Dendropsophus Labialis

Total Page:16

File Type:pdf, Size:1020Kb

Dendropsophus Labialis A peer-reviewed version of this preprint was published in PeerJ on 6 June 2018. View the peer-reviewed version (peerj.com/articles/4525), which is the preferred citable publication unless you specifically need to cite this preprint. Arenas-Rodríguez A, Rubiano Vargas JF, Hoyos JM. 2018. Comparative description and ossification patterns of Dendropsophus labialis (Peters, 1863) and Scinax ruber (Laurenti, 1758) (Anura: Hylidae) PeerJ 6:e4525 https://doi.org/10.7717/peerj.4525 Comparative description and ossification patterns of Dendropsophus labialis (Peters, 1863) and Scinax ruber (Laurenti, 1758)(Anura: Hylidae) Angélica Arenas Rodríguez Corresp., 1 , Juan Francisco Rubiano 2 , Julio Mario Hoyos Corresp. 1 1 Facultad de Ciencias, UNESIS (Unidad de Ecología y Sistemática), Pontifica Universidad Javeriana, Bogotá, Colombia 2 Facultad de Ciencias, Universidad del Bosque, Bogotá, Colombia Corresponding Authors: Angélica Arenas Rodríguez, Julio Mario Hoyos Email address: [email protected], [email protected] Although comparative studies of anuran ontogeny have provided new data on heterochrony in the life cycles of frogs, most of them have not included Colombian species. Using different staining techniques, we describe the cranial and poscranial elements development in two hylid species, Scinax ruber and Dendropsophus labialis, providing new data for more comprehensive ontogenetic studies in Neotropical frogs. We examined specimens from Gosner stages 25 to 45. We found differences in the infrarostral and suprarostral cartilages, optic foramen, planum ethmoidale, and the gill apparatus. In the ossification sequence, one of the first elements to ossify were the transverse process of spinal column and atlas in both species, and the parasphenoid in the skull. New descriptions of skeletal development and ossification sequences of larval stages of these two species, especially data concerning the postcranium, contribute with useful information for analysis of sequential heterochrony, because although the hylids are widely known, there are few works (15 of 700 species) about ossification sequence that include the whole skeleton. PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3368v1 | CC BY 4.0 Open Access | rec: 24 Oct 2017, publ: 24 Oct 2017 1 Comparative description and ossification patterns of Dendropsophus labialis 2 (Peters, 1863) and Scinax ruber (Laurenti, 1758)(Anura: Hylidae) 3 Angélica Arenas Rodríguez1, Juan Francisco Rubiano2, Julio Mario Hoyos1 4 1Facultad de Ciencias, UNESIS (Unidad de Ecología y Sistemática), Pontifica Universidad Javeriana, 5 Bogotá, Colombia 6 2Facultad de Ciencias, Universidad del Bosque, Bogotá, Colombia 7 Short Title: Skeletal development of two hylids 8 9 Abstract Although comparative studies of anuran ontogeny have provided new 10 data on heterochrony in the life cycles of frogs, most of them have not included 11 Colombian species. Using different staining techniques, we describe the cranial and 12 poscranial elements development in two hylid species, Scinax ruber and 13 Dendropsophus labialis, providing new data for more comprehensive ontogenetic 14 studies in Neotropical frogs. We examined specimens from Gosner stages 25 to 45. We 15 found differences in the infrarostral and suprarostral cartilages, optic foramen, planum 16 ethmoidale, and the gill apparatus. In the ossification sequence, one of the first 17 elements to ossify were the transverse process of spinal column and atlas in both 18 species, and the parasphenoid in the skull. New descriptions of skeletal development 19 and ossification sequences of larval stages of these two species, especially data 20 concerning the postcranium, contribute with useful information for analysis of sequential 21 heterochrony, because although the hylids are widely known, there are few works (15 of 22 700 species) about ossification sequence that include the whole skeleton. 23 Keywords Ossification sequences, rank, skeletal development, tadpoles 24 25 Introduction 26 Systematicians have been assessing anuran relationships from the 1960´s to the 27 present day, using both molecular and morphological methods. However, studies of 28 morphological characters have widely privileged adults over tadpoles (Alcalde et al. 29 2011). Traditionally, studies of frog larvae have considered external morphological 30 characters, while most skeletal characters (bones and cartilages) have been often 31 neglected, and when skeletal features are considered, studies have been concentrated 32 on describing the chondrocranium more than the postcranium (Orton 1953; Starrett 33 1973; Wassersug 1980; Wassersug and Heyer 1988; Haas 2003). 