General News

Total Page:16

File Type:pdf, Size:1020Kb

General News Biocontrol News and Information 27(3), 47N–62N pestscience.com General News Glassy-Winged Sharpshooter K.O.’ed – First The Problems Caused by GWSS in French Polynesia Round – in French Polynesia High GWSS densities are a major annoyance for Glassy-winged sharpshooter (GWSS), Homalodisca people in French Polynesia because feeding adults coagulata, has proven to be an extraordinary and and nymphs produce astonishingly high quantities of highly invasive insect pest with a well documented watery excreta that ‘rains’ from heavily infested ability to achieve incredible population densities in trees. This makes utilization of shade trees impos- new areas when dislocated from its suite of natural sible when trying to find respite from the hot sun and enemies. This xylem feeding cicadellid is native to has earned GWSS the common local name mouche the southeast USA and northeast Mexico and in its pisseuse (‘pissing fly’). Buildings and vehicles under native and invaded ranges is a major threat to agri- infested trees are drenched with excreta to the point cultural, native, and urban landscapes because of its that water runs off structures and pools on the ability to acquire and transmit a lethal xylem- ground. Such high and continuous removal of xylem dwelling plant pathogenic bacterium, Xylella fastid- fluids by thousands of feeding nymphs and adults is iosa. This bacterium is native and widespread within thought to have had a detrimental impact on many the Americas and may exist in other countries out- plant species in French Polynesia. GWSS is sus- side of the native range having been unknowingly pected of retarding plant growth and causing imported in ornamental plants from areas with declines in fruit production, especially in mangoes endemic X. fastidiosa populations. and other fruit trees. Large numbers of flying adults are attracted to lights at night, and they invade GWSS began its range expansion in the late 1980s, houses and businesses through open windows and moving into California, USA, probably from the doors, and on occasion adults may ‘bite’ people as southeastern USA, on ornamental plants. Unparasi- they presumably probe salt glands. But the major tized egg masses on the undersides of leaves or small concern for French Polynesia is the possibility that flightless nymphs were mostly likely the original this pest could acquire and vector X. fastidiosa, inoculative propagules into California. Adult GWSS which potentially would have a disastrous impact on are extremely flighty and unlikely to stay on plants the agriculture and biodiversity of these isolated that are being subjected to vigorous handling and islands. Finally, the immense propagule pressure transport. Inordinate densities of GWSS developed emanating from French Polynesia represents a in California and began to spread rapidly out of major invasion threat to other South Pacific coun- southern California where populations were origi- tries. Adult H. coagulata have been found on planes nally highly localized. Despite widespread originating from Tahiti arriving in Japan and in insecticide use in ornamental nurseries to produce Australia. uninfested plants for sale and citrus orchards to reduce immigration into vineyards and other crops, Factors Promoting Establishment, Proliferation and Spread immense propagule pressure still resulted and Cali- fornia was most likely the source for GWSS entering The rapid proliferation and spread of H. coagulata in Tahiti (Society Islands of French Polynesia) in 1999, French Polynesia can be explained by four main fac- and Hawaii in 2004. Easter Island (GWSS detected tors: First, environmental conditions in these in 2005) was probably infested with material origi- tropical islands are ideal for reproduction. Moderate nating from French Polynesia. temperatures and high rainfall in some areas ensure ideal breeding conditions year round on abundant Distribution in French Polynesia native and exotic host plants. We estimate that in Tahiti, there are 6–8 overlapping H. coagulata gen- In French Polynesia, GWSS reproduced and spread erations a year, compared to 2–3 generations in very rapidly and is currently found in almost all California and northern-central Florida (USA). In islands in the Society Island group (Tahiti [invaded California, cold winters retard egg production and in 1999], Moorea [2002], Tahaa, Raiatea, Huahine, egg laying in H. coagulata. Consequently, cold tem- Bora Bora, Maupiti [2001–2005]) and has also been peratures do not inhibit reproduction by H. recorded in Nuku Hiva in the Marquesas (2004), and coagulata in French Polynesia. Instead, reproductive in Tubuai and Rurutu (both 2005) in the Australs potential appears to be more strongly influenced by (2005). It is unknown if GWSS is in the Tuamotu wet and dry seasons, with greater populations being group