ', ' ... , , . : . ' . .': ' . ', . ' ' : . ' '. ' " : .: . ' ' : ' : < :: : "::: ' : ; :" :-:' :- :::' ": ' <'� :: ' ' .' ., .. - . .. ' . ' . ' .. ' - . ' , , ' . ' , , . : . :.: . " : : . , , .: . : ,: . : :: - " . ' : . , , . , . , . ' . : .' : '" ' . " ' . : : . .. ..' . ' . ;\i;;;;\::t; . '.' ' . '.: . " .... " . .�:;\<>· ii?<; •••.••. ' . .. .... ' ...' . ,,' .: . , . • . '0 • . ' . • ' . ,'. ' . .. '.'. '" . ' . " ' . ... '.' ... THOUGHT EXPERIMENT concerning the diffusion of perfume cules spontaneously reassemble and condense in the bottle. In the reveals an apparent paradox: the process as a whole always pro· bottom drawings the same experiment is depicted in microscopic ceeds in the same direction, but it is defined by microscopic events detail. Individual molecules escape the surface and follow com· each of which is freely reversible. The bottle of perfume is opened plicated zigzag trajectories that take them to all parts of the room. in a hypothetical sealed room that cannot communicate with the This sequence of events could well proceed in reverse order, since outside world. The top series of drawings, when read from left to if every molecule reversed its direction, they would all retrace their right, shows molecules beginning to escape the surface of the liq. paths and return to the bottle. A molecule following a reversed tra· uid and gradually filling the room, until eventually all the perfume jectory would obey all the laws of physics, and indeed it would be has evaporated. When the drawings are read in the opposite direc· impossible to determine by examining the path of a single mole­ tion, they represent a process never 'seen in nature: all the mole· cule whether it was part of a forward experiment or a reversed one . 57 © 1975 SCIENTIFIC AMERICAN, INC several possible decay modes of that par­ ber, 1969]. The apparent violation, how­ that define the historical and the thermo­ ticle seems to violate some symmetry of ever, is quite weak: it is observed less dynamic arrows. nature, and the usual interpretation of than 1 percent of the time. Moreover, K If the root of irreversibility is not to be the event is that the violated symmetry mesons are found only in experiments in found in the laws that govern microscop­ is time-reversal symmetry [see "Experi­ high-energy physics; they are not con­ ic events, it must derive from constraints ments in Time Reversal," by Oliver E. stituents of ordinary matter, and they on how those events take place. Laws Overseth; SCIENTIFIC AMERICAN, Octo- play no role in the macroscopic processes and constraints are complementary as- a b ONE·DIMENSIONAL THREE-DIMENSIONAL REAL SPACE REAL SPACE y 1 I .. .. x , TWO·DIMENSIONAL SIX-DIMENSIONAL / / PHASE SPACE PHASE SPACE � u o ...J W > .. v .. POSITION CONCEPT OF PHASE SPACE is employed to represent the dynamical bers for the specification of its state, since both position and state of a system of particles. Any particle can be described by a vector velocity have components on three axes. The corresponding (colored arrows), which defines its position and velocity. For a particle phase space must therefore have six dimensions. Since it is in a one·dimensional universe (a) two numbers suffice to specify these not possible to construct a real space with more than three quantities, and the state of the particle can be represented in a phase dimensions, the phase space is represented here by a three· space having two dimensions. Every possible state of the particle cor· dimensional "slice" of the six·dimensional space. In a system responds to the location of some point in the phase space. A particle made up of many particles six numbers are required to speci. with freedom
Recommended publications
  • On Entropy, Information, and Conservation of Information
    entropy Article On Entropy, Information, and Conservation of Information Yunus A. Çengel Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA; [email protected] Abstract: The term entropy is used in different meanings in different contexts, sometimes in contradic- tory ways, resulting in misunderstandings and confusion. The root cause of the problem is the close resemblance of the defining mathematical expressions of entropy in statistical thermodynamics and information in the communications field, also called entropy, differing only by a constant factor with the unit ‘J/K’ in thermodynamics and ‘bits’ in the information theory. The thermodynamic property entropy is closely associated with the physical quantities of thermal energy and temperature, while the entropy used in the communications field is a mathematical abstraction based on probabilities of messages. The terms information and entropy are often used interchangeably in several branches of sciences. This practice gives rise to the phrase conservation of entropy in the sense of conservation of information, which is in contradiction to the fundamental increase of entropy principle in thermody- namics as an expression of the second law. The aim of this paper is to clarify matters and eliminate confusion by putting things into their rightful places within their domains. The notion of conservation of information is also put into a proper perspective. Keywords: entropy; information; conservation of information; creation of information; destruction of information; Boltzmann relation Citation: Çengel, Y.A. On Entropy, 1. Introduction Information, and Conservation of One needs to be cautious when dealing with information since it is defined differently Information. Entropy 2021, 23, 779.