34 The family Hylidae is one of the largest families of frogs with a great number of 35 interspecific variations that have helped to clarify specific taxonomic groups. It is 36 predominantly distributed across the Neotropical region (Frost et al. 2006) and 37 comprises 948 species commonly subdivided into three subfamilies: Hylinae, 38 Pelodryadinae and Phyllomedusinae (Faivovich et al. 2005; Wiens et al. 2010; Frost 39 2017). Within the Hylidae, the ossification sequences have been studied for 25 species, 40 of which only six species, Dryophytes chrysoscelis (former Hyla chrysoscelis Sherman 41 and Maglia 2014) Hypsiboas pulchellus (Hoyos et al. 2012), Hypsiboas lanciformis (De 42 Sá 1988), Phyllomedusa vaillanti (Sheil and Alamillo 2005), Pseudacris crucifer and 43 Acris blanchardi (Havens 2010), have included the postcranial skeleton. 44 Taking into account that variations in the ossification sequence, placed in a 45 phylogenetic context, will help to recognize informative characters and evolutionary 46 relationships among species (Weisbecker and Mitgutsch 2010; Harrington et al. 2013), 47 the goal of the present study is to provide information on the larval morphology (cranium 48 and poscranium development) of two species of frogs Andean hylids, Dendropsophus 49 labialis and Scinax ruber. These species were chosen with the aim of giving a 50 contribution to the knowledge on the timing and sequences of ossification, and in order 51 to provide comparative characters for anuran morphology and systematics of these 52 Colombian species. 53 54 Materials and methods 55 The number tadpoles cleared and double-stained (Dingerkus and Uhler 1977) of each 56 species were 146 (32 of D. labilis, and 114 of S. ruber) and one adult male. These 57 speciemens belong to the Museo de Historia Natural “Lorenzo Uribe” at the Universidad 58 Javeriana (MUJ) and the Instituto de Ciencias Naturales at the Universidad Nacional in 59 Bogotá – Colombia (ICN). The larval stages of D. labialis were collected from the 60 Municipio Tenjo, Cundinamarca Departament, 3200 m (MUJ 9250) and adult stages 61 from the Mun. Fomeque, Cundinamarca Dep., 3150 m (MUJ 497). The larval stages of 62 S. ruber were collected from the Mun. Neiva, Huila Dep., 570 m; Mun. Granada, Meta 63 Dep., 470 m (MUJ 3727, MUJ 6178, ICN 46015-46017) and adult stages from the Mun. 64 La Dorada, Caldas Dep., 490 m (MUJ 9037). All of these were staged according to 65 Gosner’s (1960) proposal. 66 Observations and photographs were made with a stereomicroscope (Advanced 67 optical), a camera (Infinity 1 Lumenera Corporation) with white LED light and Image Pro 68 Insight program (version 8.0.3). The drawings were made using a digitizing tablet 69 (Bamboo connect pen) and edited using Adobe Illustrator 5. Anatomical nomenclature 70 for tadpoles is based on (Parker, 1876; Higgins, 1921; Jolie 1962; Roček, 1981; 71 Duellman & Trueb, 1986; Haas, 1995; Haas, 1997; Hall & Larsen, 1998; Maglia and 72 Púgener, 1998; Cannatella, 1999; Haas, 1999; Sheil and Alamillo, 2005; Púgener and 73 Maglia, 2007; Bowatte & Meegaskumbura, 2011; Hoyos et al., 2012); on the other hand, 74 the adult nomenclature is based on Avilán & Hoyos (2006), using the Latin names given 75 by the ICVAN (1973), taking into account that it does not exit a Nomina Anatomica 76 Batrachologica. 77 In the ossification sequences we used the metamorphic climax (MC) sensu Banbury 78 and Maglia (2006). This concept involves major modifications, and fundamental 79 structural changes within Gosner stages, ending in the loss of most of the larval 80 characters. We also used the term "rank" refering to the assignment of a position of the 81 beginning of ossification timing of the elements and in the case that two or more events 82 are simultaneously present (beginning of the ossification at the same time), they are tied 83 in the same rank within the developmental sequence (ossification sequence) (Nunn and 84 Smith 1998). 85 86 Results 87 Individual development of cranial and poscranial elements in Dendropsophus labialis 88 and Scinax ruber are showed in table 1 and 2, each one showing ossification 89 sequences. 