Laboratory Studies of Fathead Minnow Predation on Catostomid Larvae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Culturing of Fathead Minnows (Pimephales Promelas) Supplement to Training Video
WHOLE EFFLUENT TOXICITY • TRAINING VIDEO SERIES • Freshwater Series Culturing of Fathead Minnows (Pimephales promelas) Supplement to Training Video U.S. Environmental Protection Agency Office of Wastewater Management Water Permits Division 1200 Pennsylvania Ave., NW Washington, DC 20460 EPA-833-C-06-001 December 2006 NOTICE The revision of this report has been funded wholly or in part by the Environmental Protection Agency under Contract EP-C-05-046. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. U.S. ENVIRONMENTAL PROTECTION AGENCY Culturing of Fathead Minnows (Pimephales promlas) Supplement to Training Video Foreword This report serves as a supplement to the video “Culturing of Fathead Minnows (Pimephales promelas)” (EPA, 2006a). The methods illustrated in the video and described in this report sup- port the methods published in the U.S. Environmental Protection Agency’s (EPA’s) Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms, Fifth Edition (2002a) and Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition (2002b), referred to as the Acute and Chronic Methods Manuals, respectively. The video and this report provide details on setting up and maintaining cultures based on the expertise of the personnel at the EPA’s Mid-Continent Ecology Division (MED) in Duluth, Minnesota (EPA-Duluth). More information can also be found in Guidelines for the Culture of Fathead Minnows (Pimephales promelas) for Use in Toxicity Tests (EPA, 1987). This report and its accompanying video are part of a series of training videos produced by EPA’s Office of Wastewater Management. -
Disease List for Aquaculture Health Certificate
Quarantine Standard for Designated Species of Imported/Exported Aquatic Animals [Attached Table] 4. Listed Diseases & Quarantine Standard for Designated Species Listed disease designated species standard Common name Disease Pathogen 1. Epizootic haematopoietic Epizootic Perca fluviatilis Redfin perch necrosis(EHN) haematopoietic Oncorhynchus mykiss Rainbow trout necrosis virus(EHNV) Macquaria australasica Macquarie perch Bidyanus bidyanus Silver perch Gambusia affinis Mosquito fish Galaxias olidus Mountain galaxias Negative Maccullochella peelii Murray cod Salmo salar Atlantic salmon Ameirus melas Black bullhead Esox lucius Pike 2. Spring viraemia of Spring viraemia of Cyprinus carpio Common carp carp, (SVC) carp virus(SVCV) Grass carp, Ctenopharyngodon idella white amur Hypophthalmichthys molitrix Silver carp Hypophthalmichthys nobilis Bighead carp Carassius carassius Crucian carp Carassius auratus Goldfish Tinca tinca Tench Sheatfish, Silurus glanis European catfish, wels Negative Leuciscus idus Orfe Rutilus rutilus Roach Danio rerio Zebrafish Esox lucius Northern pike Poecilia reticulata Guppy Lepomis gibbosus Pumpkinseed Oncorhynchus mykiss Rainbow trout Abramis brama Freshwater bream Notemigonus cysoleucas Golden shiner 3.Viral haemorrhagic Viral haemorrhagic Oncorhynchus spp. Pacific salmon septicaemia(VHS) septicaemia Oncorhynchus mykiss Rainbow trout virus(VHSV) Gadus macrocephalus Pacific cod Aulorhynchus flavidus Tubesnout Cymatogaster aggregata Shiner perch Ammodytes hexapterus Pacific sandlance Merluccius productus Pacific -
450 (19) in Part C, the Following Chapters Are Added: "C.47 Fish
(19) In Part C, the following Chapters are added: "C.47 Fish, Early-life Stage Toxicity Test INTRODUCTION 1. This test method is equivalent to OECD test guideline (TG) 210 (2013). Tests with the early-life stages of fish are intended to define the lethal and sub-lethal effects of chemicals on the stages and species tested. They yield information of value for the estimation of the chronic lethal and sub-lethal effects of the chemical on other fish species. 2. Test guideline 210 is based on a proposal from the United Kingdom which was discussed at a meeting of OECD experts convened at Medmenham (United Kingdom) in November 1988 and further updated in 2013 to reflect experience in using the test and recommendations from an OECD workshop on fish toxicity testing, held in September 2010 (1). PRINCIPLE OF THE TEST 3. The early-life stages of fish are exposed to a range of concentrations of the test chemical dissolved in water. Flow-through conditions are preferred; however, if it is not possible semi-static conditions are acceptable. For details the OECD guidance document on aquatic toxicity testing of difficult substances and mixtures should be consulted (2). The test is initiated by placing fertilised eggs in test chambers and is continued for a species-specific time period that is necessary for the control fish to reach a juvenile life-stage. Lethal and sub-lethal effects are assessed and compared with control values to determine the lowest observed effect concentration (LOEC) in order to determine the (i) no observed effect concentration (NOEC) and/or (ii) ECx (e.g. -