    [Show full text]
  • ENERGY, ENTROPY, and INFORMATION Jean Thoma June
    ENERGY, ENTROPY, AND INFORMATION Jean Thoma June 1977 Research Memoranda are interim reports on research being conducted by the International Institute for Applied Systems Analysis, and as such receive only limited scientific review. Views or opinions contained herein do not necessarily represent those of the Institute or of the National Member Organizations supporting the Institute. PREFACE This Research Memorandum contains the work done during the stay of Professor Dr.Sc. Jean Thoma, Zug, Switzerland, at IIASA in November 1976. It is based on extensive discussions with Professor HAfele and other members of the Energy Program. Al- though the content of this report is not yet very uniform because of the different starting points on the subject under consideration, its publication is considered a necessary step in fostering the related discussion at IIASA evolving around th.e problem of energy demand. ABSTRACT Thermodynamical considerations of energy and entropy are being pursued in order to arrive at a general starting point for relating entropy, negentropy, and information. Thus one hopes to ultimately arrive at a common denominator for quanti- ties of a more general nature, including economic parameters. The report closes with the description of various heating appli- cation.~and related efficiencies. Such considerations are important in order to understand in greater depth the nature and composition of energy demand. This may be highlighted by the observation that it is, of course, not the energy that is consumed or demanded for but the informa- tion that goes along with it. TABLE 'OF 'CONTENTS Introduction ..................................... 1 2 . Various Aspects of Entropy ........................2 2.1 i he no me no logical Entropy ........................
    [Show full text]
  • Lecture 4: 09.16.05 Temperature, Heat, and Entropy
    3.012 Fundamentals of Materials Science Fall 2005 Lecture 4: 09.16.05 Temperature, heat, and entropy Today: LAST TIME .........................................................................................................................................................................................2� State functions ..............................................................................................................................................................................2� Path dependent variables: heat and work..................................................................................................................................2� DEFINING TEMPERATURE ...................................................................................................................................................................4� The zeroth law of thermodynamics .............................................................................................................................................4� The absolute temperature scale ..................................................................................................................................................5� CONSEQUENCES OF THE RELATION BETWEEN TEMPERATURE, HEAT, AND ENTROPY: HEAT CAPACITY .......................................6� The difference between heat and temperature ...........................................................................................................................6� Defining heat capacity.................................................................................................................................................................6�
    [Show full text]
  • The Enthalpy, and the Entropy of Activation (Rabbit/Lobster/Chick/Tuna/Halibut/Cod) PHILIP S
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 2, pp. 430-432, February 1973 Temperature Adaptation of Enzymes: Roles of the Free Energy, the Enthalpy, and the Entropy of Activation (rabbit/lobster/chick/tuna/halibut/cod) PHILIP S. LOW, JEFFREY L. BADA, AND GEORGE N. SOMERO Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92037 Communicated by A. Baird Hasting8, December 8, 1972 ABSTRACT The enzymic reactions of ectothermic function if they were capable of reducing the AG* character- (cold-blooded) species differ from those of avian and istic of their reactions more than were the homologous en- mammalian species in terms of the magnitudes of the three thermodynamic activation parameters, the free zymes of more warm-adapted species, i.e., birds or mammals. energy of activation (AG*), the enthalpy of activation In this paper, we report that the values of AG* are indeed (AH*), and the entropy of activation (AS*). Ectothermic slightly lower for enzymic reactions catalyzed by enzymes enzymes are more efficient than the homologous enzymes of ectotherms, relative to the homologous reactions of birds of birds and mammals in reducing the AG* "energy bar- rier" to a chemical reaction. Moreover, the relative im- and mammals. Moreover, the relative contributions of the portance of the enthalpic and entropic contributions to enthalpies and entropies of activation to AG* differ markedly AG* differs between these two broad classes of organisms. and, we feel, adaptively, between ectothermic and avian- mammalian enzymic reactions. Because all organisms conduct many of the same chemical transformations, certain functional classes of enzymes are METHODS present in virtually all species.
