How Do YOU Use Eduroam?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redclara Went from Being an Illusion to Become a Mature Institution”
Invitation - Call Shall we talk seriously about natural disasters and the end of the world? Rafael Ibarra, RAICES president “RedCLARA went from being an illusion to become a mature institution” MERCOSUR’s Virtual School was launched March 2012 - n°30, year 8 This Project is funded by the European Union A project implemented by RedCLARA European Commission Press Contact: EuropeAid Cooperation Office María José López Pourailly Directorate B2 - Latin America PR & Communications Manager - CLARA @LIS Programme [email protected] Rue Joseph II, 54 J54 4/13 (+56) 2 584 86 18, extension 504 B-1049 Brussels Avenida del Parque 4680-A BELGIUM Edifico Europa, oficina 505 Ciudad Empresarial Huechuraba Santiago CHILE «The European Union is constituted by 27 member states which have decided to progressively join their practical knowledge, their resources and their destinies. Over an expansion period of 50 years, together they have built a stability, democracy and sustainable development zone, and have also preserved cultural diversity, tolerance and individual liberties. The European Union is committed to sharing its achievements and values with countries and peoples which are beyond its borders». The European Commission is the executive body of the European Union. Contents 6 Open Call to present papers for TICAL 2012 Conference 7 Register and participate in the First Virtual Day of Culture Fernando Liello, ELLA Project Coordinator 8 “Latin America needs the new submarine connection to Europe because it cannot rely only on connectivity to -
Esnet: Advanced NETWORKING for SCIENCE
ENERGY SCIENCES NETWORK ESnet: Advanced NETWORKING for SCIENCE Researchers around the world using advanced computing for scientific discovery are connected via the DOE-operated Energy Sciences Network (ESnet). By providing a reliable, high-performance communications infrastructure, ESnet facilitates the large-scale, collaborative science endeavors fundamental to Office of Science missions. Energy Sciences Network tive science. These include: sharing of massive In many ways, the dramatic achievements of 21st amounts of data, supporting thousands of collab- century scientific discovery—often involving orators worldwide, distributed data processing enormous data handling and remote collabora- and data management, distributed simulation, tion requirements—have been made possible by visualization, and computational steering, and accompanying accomplishments in high-per- collaboration with the U.S. and international formance networking. As increasingly advanced research and education (R&E) communities. supercomputers and experimental research facil- To ensure that ESnet continues to meet the ities have provided researchers with powerful requirements of the major science disciplines a tools with unprecedented capabilities, advance- new approach and a new architecture are being ments in networks connecting scientists to these developed. This new architecture includes ele- tools have made these research facilities available ments supporting multiple, high-speed national to broader communities and helped build greater backbones with different characteristics—redun- collaboration within these communities. The dancy, quality of service, and circuit oriented DOE Office of Science (SC) operates the Energy services—all the while allowing interoperation of Sciences Network (ESnet). Established in 1985, these elements with the other major national and ESnet currently connects tens of thousands of international networks supporting science. -
Aarnet Australia's Academic and Research Network
aarnet Australia's Academic and Research Network IPv6 network day 1. Agenda The previous two days training have investigated the IPv6 protocol and its configuration on Cisco Systems© IOS. Today this knowledge is put to use to construct a test network. 2. Test network 2.1 Topology The test network is a sample university network. ISP Border Firewall Core Switch Figure 1. Sample university network. To save time we will not configure a firewall, but will configure the network as if an OSPFv3-speaking firewall is in place. 2.2 Addressing Each sample university is allocated an address range. From that you must develop an addressing plan which includes: 2.2.1 Host subnet addresses These will be EUI-64 subnets. In a real network these addresses would be allocated in blocks which can be aggregated at each site edge. Our sample network is too small for this. 2.2.2 Link addresses for router-router links These will be /64 subnets. ::1 is used for the upstream, ::2 for the downstream. Router addresses are often replicated throughout router Ð 1 Ð configurations, so using a /64 is more maintainable than the dynamic interface addresses of EUI-64. 2.2.3 Control and administrative addresses for routers Most networking equipment assigns the router an interface in the control plane. Cisco IOS typically uses ªLoopback0º. This is a /128 address. Some routers treat higher addresses as administrative domain addresses by default, so reserve the highest /64 for loopback addresses. The DNS entry for control plane addresses usually contains the name of the router. -
Deliverable D8.4 Final Report on Sustainability and Exploitation
07-07-2020 Deliverable D8.4 Final Report on Sustainability and Exploitation Deliverable D8.4 Contractual Date: 31-05-2020 Actual Date: 07-07-2020 Grant Agreement No.: 732049 – Up2U Work Package: WP8 Task Item: Task 8.1. Nature of Deliverable: R (Report) Dissemination Level: PU (Public) Lead Partner: GWDG Authors: Faraz Fatemi Moghaddam (GWDG), Philipp Wieder (GWDG), Aytaj Badirova (GWDG), Erik Kikkenborg (GÉANT), Gyöngyi Horváth (GÉANT), Casper Dreef (GÉANT), Andrea Corleto (GARR), Eleonora Napolitano (GARR), Gabriella Paolini (GARR), Krzysztof Kurowski (PSNC), Raimundas Tuminauskas (PSNC), Michal Zimniewicz (PSNC), Nelson Dias (FCT|FCCN), Antonio Vieira Castro (ISEP), Mary Grammatikou (NTUA), Dimitris Pantazatos (NTUA), Barbara Tóth (KIFÜ), Csilla Gödri (KIFÜ), Gytis Cibulskis (KTU), Jack Barokas (TAU), Ingrid Barth (TAU), Eli Shmueli (IUCC), Nadav Kavalerchik (IUCC), Orit Baruth (IUCC), Domingo Docampo (UVigo), Iván Otero (UVigo), Vicente Goyanes (TELTEK), Xoan Vidal (TELTEK), Stefano Lariccia (UROMA), Marco Montanari (UROMA), Nadia Sansone (UROMA), Giovanni Toffoli (UROMA), Allan Third (OU) © GÉANT Association on behalf of the Up2U project. The innovation action leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 732049 – Up2U. Table of Contents Executive Summary 1 1 Introduction 2 2 Business Models – Exploitation Activities 3 2.1 Up2U Tools for NRENs and Schools 4 2.1.1 The Centralised Model 5 2.1.2 openUp2U 5 2.1.3 The National Model 6 2.2 -