Literature Based Characterization of Resident Fish Entrainment-Turbine
Draft Technical Memorandum Literature Based Characterization of Resident Fish Entrainment and Turbine-Induced Mortality Klamath Hydroelectric Project (FERC No. 2082) Prepared for PacifiCorp Prepared by CH2M HILL September 2003 Contents Introduction...................................................................................................................................1 Objectives ......................................................................................................................................1 Study Approach ............................................................................................................................2 Fish Entrainment ..............................................................................................................2 Turbine-induced Mortality .............................................................................................2 Characterization of Fish Entrainment ......................................................................................2 Magnitude of Annual Entrainment ...............................................................................9 Size Composition............................................................................................................10 Species Composition ......................................................................................................10 Seasonal and Diurnal Distribution...............................................................................15 Turbine Mortality.......................................................................................................................18 -
Ecology of Upper Klamath Lake Shortnose and Lost River Suckers
ECOLOGY OF UPPER KLAMATH LAKE SHORTNOSE AND LOST RIVER SUCKERS 4. The Klamath Basin sucker species complex 1999 ANNUAL REPORT (partial) SUBMITTED TO U. S. Biological Resources Division US Geological Survey 104 Nash Hall Oregon State University Corvallis, Oregon 97331-3803 & Klamath Project U. S. Bureau of Reclamation 6600 Washburn Way Klamath Falls, OR 97603 by Douglas F. ~arkle', Martin R. ~avalluzzi~,Thomas E. owli in^^ and David .Simon1 1Oregon Cooperative Research Unit 104 Nash Hall Department of Fisheries and Wildlife Oregon State University Corvallis, Oregon 97331-3803 E -mai1 : douglas.markle@,orst.edu 2Department of Biology Arizona State University Tempe, AZ 85287-1501 Phone: 480-965-1626 Fax: 480-965-2519 E -mai 1 : [email protected] July 26, 2000 There are 13 genera and 68 species of catostomids (Nelson 1994) with three genera and four species occurring in Klamath Basin (Bond 1994)- Catostomus rimiculus Gilbert and Snyder, 1898 (Klamath smallscale sucker, KSS), C. snyderi Gilbert 1898 (Klamath largescale sucker, KLS), Chasmistes brevirostris Cope, 1879 (shortnose sucker, SNS), and Deltistes luxatus (Cope, 1879) (Lost River sucker, LRS). Lost River and shortnose suckers are federally listed endangered species (U.S. Fish and Wildlife Service 1988). The four Klamath Basin suckers are similar in overall body shape, but highly variable, and are distinguished by feeding-related structures, adult habitat and geography. The two Catostomus species have large lips, widely-spaced gillrakers, and are primarily river dwellers with C. snyderi mostly found in the upper basin and C. rimiculus in the lower basin and adjacent Rogue River. Deltistes luxatus has smaller lips, short "deltoid" Catostomus-like gillrakers, and is primariliy a lake dweller. -
Dispersal of Larval Suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006–09
Prepared in cooperation with the Bureau of Reclamation Dispersal of Larval Suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006–09 Scientific Investigations Report 2012–5016 U.S. Department of the Interior U.S. Geological Survey Cover: Inset: Larval sucker from Upper Klamath Lake, Oregon. (Photograph taken by Allison Estergard, Student, Oregon State University, Corvallis, Oregon, 2011.) Top: Photograph taken from the air of the flooded Williamson River Delta, Upper Klamath Lake, Oregon. (Photograph taken by Charles Erdman, Fisheries Technician, Williamson River Delta Preserve, Klamath Falls, Oregon, 2008.) Bottom left: Photograph of a pop net used by The Nature Conservancy to collect larval suckers in Upper Klamath Lake and the Williamson River Delta, Oregon. (Photograph taken by Heather Hendrixson, Director, Williamson River Delta Preserve, Klamath Falls, Oregon, 2006.) Bottom middle: Photograph of a larval trawl used by Oregon State University to collect larval suckers in Upper Klamath Lake and the Williamson River Delta, Oregon. (Photograph taken by David Simon, Senior Faculty Research Assistant, Oregon State University, Corvallis, Oregon, 2010.) Bottom right: Photograph of a plankton net used by the U.S. Geological Survey to collect larval suckers in Upper Klamath Lake and the Williamson River Delta, Oregon. (Photographer unknown, Klamath Falls, Oregon, 2009.) Dispersal of Larval Suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006–09 By Tamara M. Wood, U.S. Geological Survey, Heather A. Hendrixson, The Nature Conservancy, Douglas F. Markle, Oregon State University, Charles S. Erdman, The Nature Conservancy, Summer M. Burdick, U.S. Geological Survey, Craig M. Ellsworth, U.S. Geological Survey, and Norman L. -