of islands. Widespread and rapid movement of observed during wet periods. GWSS in French Polynesia most likely occurred via unregulated movement of plants that carried GWSS Second, our surveys in French Polynesia indicate egg masses or nymphs between islands and island that there appear to be no effective natural enemies groups by plane and boat. GWSS populations in regulating H. coagulata populations. Surveys of H. Tahiti and Moorea reached densities far exceeding coagulata egg masses on Tahiti and Moorea in 2003 those observed in its native range or even California showed very low levels of parasitism; less than 5% of where populations were much greater than those the egg masses were attacked by parasitoids. The observed in the southeastern USA. parasitoid species that was reared from H. coagulata Are we on your mailing list? Biocontrol News and Information is always pleased to receive news of research, conferences, new products or patents, changes in personnel, collaborative agreements or any other information of interest to other readers. If your organization sends out press releases or newsletters, please let us have a copy. In addition, the editors welcome proposals for review topics. 48N Biocontrol News and Information 27(3) egg masses was an unidentified encyrtid. Female entists with the French Polynesian Agricultural parasitoids only exploited 1–3 eggs in an attacked Research and Plant Protection departments guided egg mass (egg masses typically contain on average the development of the GWSS biological control around 7–10 eggs) and only male eggs were ovipos- programme. ited suggesting that parasitism was opportunistic and that H. coagulata eggs were assessed to be of low Determining the Risk Posed by GWSS Egg Parasitoids to quality as only haploid male eggs were laid. This Native Insects obvious dearth of effective indigenous natural ene- mies is highly likely to have facilitated the An over-riding requirement for classical biological establishment and rapid spread of H. coagulata in control of GWSS in French Polynesia is safety and a French Polynesia. demand for minimal to non-existent non-target impacts. Particular attention is being paid to the Third, H. coagulata may pose a substantial risk to identification and assessment of risk to non-target generalist arthropod predators on invaded islands in native fauna, in particular native cicadellids. As with French Polynesia. Controlled feeding experiments many small isolated islands, French Polynesia is have revealed that some species of spiders can be extremely susceptible to invasions by exotic organ- killed following predation on H. coagulata. Mortality isms. Unfortunately, French Polynesia has a poor in both the native crab spider Misumenops mello- track record in biological control safety and pro- leitao and the pan-Pacific orb-weaving spider gramme efficacy. Consequently, this pest control Cyrtophora moluccensis appeared to result from technology is viewed with scepticism by many offi- lethal intoxication, although no form of chemical cials managing invasive species in French Polynesia. defence has been reported in H. coagulata. In both The most egregious example of a ‘biological control spider species, approximately half of all spiders that disaster’ in French Polynesia was the unintentional attacked individual H. coagulata nymphs or adults extirpation of native Partula snails on many islands died. As H. coagulata populations increase in size by the predatory snail, Euglandina rosea, which was and range on invaded islands in French Polynesia, released for the biological control of the giant African this insect will be increasingly encountered by these land snail, Achatina fulica, in 1977. Biological con- and other arthropod predators, raising the possi- trol programmes for arthropod pests are bility of population-level impacts on susceptible consequently being held accountable for greater predator species. levels of safety than has been required in the past, and determination of host specificity and assessment of expected levels of safety and impact are emerging Fourth, the cicadellid fauna of French Polynesia is as rapidly developing new areas in classical biolog- impoverished with few known native species and a ical control of arthropod pests. substantially greater number of exotic species that have established accidentally. Consequently, compe- Gonatocerus ashmeadi is a specialized parasitoid tition by other proconiine cicadellids is non-existent that attacks cicadellid eggs in the tribe Proconiini. as this tribe within the Cicadellidae is unique to the Hence introduction of G. ashmeadi in French Poly- Americas and lacks naturally-occurring representa- nesia is considered low risk for native
Recommended publications
  • Does White Clover (Trifolium Repens) Abundance in Temperate Pastures Determine Sitona Obsoletus (Coleoptera: Curculionidae) Larval Populations?