90 Chondrocranium 91 The overall width of the chondrocranium in Dendropsophus labialis and Scinax ruber 92 is approximately 80-90% of this total length (Fig 1). The chondrocranium in D. labialis is 93 wider (dorsal view) and lower (lateral view) than S. ruber (Fig 1A, 1B, 1C). The 94 basicranial fenestrae did not differentiated with Alcian Blue in both species. We 95 observed a stronger blue coloration in D. labialis, and the jugular (jf), prootic (pof) and 96 oculomotor (of) foramen were clearly differentiated, whereas in S. ruber we could not 97 these foramina. The cartilaginous area of taenia tecti medialis and tectum sinoticum (ts) 98 both represents a quarter of that basis cranii, extending from the frontoparietal 99 fontanella
Recommended publications
  • Predation on Pristimantis Ridens (Cope, 1866) by a Wandering Spider (Ctenidae Keyserling, 1877) in Mountain Cloud Forest of Costa Rica
    Herpetology Notes, volume 8: 1-3 (2015) (published online on 26 January 2015) Predation on Pristimantis ridens (Cope, 1866) by a wandering spider (Ctenidae Keyserling, 1877) in mountain cloud forest of Costa Rica Daniel Jablonski Numerous records of predation on amphibians and cloud forest (vicinity of Santa Ellena village, Puntarenas reptiles by different groups of invertebrates are known province, Cordillera de Tilarán Mts.: 10.31249° N, and well documented in several review articles (e.g. 84.82336° W, 1350 m a.s.l.). This period corresponds McCormick and Polis, 1982; Bauer, 1990; Toledo, to the peak activity of both species in mountain rocky 2005). Small species of herpetofauna represent suitable stream surroundings. The weather was cloudy, with air food source for invertebrates in different phases of their temperature around 18° C. development (several invertebrate species feed on small The spider was found sitting on a leaf with the captured reptiles and on amphibian’s eggs, tadpoles and post- frog on the margins of a stream and was located c.a. metamorphic individuals; Menin et al., 2005; Toledo, 50 cm above the water. During the predation event, 2005). According to Menin et al. (2005), predation the frog was fully paralyzed and spider was biting the by invertebrates is an important factor of mortality back of its body. Detailed photos in situ were taken and in amphibians. However, the impact of invertebrate voucher specimens were not collected; for this reason, predators on populations of their vertebrate prey is hard the precise determination of the spider species was not to access (McCormick and Polis, 1982).
    [Show full text]
  • Herpetological Journal FULL PAPER
    Volume 26 (January 2017), 73–80 Herpetological Journal FULL PAPER Published by the British Herpetological Society Reproductive biology of the nest building vizcacheras frog Leptodactylus bufonius (Amphibia, Anura, Leptodactylidae), including a description of unusual courtship behaviour Gabriel Faggioni1, Franco Souza1, Masao Uetanabaro1, Paulo Landgref-Filho2, Joe Furman3 & Cynthia Prado1,4 1Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil 2Campo Grande, Brasil 3Houston, USA 4Departamento de Morfologia e Fisiologia Animal, Universidade Estadual Paulista, Jaboticabal, Brasil We describe the reproductive biology and sexual size dimorphism of a population of the vizcacheras frog Leptodactylus bufonius in the Brazilian Chaco. Reproduction takes place during the rainy months (September–March). During courtship, females emit reciprocal calls and both sexes perform vibratory movements of the body; the latter is described for the first time in anurans. Amplexus and oviposition occurred inside subterranean chambers. The temperature in closed chambers was lower than outside chambers, which may aid in reducing desiccation risks of eggs and tadpoles. Females were larger than males, but males had longer heads and shorter tibias, which may be related to digging. The study reinforces the importance of ongoing discoveries on anuran natural history. Keywords: Chaco, natural history, sexual size dimorphism, subterranean chamber, vibratory movements INTRODUCTION 1988; Haddad & Giaretta, 1999; Haddad & Sawaya, 2000; Lucas et al., 2008; Kokubum et al., 2009). he genus Leptodactylus Fitzinger, 1826, comprises 74 Species in the L. fuscus group reproduce in sub- species distributed from southern Texas to Argentina, terranean chambers which may vary in size, shape, includingT Caribbean islands (Frost, 2015).