    [Show full text]
  • The Second Law of Thermodynamics Forbids Time Travel
    Cosmology, 2014, Vol. 18. 212-222 Cosmology.com, 2014 The Second Law Of Thermodynamics Forbids Time Travel Marko Popovic Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA Abstract Four space-time coordinates define one thermodynamic parameter - Volume. Cell/ organism growth is one of the most fundamental properties of living creatures. The growth is characterized by irreversible change of the volume of the cell/organism. This irreversible change of volume (growth of the cell/organism) makes the system irreversibly change its thermodynamic state. Irreversible change of the systems thermodynamic state makes impossible return to the previous state characterized by state parameters. The impossibility to return the system to the previous state leads to conclusion that even to artificially turn back the arrow of time (as a parameter), it is not possible to turn back the state of the organism and its surroundings. Irreversible change of thermodynamic state of the organism is also consequence of the accumulation of entropy during life. So even if we find the way to turn back the time arrow it is impossible to turn back the state of the thermodynamic system (including organism) because of irreversibility of thermodynamic/ physiologic processes in it. Keywords: Time travel, Entropy, Living Organism, Surroundings, Irreversibility Cosmology, 2014, Vol. 18. 212-222 Cosmology.com, 2014 1. Introduction The idea of time travel has fascinated humanity since ancient times and can be found in texts as old as Mahabharata and Talmud. Later it continued to be developed in literature (i.e. Dickens' “A Christmas Carol”, or Twain's “A Connecticut Yankee in King Arthur's Court”…).
    [Show full text]
  • The Arrow of Time Volume 7 Paul Davies Summer 2014 Beyond Center for Fundamental Concepts in Science, Arizona State University, Journal Homepage P.O
    The arrow of time Volume 7 Paul Davies Summer 2014 Beyond Center for Fundamental Concepts in Science, Arizona State University, journal homepage P.O. Box 871504, Tempe, AZ 852871504, USA. www.euresisjournal.org [email protected] Abstract The arrow of time is often conflated with the popular but hopelessly muddled concept of the “flow” or \passage" of time. I argue that the latter is at best an illusion with its roots in neuroscience, at worst a meaningless concept. However, what is beyond dispute is that physical states of the universe evolve in time with an objective and readily-observable directionality. The ultimate origin of this asymmetry in time, which is most famously captured by the second law of thermodynamics and the irreversible rise of entropy, rests with cosmology and the state of the universe at its origin. I trace the various physical processes that contribute to the growth of entropy, and conclude that gravitation holds the key to providing a comprehensive explanation of the elusive arrow. 1. Time's arrow versus the flow of time The subject of time's arrow is bedeviled by ambiguous or poor terminology and the con- flation of concepts. Therefore I shall begin my essay by carefully defining terms. First an uncontentious statement: the states of the physical universe are observed to be distributed asymmetrically with respect to the time dimension (see, for example, Refs. [1, 2, 3, 4]). A simple example is provided by an earthquake: the ground shakes and buildings fall down. We would not expect to see the reverse sequence, in which shaking ground results in the assembly of a building from a heap of rubble.