    fpls-07-01397 September 14, 2016 Time: 19:20 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 16 September 2016 doi: 10.3389/fpls.2016.01397 Does White Clover (Trifolium repens) Abundance in Temperate Pastures Determine Sitona obsoletus (Coleoptera: Curculionidae) Larval Populations? Mark R. McNeill1*, Chikako van Koten1, Vanessa M. Cave2, David Chapman3 and Hamish Hodgson3 1 AgResearch, Christchurch, New Zealand, 2 AgResearch, Hamilton, New Zealand, 3 DairyNZ, Lincoln University, Lincoln, New Zealand To determine if host plant abundance determined the size of clover root weevil (CRW) Edited by: Sitona obsoletus larval populations, a study was conducted over 4 years in plots sown Ivan Hiltpold, Western Sydney University, Australia in ryegrass (Lolium perenne) (cv. Nui) sown at either 6 or 30 kg/ha and white clover Reviewed by: (Trifolium repens) sown at a uniform rate of 8 kg/ha. This provided a range of % white James Michael William Ryalls, clover content to investigate CRW population establishment and impacts on white clover Hawkesbury Institute for the Environment, Australia survival. Larval sampling was carried out in spring (October) when larval densities are Phil Murray, near their spring peak at Lincoln (Canterbury, New Zealand) with % clover measured Rothamsted Research – in autumn (April) and spring (September) of each year. Overall, mean larval densities Biotechnology and Biological −2 Sciences Research Council, UK measured in spring 2012–2015 were 310, 38, 59, and 31 larvae m , respectively. *Correspondence: There was a significant decline in larval populations between 2012 and 2013, but Mark R.
    [Show full text]
  • Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten.
    [Show full text]
  • Response to Clover Root Weevil Outbreaks in South Canterbury, Otago and Southland; the Agricultural Sector and Government Working Together
    117 Response to clover root weevil outbreaks in South Canterbury, Otago and Southland; the agricultural sector and government working together S. HARDWICK1, C.M. FERGUSON2, P. McCAULEY3, W. NICHOL4, R. KYTE5, D.M. BARTON2, M.R. McNEILL1, B.A. PHILIP2 and C.B. PHILLIPS1 1AgResearch Ltd, Lincoln Research Centre, Lincoln, New Zealand 2AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand 3Beef+Lamb New Zealand, PO Box 121, Wellington 6140, New Zealand 4PGG Wrightson Seeds Ltd., Private Bag 1946, Dunedin, New Zealand 5DairyNZ, 70 Forth Street, Invercargill, New Zealand [email protected] Abstract Southland in 2010 (Phillips et al. 2010) and Westland in Clover root weevil was first discovered in the northern 2012 (Ferguson et al. 2012). These isolated populations South Island in 2006, and an introduced biocontrol probably arose from inadvertent human-assisted agent the parasitoid wasp Microctonus aethiopoides, dispersal of CRW in association with farming activities was immediately released there in response. As the (Phillips et al. 2010; Ferguson et al. 2012). weevil spread southwards, ongoing releases and Adults of CRW feed on white clover leaves and can natural parasitoid dispersal generally supressed it to reduce establishment of seedlings, but it is the root- economically tolerable levels. However, mild winters feeding larvae that cause most damage by reducing in the southern South Island during 2013 and 2014 nitrogen fixation and weakening or killing plants allowed weevil populations to grow and spread quicker (Barratt et al. 1996 and references therein; Eerens et than the parasitoid. This severely impacted white clover al. 2005; Gerard et al. 2007). To maintain production, production and farm profitability in parts of South farmers may apply additional nitrogen fertiliser, grow Canterbury, Otago and Southland, thus, scientists and more non-susceptible forage plants, and/or increase industry conducted 18 months of intensive parasitoid supplementary feed (White & Gerard 2006).