    [Show full text]
  • Of the Scinax Ruber Clade from Cerrado of Central Brazil
    Amphibia-Reptilia 31 (2010): 411-418 A new species of small Scinax Wagler, 1830 (Amphibia, Anura, Hylidae) of the Scinax ruber clade from Cerrado of central Brazil Manoela Woitovicz Cardoso, José P. Pombal Jr. Abstract. A new species of the Scinax ruber clade from the Brazilian Cerrado Domain similar to Scinax fuscomarginatus, S. parkeri, S. trilineatus and S. wandae is described. It is characterized by small snout-vent lenght, body slender, head approximately as long as wide and slightly wider than body, subovoid snout in dorsal view, protruding snout in lateral view, a developed supratympanic fold, absence of flash colour on the posterior surfaces of thighs, hidden portions of shanks and groin, and large vocal sac. Scinax lutzorum sp. nov. differs from S. fuscomarginatus, S. parkeri and S. trilineatus by its slightly larger SVL; from Scinax fuscomarginatus and S. parkeri it differs by its more slender body; from Scinax fuscomarginatus and S. trilineatus the new species differs by its wider head and more protruding eyes; and it differs from Scinax parkeri and S. wandae by its shorter snout. Comments on the type specimens of S. fuscomarginatus are presented and a lectotype is designated for this species. Keywords: lectotype, new species, Scinax fuscomarginatus, Scinax lutzorum. Introduction 1862), S. cabralensis Drummond, Baêta and Pires, 2007, S. camposseabrai (Bokermann, The hylid frog genus Scinax Wagler, 1830 cur- 1968), Scinax castroviejoi De La Riva, 1993, rently comprises 97 recognized species distrib- S. curicica Pugliese, Pombal and Sazima, 2004, uted from eastern and southern Mexico to Ar- S. eurydice (Bokermann, 1968), S. fuscomar- gentina and Uruguay, Trinidad and Tobago, and ginatus (A.
    [Show full text]
  • Association Between Land Use and Composition of Amphibian Species In
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431642; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Association between land use and composition of amphibian species in 2 temperate Brazilian forest remnants 3 4 Roseli Coelho dos Santosa* 0000-0003-3886-6451, Diego Anderson 5 Dalmolinb, Diego Brumc, Mauricio Roberto Veronezc, Elaine Maria Lucasd 6 and Alexandro Marques Tozettia 7 8 aLaboratório de Ecologia de Vertebrados Terrestres – Universidade do Vale do Rio dos 9 Sinos - UNISINOS, São Leopoldo, Brazil 10 bLaboratório de Metacomunidades, Instituto de Biociências, Universidade Federal do 11 Rio Grande do Sul – UFRGS, Porto Alegre, Brazil 12 cVizlab / X-Reality and GeoInformatics Lab – Universidade do Vale do Rio dos Sinos – 13 UNISINOS, São Leopoldo, Brazil 14 dDepartamento de Zootecnia e Ciências Biológicas, Universidade Federal de Santa 15 Maria - UFSM, Brazil 16 17 * Corresponding author: [email protected] 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431642; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 19 Abstract 20 We evaluated the influence of landscape configuration on the diversity of anurans in 21 Atlantic Forest remnants in southern Brazil.