2021 Fish Suppliers
2021 Fish Suppliers A.B. Jones Fish Hatchery Largemouth bass, hybrid bluegill, bluegill, black crappie, triploid grass carp, Nancy Jones gambusia – mosquito fish, channel catfish, bullfrog tadpoles, shiners 1057 Hwy 26 Williamsburg, KY 40769 (606) 549-2669 ATAC, LLC Pond Management Specialist Fathead minnows, golden shiner, goldfish, largemouth bass, smallmouth bass, Rick Rogers hybrid bluegill, bluegill, redear sunfish, walleye, channel catfish, rainbow trout, PO Box 1223 black crappie, triploid grass carp, common carp, hybrid striped bass, koi, Lebanon, OH 45036 shubunkin goldfish, bullfrog tadpoles, and paddlefish (513) 932-6529 Anglers Bait-n-Tackle LLC Fathead minnows, rosey red minnows, bluegill, hybrid bluegill, goldfish and Kaleb Rodebaugh golden shiners 747 North Arnold Ave Prestonsburg, KY 606-886-1335 Andry’s Fish Farm Bluegill, hybrid bluegill, largemouth bass, koi, channel catfish, white catfish, Lyle Andry redear sunfish, black crappie, tilapia – human consumption only, triploid grass 10923 E. Conservation Club Road carp, fathead minnows and golden shiners Birdseye, IN 47513 (812) 389-2448 Arkansas Pondstockers, Inc Channel catfish, bluegill, hybrid bluegill, redear sunfish, largemouth bass, Michael Denton black crappie, fathead minnows, and triploid grass carp PO Box 357 Harrisbug, AR 75432 (870) 578-9773 Aquatic Control, Inc. Largemouth bass, bluegill, channel catfish, triploid grass carp, fathead Clinton Charlton minnows, redear sunfish, golden shiner, rainbow trout, and hybrid striped bass 505 Assembly Drive, STE 108 -
Upper Klamath Lake Fish Screen Program Draft Environmental Assessment
Upper Klamath Lake Fish Screen Program Draft Environmental Assessment Klamath Project, Oregon Mid-Pacific Region September 2007 U.S. Department of the Interior Bureau of Reclamation Mid-Pacific Region September 2007 Table of Contents Chapter 1: Need and Purpose......................................................................................................... 4 1.1 Statutory Authority ............................................................................................................. 5 1.2 Need and Purpose for Action.............................................................................................. 5 1.3 General Area Description and Location ............................................................................. 6 1.4 Relation Actions and Activities .......................................................................................... 7 1.4.1 Oregon Department of Fish and Wildlife Fish Screen Statutes................................... 7 1.4.2 Klamath Fish Passage Technical Committee............................................................... 7 1.4.3 U.S. Fish and Wildlife Service Ecosystem Restoration Program................................ 8 1.4.4 Oregon Watershed Enhancement Board...................................................................... 8 Chapter 2: Alternatives Considered............................................................................................... 8 2.1 Proposed Action and Alternatives ..................................................................................... -
Juvenile Lost River and Shortnose Sucker Year Class Strength
Juvenile Lost River and Shortnose Sucker Year Class Strength, Survival, and Growth in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California: 2016 Monitoring Report Open-File Report 2018–1066 U.S. Department of the Interior U.S. Geological Survey Cover: Photograph showing Upper Klamath Lake, Oregon in July with a cyanobacterial bloom. Photograph taken from Modoc Rim on the eastern shore looking to the northwest. Photograph from U.S. Geological Survey. Juvenile Lost River and Shortnose Sucker Year Class Strength, Survival, and Growth in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California—2016 Monitoring Report By Summer M. Burdick, Carl O. Ostberg, and Marshal S. Hoy Open-File Report 2018–1066 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Deputy Director exercising the authority of the Director U.S. Geological Survey, Reston, Virginia: 2018 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. -
Upper Klamath and Lost River Subbasins TMDL and Water Quality Management Plan