    [Show full text]
  • Sensory Gene Identification in the Transcriptome of the Ectoparasitoid
    www.nature.com/scientificreports OPEN Sensory gene identifcation in the transcriptome of the ectoparasitoid Quadrastichus mendeli Zong‑You Huang, Xiao‑Yun Wang, Wen Lu & Xia‑Lin Zheng* Sensory genes play a key role in the host location of parasitoids. To date, the sensory genes that regulate parasitoids to locate gall‑inducing insects have not been uncovered. An obligate ectoparasitoid, Quadrastichus mendeli Kim & La Salle (Hymenoptera: Eulophidae: Tetrastichinae), is one of the most important parasitoids of Leptocybe invasa, which is a global gall‑making pest in eucalyptus plantations. Interestingly, Q. mendeli can precisely locate the larva of L. invasa, which induces tumor‑like growth on the eucalyptus leaves and stems. Therefore, Q. mendeli–L. invasa provides an ideal system to study the way that parasitoids use sensory genes in gall‑making pests. In this study, we present the transcriptome of Q. mendeli using high‑throughput sequencing. In total, 31,820 transcripts were obtained and assembled into 26,925 unigenes in Q. mendeli. Then, the major sensory genes were identifed, and phylogenetic analyses were performed with these genes from Q. mendeli and other model insect species. Three chemosensory proteins (CSPs), 10 gustatory receptors (GRs), 21 ionotropic receptors (IRs), 58 odorant binding proteins (OBPs), 30 odorant receptors (ORs) and 2 sensory neuron membrane proteins (SNMPs) were identifed in Q. mendeli by bioinformatics analysis. Our report is the frst to obtain abundant biological information on the transcriptome of Q. mendeli that provided valuable information regarding the molecular basis of Q. mendeli perception, and it may help to understand the host location of parasitoids of gall‑making pests.
    [Show full text]
  • CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
    WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties.
    [Show full text]
  • In Coonoor Forest Area from Nilgiri District Tamil Nadu, India
    International Journal of Scientific Research in ___________________________ Research Paper . Biological Sciences Vol.7, Issue.3, pp.52-61, June (2020) E-ISSN: 2347-7520 DOI: https://doi.org/10.26438/ijsrbs/v7i3.5261 Preliminary study of moth (Insecta: Lepidoptera) in Coonoor forest area from Nilgiri District Tamil Nadu, India N. Moinudheen1*, Kuppusamy Sivasankaran2 1Defense Service Staff College Wellington, Coonoor, Nilgiri District, Tamil Nadu-643231 2Entomology Research Institute, Loyola College, Chennai-600 034 Corresponding Author: [email protected], Tel.: +91-6380487062 Available online at: www.isroset.org Received: 27/Apr/2020, Accepted: 06/June/ 2020, Online: 30/June/2020 Abstract: This present study was conducted at Coonoor Forestdale area during the year 2018-2019. Through this study, a total of 212 species was observed from the study area which represented 212 species from 29 families. Most of the moth species were abundance in July to August. Moths are the most vulnerable organism, with slight environmental changes. Erebidae, Crambidae and Geometridae are the most abundant families throughout the year. The Coonoor Forestdale area was showed a number of new records and seems to supporting an interesting the monotypic moth species have been recorded. This preliminary study is useful for the periodic study of moths. Keywords: Moth, Environment, Nilgiri, Coonoor I. INTRODUCTION higher altitude [9]. Thenocturnal birds, reptiles, small mammals and rodents are important predator of moths. The Western Ghats is having a rich flora, fauna wealthy The moths are consider as a biological indicator of and one of the important biodiversity hotspot area. The environmental quality[12]. In this presentstudy moths were Western Ghats southern part is called NBR (Nilgiri collected and documented from different families at Biosphere Reserve) in the three states of Tamil Nadu, Coonoor forest area in the Nilgiri District.