    [Show full text]
  • For Review Only
    Page 63 of 123 Evolution Moen et al. 1 1 2 3 4 5 Appendix S1: Supplementary data 6 7 Table S1 . Estimates of local species composition at 39 sites in Middle America based on data summarized by Duellman 8 9 10 (2001). Locality numbers correspond to Table 2. References for body size and larval habitat data are found in Table S2. 11 12 Locality and elevation Body Larval Subclade within Middle Species present Hylid clade 13 (country, state, specific location)For Reviewsize Only habitat American clade 14 15 16 1) Mexico, Sonora, Alamos; 597 m Pachymedusa dacnicolor 82.6 pond Phyllomedusinae 17 Smilisca baudinii 76.0 pond Middle American Smilisca clade 18 Smilisca fodiens 62.6 pond Middle American Smilisca clade 19 20 21 2) Mexico, Sinaloa, Mazatlan; 9 m Pachymedusa dacnicolor 82.6 pond Phyllomedusinae 22 Smilisca baudinii 76.0 pond Middle American Smilisca clade 23 Smilisca fodiens 62.6 pond Middle American Smilisca clade 24 Tlalocohyla smithii 26.0 pond Middle American Tlalocohyla 25 Diaglena spatulata 85.9 pond Middle American Smilisca clade 26 27 28 3) Mexico, Durango, El Salto; 2603 Hyla eximia 35.0 pond Middle American Hyla 29 m 30 31 32 4) Mexico, Jalisco, Chamela; 11 m Dendropsophus sartori 26.0 pond Dendropsophus 33 Exerodonta smaragdina 26.0 stream Middle American Plectrohyla clade 34 Pachymedusa dacnicolor 82.6 pond Phyllomedusinae 35 Smilisca baudinii 76.0 pond Middle American Smilisca clade 36 Smilisca fodiens 62.6 pond Middle American Smilisca clade 37 38 Tlalocohyla smithii 26.0 pond Middle American Tlalocohyla 39 Diaglena spatulata 85.9 pond Middle American Smilisca clade 40 Trachycephalus venulosus 101.0 pond Lophiohylini 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Evolution Page 64 of 123 Moen et al.
    [Show full text]
  • Community Structure of Parasites of the Tree Frog Scinax Fuscovarius (Anura, Hylidae) from Campo Belo Do Sul, Santa Catarina, Brazil
    ISSN Versión impresa 2218-6425 ISSN Versión Electrónica 1995-1043 ORIGINAL ARTICLE /ARTÍCULO ORIGINAL COMMUNITY STRUCTURE OF PARASITES OF THE TREE FROG SCINAX FUSCOVARIUS (ANURA, HYLIDAE) FROM CAMPO BELO DO SUL, SANTA CATARINA, BRAZIL ESTRUCTURA DE LA COMUNIDAD PARASITARIA DE LA RANA ARBORICOLA SCINAX FUSCOVARIUS (ANURA, HYLIDAE) DE CAMPO BELO DO SUL, SANTA CATARINA, BRASIL Viviane Gularte Tavares dos Santos1,2; Márcio Borges-Martins1,3 & Suzana B. Amato1,2 1 Departamento de Zoologia, Programa de Pós-graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Rio Grande do Sul, Brasil. 2 Laboratório de Helmintologia; Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Rio Grande do Sul, Brasil. 3 Laboratório de Herpetologia. Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Rio Grande do Sul, Brasil. E-mail: [email protected]; [email protected]; [email protected] Neotropical Helminthology, 2016, 10(1), ene-jun: 41-50. ABSTRACT Sixty specimens of Scinax fuscovarius (Lutz, 1925) were collected between May 2009 and October 2011 at Campo Belo do Sul, State of Santa Catarina, Brazil, and necropsied in search of helminth parasites. Only four helminth species were found: Pseudoacanthocephalus sp. Petrochenko, 1958, Cosmocerca brasiliense Travassos, 1925, C. parva Travassos, 1925 and Physaloptera sp. Rudolphi, 1819 (larvae). The genus of the female cosmocercids could not be determined. Only 30% of the anurans were parasitized. Scinax fuscovarius presented low prevalence, infection intensity, and parasite richness. Sex and size of S. fuscovarius individuals did not influence the prevalence, abundance, and species richness of helminth parasites.