    [Show full text]
  • Chaos, Dissipation, Arrow of Time, in Quantum Physics I the National Institute of Standards and Technology Was Established in 1988 by Congress to "Assist
    Chaos, Dissipation, Arrow of Time, in Quantum Physics i The National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization . of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering and performs related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058. Technology Services Manufacturing Engineering Laboratory • Manufacturing Technology Centers Program • Precision
    [Show full text]
  • What Is Quantum Thermodynamics?
    What is Quantum Thermodynamics? Gian Paolo Beretta Universit`a di Brescia, via Branze 38, 25123 Brescia, Italy What is the physical significance of entropy? What is the physical origin of irreversibility? Do entropy and irreversibility exist only for complex and macroscopic systems? For everyday laboratory physics, the mathematical formalism of Statistical Mechanics (canonical and grand-canonical, Boltzmann, Bose-Einstein and Fermi-Dirac distributions) allows a successful description of the thermodynamic equilibrium properties of matter, including entropy values. How- ever, as already recognized by Schr¨odinger in 1936, Statistical Mechanics is impaired by conceptual ambiguities and logical inconsistencies, both in its explanation of the meaning of entropy and in its implications on the concept of state of a system. An alternative theory has been developed by Gyftopoulos, Hatsopoulos and the present author to eliminate these stumbling conceptual blocks while maintaining the mathematical formalism of ordinary quantum theory, so successful in applications. To resolve both the problem of the meaning of entropy and that of the origin of irreversibility, we have built entropy and irreversibility into the laws of microscopic physics. The result is a theory that has all the necessary features to combine Mechanics and Thermodynamics uniting all the successful results of both theories, eliminating the logical inconsistencies of Statistical Mechanics and the paradoxes on irreversibility, and providing an entirely new perspective on the microscopic origin of irreversibility, nonlinearity (therefore including chaotic behavior) and maximal-entropy-generation non-equilibrium dynamics. In this long introductory paper we discuss the background and formalism of Quantum Thermo- dynamics including its nonlinear equation of motion and the main general results regarding the nonequilibrium irreversible dynamics it entails.
    [Show full text]
  • Lecture 6: Entropy
    Matthew Schwartz Statistical Mechanics, Spring 2019 Lecture 6: Entropy 1 Introduction In this lecture, we discuss many ways to think about entropy. The most important and most famous property of entropy is that it never decreases Stot > 0 (1) Here, Stot means the change in entropy of a system plus the change in entropy of the surroundings. This is the second law of thermodynamics that we met in the previous lecture. There's a great quote from Sir Arthur Eddington from 1927 summarizing the importance of the second law: If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equationsthen so much the worse for Maxwell's equations. If it is found to be contradicted by observationwell these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of ther- modynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation. Another possibly relevant quote, from the introduction to the statistical mechanics book by David Goodstein: Ludwig Boltzmann who spent much of his life studying statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to study statistical mechanics. There are many ways to dene entropy. All of them are equivalent, although it can be hard to see. In this lecture we will compare and contrast dierent denitions, building up intuition for how to think about entropy in dierent contexts. The original denition of entropy, due to Clausius, was thermodynamic.