    [Show full text]
  • The Clover Root Weevil Invasion: Impact and Response of the New Zealand Pastoral Industry 1996-2012
    University of Kentucky UKnowledge International Grassland Congress Proceedings XXII International Grassland Congress The Clover Root Weevil Invasion: Impact and Response of the New Zealand Pastoral Industry 1996-2012 Philippa J. Gerard AgResearch, New Zealand James R. Crush AgResearch, New Zealand Colin M. Ferguson AgResearch, New Zealand Scott Hardwick AgResearch, New Zealand Mark R. McNeill AgResearch, New Zealand See next page for additional authors Follow this and additional works at: https://uknowledge.uky.edu/igc Part of the Plant Sciences Commons, and the Soil Science Commons This document is available at https://uknowledge.uky.edu/igc/22/2-13/4 The XXII International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013. Proceedings Editors: David L. Michalk, Geoffrey D. Millar, Warwick B. Badgery, and Kim M. Broadfoot Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Presenter Information Philippa J. Gerard, James R. Crush, Colin M. Ferguson, Scott Hardwick, Mark R. McNeill, and Craig B. Phillips This event is available at UKnowledge: https://uknowledge.uky.edu/igc/22/2-13/4 Ecology and control of
    [Show full text]
  • Hymenoptera: Chalcidoidea: Pteromalidae) of Kurdistan Province, Western Iran Including New Records
    BIHAREAN BIOLOGIST 7 (2): pp.90-93 ©Biharean Biologist, Oradea, Romania, 2013 Article No.: 131116 http://biozoojournals.3x.ro/bihbiol/index.html A contribution to the knowledge of the pteromalid wasps (Hymenoptera: Chalcidoidea: Pteromalidae) of Kurdistan Province, Western Iran including new records Kolsoum DEHDAR and Seyed Massoud MADJDZADEH* Department of Biology, Shahid Bahonar University of Kerman, Po.Box 76175-14111. Kerman, Iran. Emails: [email protected], [email protected], *Corresponding author, S.M. Madjdzadeh, Email: [email protected] Received: 26. March 2013 / Accepted: 11. November 2013 / Available online: 15. November 2013 / Printed: December 2013 Abstract. In the present paper a preliminary study of the pteromalid fauna (Hymenoptera: Chalcidoidea: Pteromalidae) in Kurdistan Province, Western Iran is provided. The specimens were collected using sweeping nets and Malaise traps during 2009- 2010. Nine species belonging to 9 genera and to the following subfamilies are identified: Asaphinae (1 species), Miscogasterinae (1 species), Ormocerinae (1 species) and Pteromalinae (6 species). Two species, Callitula bicolor Spinola, 1811 and Stenoselma nigrum Delucchi, 1956 are recorded for the first time from Iran. Short taxonomic comments for each species are briefly mentioned. Key words: Hymenoptera, Pteromalidae, parasitoids, Western Iran, distribution, new records. Introduction Materials and Methods Pteromalidae is the largest family in the Chalcidoidea mem- The study area is located on the western margin of the Iranian Pla- teau between 34°44' to 36°30' N and 45°31' to 48°16' E. The region is bers of which are distributed in all the zoogeographical re- bordered in the north by Western Azerbaijan Province, from the gions of the world (Noyes 2012).
    [Show full text]
  • Invertebrate Biosecurity Challenges in High-Productivity Grassland: the New Zealand Example
    fpls-07-01670 November 11, 2016 Time: 14:42 # 1 CORE Metadata, citation and similar papers at core.ac.uk Provided by Lincoln University Research Archive MINI REVIEW published: 15 November 2016 doi: 10.3389/fpls.2016.01670 Invertebrate Biosecurity Challenges in High-Productivity Grassland: The New Zealand Example Stephen L. Goldson1,2, Barbara I. P. Barratt3 and Karen F. Armstrong1* 1 Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand, 2 Biocontrol and Biosecurity Group, AgResearch, Canterbury, New Zealand, 3 Biocontrol and Biosecurity Group, AgResearch, Otago, New Zealand To protect productive grasslands from pests and diseases, effective pre- and at- border planning and interventions are necessary. Biosecurity failure inevitably requires expensive and difficult eradication, or long-term and often quite ineffective management strategies. This is compared to the early intervention more likely for sectors where there is public and political interest in plants of immediate economic and/or social value, and where associated pests are typically located above-ground on host plantings of relatively limited distribution. Here, biosecurity surveillance and responses can be readily designed. In contrast, pastures comprising plants of low inherent unit value create little, Edited by: if any, esthetic interest. Yet, given the vast extent of pasture in New Zealand and the Ivan Hiltpold, value of the associated industries, these plants are of immense economic importance. University of Delaware, USA Compounding this is the invasibility of New Zealand’s pastoral ecosystems through Reviewed by: Karl Kunert, a lack of biotic resistance to incursion and invasion. Further, given the sheer area of University of Pretoria, South Africa pasture, intervention options are limited because of costs per unit area and the potential William R.