    [Show full text]
  • Dedicated to the Conservation and Biological Research of Costa Rican Amphibians”
    “Dedicated to the Conservation and Biological Research of Costa Rican Amphibians” A male Crowned Tree Frog (Anotheca spinosa) peering out from a tree hole. 2 Text by: Brian Kubicki Photography by: Brian Kubicki Version: 3.1 (October 12th, 2009) Mailing Address: Apdo. 81-7200, Siquirres, Provincia de Limón, Costa Rica Telephone: (506)-8889-0655, (506)-8841-5327 Web: www.cramphibian.com Email: [email protected] Cover Photo: Mountain Glass Frog (Sachatamia ilex), Quebrada Monge, C.R.A.R.C. Reserve. 3 Costa Rica is internationally recognized as one of the most biologically diverse countries on the planet in total species numbers for many taxonomic groups of flora and fauna, one of those being amphibians. Costa Rica has 190 species of amphibians known from within its tiny 51,032 square kilometers territory. With 3.72 amphibian species per 1,000 sq. km. of national territory, Costa Rica is one of the richest countries in the world regarding amphibian diversity density. Amphibians are under constant threat by contamination, deforestation, climatic change, and disease. The majority of Costa Rica’s amphibians are surrounded by mystery in regards to their basic biology and roles in the ecology. Through intense research in the natural environment and in captivity many important aspects of their biology and conservation can become better known. The Costa Rican Amphibian Research Center (C.R.A.R.C.) was established in 2002, and is a privately owned and operated conservational and biological research center dedicated to studying, understanding, and conserving one of the most ecologically important animal groups of Neotropical humid forest ecosystems, that of the amphibians.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Reproductive Mode Drives Amphibian Responses to Land Use in Coastal Areas
    Marine and Freshwater Research, 2021, 72, 321–329 © CSIRO 2021 https://doi.org/10.1071/MF20102_AC Supplementary material Everyone has their limits: reproductive mode drives amphibian responses to land use in coastal areas Leonardo F. B. MoreiraA,C, Jéssica B. da SilvaB, Débora S. KnauthB, Soraya RibeiroB and Leonardo MaltchikB ADepartamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Brazil. BLaboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade do Vale do Rio dos Sinos, Brazil. CCorresponding author. Email: [email protected] Table S1. Description and landscape composition (percentage land cover in 1000-m radius) registered for 12 study ponds in the southern Brazil Coordinates Habitat type Grassland Forest Dune Wetland Water Perennial Pasture Forest Urban crop plantation 31.6268°S; 51.4259°W Near pristine 0.67 0.03 0.11 0.14 0.05 31.5111°S; 51.2673°W Near pristine 0.56 0.20 0.04 0.20 31.2907°S; 51.0821°W Near pristine 0.48 0.03 0.11 0.16 0.22 30.7135°S; 50.5803°W Near pristine 0.47 0.04 0.10 0.37 0.02 30.1596°S; 50.5125°W Degraded 0.33 0.02 0.02 0.59 0.04 30.0244°S; 50.4036°W Semi-degraded 0.39 0.08 0.15 0.38 29.5889°S; 49.9563°W Near pristine 0.76 0.16 0.02 0.05 0.01 29.3804°S; 49.7577°W Semi-degraded 0.23 0.14 0.29 0.03 0.28 0.02 0.01 29.2675°S; 49.7423°W Degraded 0.02 0.01 0.97 28.3944°S; 48.7673°W Degraded 0.20 0.10 0.17 0.51 0.02 28.0396°S; 48.6131°W Semi-degraded 0.46 0.02 0.01 0.17 0.22 0.01 0.11 27.9032°S; 48.5987°W Semi-degraded 0.35 0.26 0.07 0.18 0.14 Table S2.
    [Show full text]
  • Review Article Distribution and Conservation Status of Amphibian
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol.7 (1):1-25 2014 Review Article Distribution and conservation status of amphibian and reptile species in the Lacandona rainforest, Mexico: an update after 20 years of research Omar Hernández-Ordóñez1, 2, *, Miguel Martínez-Ramos2, Víctor Arroyo-Rodríguez2, Adriana González-Hernández3, Arturo González-Zamora4, Diego A. Zárate2 and, Víctor Hugo Reynoso3 1Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México; Av. Universidad 3000, C.P. 04360, Coyoacán, Mexico City, Mexico. 2 Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico. 3Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico. 4División de Posgrado, Instituto de Ecología A.C. Km. 2.5 Camino antiguo a Coatepec No. 351, Xalapa 91070, Veracruz, Mexico. * Corresponding author: Omar Hernández Ordóñez, email: [email protected] Abstract Mexico has one of the richest tropical forests, but is also one of the most deforested in Mesoamerica. Species lists updates and accurate information on the geographic distribution of species are necessary for baseline studies in ecology and conservation of these sites. Here, we present an updated list of the diversity of amphibians and reptiles in the Lacandona region, and actualized information on their distribution and conservation status. Although some studies have discussed the amphibians and reptiles of the Lacandona, most herpetological lists came from the northern part of the region, and there are no confirmed records for many of the species assumed to live in the region.