    [Show full text]
  • In the Experiments in Which Alpha-Activity Was Measured Using Collimators Directed at East and West
    Volume 1 PROGRESS IN PHYSICS January, 2010 “The Arrow of Time” in the Experiments in which Alpha-Activity was Measured Using Collimators Directed at East and West Simon E. Shnoll, Ilya A. Rubinsteiny, and Nikolai N. Vedenkiny Department of Physics, Moscow State University, Moscow 119992, Russia Inst. of Theor. and Experim. Biophysics, Russian Acad. of Sci., Pushchino, Moscow Region, 142290, Russia Puschino State University, Prospect Nauki 3, Pushchino, Moscow Region, 142290, Russia ySkobeltsin’s Institute of Nuclear Physics, Moscow State University, Moscow 119991, Russia E-mail: [email protected] In our previous paper (Shnoll and Rubinstein, Progress in Physics, 2009, v. 2, 83–95), we briefly reported about a phenomenon, which can be called the “arrow of time”: when we compared histograms constructed from the results of 239-Pu alpha-activity measurements that were obtained using West- and East-directed collimators, daytime series of the “eastern” histograms were similar to the inverted series of the following night, whereas daytime series of the “western” histograms resembled the inverted series of the preceding night. Here we consider this phenomenon in more detail. 1 Introduction As follows from all our past results, the fine structure of the spectrum of amplitude fluctuations (the shape of the corre- sponding histograms) is determined by the motion (orienta- tion) of the object studied (the laboratory) in relation to spa- tial inhomogeneities [2]. The spatial pattern (arrangement in space) of these inhomogeneities is stable: as the Earth ro- tates about its axis and moves along the circumsolar orbit, similar histogram shapes are realized repeatedly with the cor- responding periods (daily, near-monthly, yearly) [3, 4].
    [Show full text]
  • Similarity Between Quantum Mechanics and Thermodynamics: Entropy, Temperature, and Carnot Cycle
    Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle Sumiyoshi Abe1,2,3 and Shinji Okuyama1 1 Department of Physical Engineering, Mie University, Mie 514-8507, Japan 2 Institut Supérieur des Matériaux et Mécaniques Avancés, 44 F. A. Bartholdi, 72000 Le Mans, France 3 Inspire Institute Inc., Alexandria, Virginia 22303, USA Abstract Similarity between quantum mechanics and thermodynamics is discussed. It is found that if the Clausius equality is imposed on the Shannon entropy and the analogue of the quantity of heat, then the value of the Shannon entropy comes to formally coincide with that of the von Neumann entropy of the canonical density matrix, and pure-state quantum mechanics apparently transmutes into quantum thermodynamics. The corresponding quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is studied, and its efficiency is shown to be identical to the classical one. PACS number(s): 03.65.-w, 05.70.-a 1 In their work [1], Bender, Brody, and Meister have developed an interesting discussion about a quantum-mechanical analogue of the Carnot engine. They have treated a two-state model of a single particle confined in a one-dimensional potential well with width L and have considered reversible cycle. Using the “internal” energy, E (L) = ψ H ψ , they define the pressure (i.e., the force, because of the single dimensionality) as f = − d E(L) / d L , where H is the system Hamiltonian and ψ is a quantum state. Then, the analogue of “isothermal” process is defined to be f L = const.
    [Show full text]
  • 1 Temporal Arrows in Space-Time Temporality
    Temporal Arrows in Space-Time Temporality (…) has nothing to do with mechanics. It has to do with statistical mechanics, thermodynamics (…).C. Rovelli, in Dieks, 2006, 35 Abstract The prevailing current of thought in both physics and philosophy is that relativistic space-time provides no means for the objective measurement of the passage of time. Kurt Gödel, for instance, denied the possibility of an objective lapse of time, both in the Special and the General theory of relativity. From this failure many writers have inferred that a static block universe is the only acceptable conceptual consequence of a four-dimensional world. The aim of this paper is to investigate how arrows of time could be measured objectively in space-time. In order to carry out this investigation it is proposed to consider both local and global arrows of time. In particular the investigation will focus on a) invariant thermodynamic parameters in both the Special and the General theory for local regions of space-time (passage of time); b) the evolution of the universe under appropriate boundary conditions for the whole of space-time (arrow of time), as envisaged in modern quantum cosmology. The upshot of this investigation is that a number of invariant physical indicators in space-time can be found, which would allow observers to measure the lapse of time and to infer both the existence of an objective passage and an arrow of time. Keywords Arrows of time; entropy; four-dimensional world; invariance; space-time; thermodynamics 1 I. Introduction Philosophical debates about the nature of space-time often centre on questions of its ontology, i.e.
    [Show full text]