Upper Klamath and Lost River Subbasins TMDL and Water Quality Management Plan April 2017 TMDL Program 700 NE Multnomah St. Suite 600 Portland, OR 97232 Phone: 541-273-7002 Contact: Mike Hiatt www.oregon.gov/DEQ DEQ is a leader in restoring, maintaining and enhancing the quality of Oregon’s air, land and water. Oregon Department of Environmental Quality This report prepared by: Oregon Department of Environmental Quality 700 NE Multnomah St, Suite 600 Portland, OR 97232 541-273-7002 www.oregon.gov/deq Contact: Mike Hiatt [email protected] Documents can be provided upon request in an alternate format for individuals with disabilities or in a language other than English for people with limited English skills. To request a document in another format or language, call DEQ in Portland at 503-229-5696, or toll-free in Oregon at 1-800-452-4011, ext. 5696; or email [email protected]. State of Oregon Department of Environmental Quality ii Table of Contents Executive Summary................................................................................................................................... 1 Klamath River TMDLs................................................................................................................................ 2 Lost River TMDLs ...................................................................................................................................... 2 TMDL Summaries ..................................................................................................................................... -
Academic Bibliography Relating to Marine Species and Anthropogenic Underwater Noise
Academic Bibliography relating to Marine Species and Anthropogenic Underwater Noise Summary up to 2017 Academic Bibliography Agardy, T., Aguilar Soto, N., Cañadas, A., Engel, M., Frantzis, A., Hatch, L., Hoyt, E., Kaschner, K., LaBrecque, E., Martin, V., Notarbartolo di Sciara, G., Pavan, G., Servidio, A., Smith, B., Wang, J., Weilgart, L., Wintle, B., and Wright, A. (2007). A global scientific workshop on spatio- temporal management of noise. Report of workshop held in Puerto Calero, Lanzarote, June 4-6, 2007. 25pp. Amoser, S., and Ladich, F. 2003. Diversity in noise-induced temporary hearing loss in otophysine fishes. J. Acoust. Soc. Am. 113: 2170–2179. Andrew, R.K., Howe, B.M., Mercer, J.A., and Dzieciuch, M.A. 2002. Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoust. Res. Lett. Online 3(2): 65-70. Bain, D.E., and Williams, R. 2006. Long-range effects of airgun noise on marine mammals: Responses as a function of received sound level and distance. Paper SC/58/E35 presented to the IWC Scientific Committee, June 2006 (unpublished). 13 pp. [Available from the Office of the Journal of Cetacean Research and Management and reported out of the IWC Scientific Committee.] Baird, R.W., Webster, D.L., McSweeney, D.J., Ligon, A.D., Schorr, G.S., and Barlow, J. 2006. Diving behavior of Cuvier’s (Ziphius cavirostris) and Blainville’s (Mesoplodon densirostris) beaked whales in Hawai’i. Canadian J. Zoo. 84: 1120-1128. Balcomb, K.C., and Claridge, D.E. 2001. A mass stranding of cetaceans caused by naval sonar in the Bahamas. -
Fathead Minnow (Pimephales Promelas) Larval Survival and Growth Toxicity Tests Supplement to Training Video
WHOLE EFFLUENT TOXICITY • TRAINING VIDEO SERIES • Freshwater Series Fathead Minnow (Pimephales promelas) Larval Survival and Growth Toxicity Tests Supplement to Training Video U.S. Environmental Protection Agency Office of Wastewater Management Water Permits Division 1200 Pennsylvania Ave., NW Washington, DC 20460 EPA-833-C-06-001 December 2006 NOTICE The revision of this report has been funded wholly or in part by the Environmental Protection Agency under Contract EP-C-05-046. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. U.S. ENVIRONMENTAL PROTECTION AGENCY Fathead Minnow (Pimephales promelas) Larval Survival and Growth Toxicity Tests Supplement to Training Video Foreword This report serves as a supplement to the video “Fathead Minnow (Pimephales promelas) Larval Survival and Growth Toxicity Tests” (EPA, 2006a). The methods illustrated in the video and described in this report support the methods published in the U.S. Environmental Protection Agency’s (EPA’s) Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition (2002a) and Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms, Fifth Edition (2002b), referred to as the Chronic and Acute Method Manuals, respectively. The video and this report provide details on initiating, renewing, and terminating tests based on the expertise of the per- sonnel at the EPA’s Mid-Continent Ecology Division (MED) in Duluth, Minnesota (EPA-Duluth). This report and its accompanying video are part of a series of training videos produced by EPA’s Office of Wastewater Management. The video entitled “Culturing of Fathead Minnows (Pimephales promelas)” (EPA, 2006b) complements the material in this video by explaining the method for culturing fathead minnows for use in toxicity tests.