    [Show full text]
  • Linking Environmental Drivers with Amphibian Species Diversity in Ponds from Subtropical Grasslands
    Anais da Academia Brasileira de Ciências (2015) 87(3): 1751-1762 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520140471 www.scielo.br/aabc Linking environmental drivers with amphibian species diversity in ponds from subtropical grasslands DARLENE S. GONÇALVES1, LUCAS B. CRIVELLARI2 and CARLOS EDUARDO CONTE3*,4 1Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, 81531-980 Curitiba, PR, Brasil 2Programa de Pós-Graduação em Biologia Animal, Universidade Estadual Paulista, Rua Cristovão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, SP, Brasil 3Universidade Federal do Paraná. Departamento de Zoologia, Caixa Postal 19020, 81531-980 Curitiba, PR, Brasil 4Instituto Neotropical: Pesquisa e Conservação. Rua Purus, 33, 82520-750 Curitiba, PR, Brasil Manuscript received on September 17, 2014; accepted for publication on March 2, 2015 ABSTRACT Amphibian distribution patterns are known to be influenced by habitat diversity at breeding sites. Thus, breeding sites variability and how such variability influences anuran diversity is important. Here, we examine which characteristics at breeding sites are most influential on anuran diversity in grasslands associated with Araucaria forest, southern Brazil, especially in places at risk due to anthropic activities. We evaluate the associations between habitat heterogeneity and anuran species diversity in nine body of water from September 2008 to March 2010, in 12 field campaigns in which 16 species of anurans were found. Of the seven habitat descriptors we examined, water depth, pond surface area and distance to the nearest forest fragment explained 81% of total species diversity.
    [Show full text]
  • Identification of the Taxonomic Status of Scinax Nebulosus and Scinax Constrictus (Scinaxinae, Anura) Based on Molecular Markers T
    Brazilian Journal of Biology https://doi.org/10.1590/1519-6984.225646 ISSN 1519-6984 (Print) Original Article ISSN 1678-4375 (Online) Identification of the taxonomic status of Scinax nebulosus and Scinax constrictus (Scinaxinae, Anura) based on molecular markers T. M. B. Freitasa* , J. B. L. Salesb , I. Sampaioc , N. M. Piorskia and L. N. Weberd aUniversidade Federal do Maranhão – UFMA, Departamento de Biologia, Laboratório de Ecologia e Sistemática de Peixes, Programa de Pós-graduação Bionorte, Grupo de Taxonomia, Biogeografia, Ecologia e Conservação de Peixes do Maranhão, São Luís, MA, Brasil bUniversidade Federal do Pará – UFPA, Centro de Estudos Avançados da Biodiversidade – CEABIO, Programa de Pós-graduação em Ecologia Aquática e Pesca – PPGEAP, Grupo de Investigação Biológica Integrada – GIBI, Belém, PA, Brasil cUniversidade Federal do Pará – UFPA, Instituto de Estudos Costeiros – IECOS, Laboratório e Filogenomica e Bioinformatica, Programa de Pós-graduação Biologia Ambiental – PPBA, Grupo de Estudos em Genética e Filogenômica, Bragança, PA, Brasil dUniversidade Federal do Sul da Bahia – UFSB, Centro de Formação em Ciências Ambientais, Instituto Sosígenes Costa de Humanidades, Artes e Ciências, Departamento de Ciências Biológicas, Laboratório de Zoologia, Programa de Pós-graduação Bionorte, Grupo Biodiversidade da Fauna do Sul da Bahia, Porto Seguro, BA, Brasil *e-mail: [email protected] Received: June 26, 2019 – Accepted: May 4, 2020 – Distributed: November 30, 2021 (With 4 figures) Abstract The validation of many anuran species is based on a strictly descriptive, morphological analysis of a small number of specimens with a limited geographic distribution. The Scinax Wagler, 1830 genus is a controversial group with many doubtful taxa and taxonomic uncertainties, due a high number of cryptic species.
    [Show full text]