    [Show full text]
  • Green Roofs and Urban Biodiversity: Their Role As Invertebrate Habitat and the Effect of Design on Beetle Community
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 5-26-2016 Green Roofs and Urban Biodiversity: Their Role as Invertebrate Habitat and the Effect of Design on Beetle Community Sydney Marie Gonsalves Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, and the Environmental Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Gonsalves, Sydney Marie, "Green Roofs and Urban Biodiversity: Their Role as Invertebrate Habitat and the Effect of Design on Beetle Community" (2016). Dissertations and Theses. Paper 2997. https://doi.org/10.15760/etd.2998 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Green Roofs and Urban Biodiversity: Their Role as Invertebrate Habitat and the Effect of Design on Beetle Community by Sydney Marie Gonsalves A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Science and Management Thesis Committee: Catherine E. de Rivera, Chair Amy A. Larson Olyssa S. Starry Portland State University 2016 © 2016 Sydney Marie Gonsalves Abstract With over half the world’s population now living in cities, urban areas represent one of earth’s few ecosystems that are increasing in extent, and are sites of altered biogeochemical cycles, habitat fragmentation, and changes in biodiversity. However, urban green spaces, including green roofs, can also provide important pools of biodiversity and contribute to regional gamma diversity, while novel species assemblages can enhance some ecosystem services.
    [Show full text]
  • Species and Habitat Profiles Prepared by Terwilliger Consulting Inc
    Rhode Island Wildlife Action Plan Species and Habitat Profiles Prepared by Terwilliger Consulting Inc. for The Rhode Island Chapter of The Nature Conservancy for The Rhode Island Department of Environmental Management Division of Fish and Wildlife Rhode Island Wildlife Action Plan Species and Habitat Profiles Table of Contents Introduction to the Species and Habitat Profiles...................................................................... ii Key to Status Ranks .................................................................................................................iv Mammal Table of Contents ....................................................................................................vii Bird Species Table of Contents...............................................................................................viii Herpetofauna Table of Contents.............................................................................................xii Fish Species Table of Contents...............................................................................................xiii Invertebrate Table of Contents...............................................................................................xv Key Habitat Table of Contents .............................................................................................. xxii i Rhode Island Wildlife Action Plan Species and Habitat Profiles Introduction to the Species and Habitat Profiles New to the 2015 Rhode Island Wildlife Action Plan Revision are the Species and Habitat
    [Show full text]
  • 1 Modern Threats to the Lepidoptera Fauna in The
    MODERN THREATS TO THE LEPIDOPTERA FAUNA IN THE FLORIDA ECOSYSTEM By THOMSON PARIS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2011 1 2011 Thomson Paris 2 To my mother and father who helped foster my love for butterflies 3 ACKNOWLEDGMENTS First, I thank my family who have provided advice, support, and encouragement throughout this project. I especially thank my sister and brother for helping to feed and label larvae throughout the summer. Second, I thank Hillary Burgess and Fairchild Tropical Gardens, Dr. Jonathan Crane and the University of Florida Tropical Research and Education center Homestead, FL, Elizabeth Golden and Bill Baggs Cape Florida State Park, Leroy Rogers and South Florida Water Management, Marshall and Keith at Mack’s Fish Camp, Susan Casey and Casey’s Corner Nursery, and Michael and EWM Realtors Inc. for giving me access to collect larvae on their land and for their advice and assistance. Third, I thank Ryan Fessendon and Lary Reeves for helping to locate sites to collect larvae and for assisting me to collect larvae. I thank Dr. Marc Minno, Dr. Roxanne Connely, Dr. Charles Covell, Dr. Jaret Daniels for sharing their knowledge, advice, and ideas concerning this project. Fourth, I thank my committee, which included Drs. Thomas Emmel and James Nation, who provided guidance and encouragement throughout my project. Finally, I am grateful to the Chair of my committee and my major advisor, Dr. Andrei Sourakov, for his invaluable counsel, and for serving as a model of excellence of what it means to be a scientist.
    [Show full text]