Integration of Eduroam Architecture in the Kerberos Protocol
International Journal of Scientific Engineering and Research (IJSER) www.ijser.in ISSN (Online): 2347-3878, Impact Factor (2014): 3.05 Integration of Eduroam Architecture in the Kerberos Protocol Mahesh S. Tambe1, S. K. Pathan2 1 P.G. Student, Department of Computer Engineering, Smt. Kashibai Navale College of Engineering Pune, India 2 Assistant Professor, Department of Computer Engineering, Smt. Kashibai Navale College of Engineering Pune, India Abstract: Eduroam has become one of the important instances of network federations throughout the globe, where many of institutions permits roaming end users to operate the local network if they associated to any other eduroam member institution. In this context, this paper presents how, once the end user is validated by the network, user can operate on more federated application services (beyond the web) by means of Kerberos, without locating more cross-realm infrastructures. With the help of current eduroam architecture, this paper avoids the end user from being entirely validated by home institution again to operate the application services, which do not required to be altered. Eventually, optional advanced authentication can be implemented to give added figure services to end users. Visited institution provides these services which are very essential to define some access control contraption to access. In this paper it proposes improved authentication depends on user features that are defined in his home institution that are used to provide services to the end user who is roaming from his home institution. Keywords: Eduroam, Kerberos, IDP, SSO, Authorization 1. Introduction operating framework, it is accessible for Linux under the name Heimdal, and business Unix differences and in addition The accumulated attributes are provided to the Policy Apple's OS X utilization code from the MIT used of Decision Point (PDP), which verifies the neighborhood Kerberos 5. -
Internet2: a Comparative Study and Technological Solution to Achieve High Speed Networks
Himanshu Agarwal / Indian Journal of Computer Science and Engineering Vol 1 No 3, 157-160 INTERNET2: A COMPARATIVE STUDY AND TECHNOLOGICAL SOLUTION TO ACHIEVE HIGH SPEED NETWORKS HIMANSHU AGARWAL Department of Computer Science & Information Technology, Moradabad Institute of Technology, Moradabad-244001 (Uttar Pradesh), India Email: [email protected] Abstract In current Indian scenario whenever it is required to access very large amount of data such as games or some commercial applications through commodity internet (internet1), speed becomes hurdle. It becomes tolerable for some applications but no one wants to bother in case of education and research. Now the world becomes commercialized and don’t want to bother with speed. Therefore the next generation of Internet infrastructure known as Internet2 or UCAID (University Corporation for Advance Internet Development) for 21st century comes in the focus of scientists, to improve quality of life through research and education. In this paper thorough analysis and comparative study of various educational networks, market scenario and Internet2 has been done, so all pros and cons become visualized to get the effect of internet2 in industries, research and development. Keywords: Internet2; Abilene network; gigapops; high speed networks. 1. Introduction Internet2 is a second generation network serving universities and research institutes by moving the data at a rate of 10 gigabits per second and more ,compared with 5.1 or so megabits old fashioned commodity internet. Internet2 moves data 100 to 1,000 times faster than internet1. Its GigaPoPs (points of presence) provide regional high-performance aggregation points; for member institutions, typically local campus networks provide no less than 100 Mbps to the desktop. -
New Zealand's High Speed Research Network
Report prepared for the Ministry of Business, Innovation and Employment New Zealand’s high speed research network: at a critical juncture David Moore, Linda Tran, Michael Uddstrom (NIWA) and Dean Yarrall 05 December 2018 About Sapere Research Group Limited Sapere Research Group is one of the largest expert consulting firms in Australasia and a leader in provision of independent economic, forensic accounting and public policy services. Sapere provides independent expert testimony, strategic advisory services, data analytics and other advice to Australasia’s private sector corporate clients, major law firms, government agencies, and regulatory bodies. Wellington Auckland Level 9, 1 Willeston St Level 8, 203 Queen St PO Box 587 PO Box 2475 Wellington 6140 Auckland 1140 Ph: +64 4 915 7590 Ph: +64 9 909 5810 Fax: +64 4 915 7596 Fax: +64 9 909 5828 Sydney Canberra Melbourne Suite 18.02, Level 18, 135 GPO Box 252 Level 8, 90 Collins Street King St Canberra City ACT 2601 Melbourne VIC 3000 Sydney NSW 2000 Ph: +61 2 6267 2700 GPO Box 3179 GPO Box 220 Fax: +61 2 6267 2710 Melbourne VIC 3001 Sydney NSW 2001 Ph: +61 3 9005 1454 Ph: +61 2 9234 0200 Fax: +61 2 9234 0201 Fax: +61 2 9234 0201 For information on this report please contact: Name: David Moore Telephone: +64 4 915 5355 Mobile: +64 21 518 002 Email: [email protected] Page i Contents Executive summary ..................................................................................................... vii 1. Introduction ...................................................................................................... 1 2. NRENs are essential to research data exchange .............................................. 2 2.1 A long history of NRENs ....................................................................................... 2 2.1.1 Established prior to adoption of TCP/IP ............................................ -
AUSTRALIAN NATIONAL PEERING POLICY Guidelines for Potential National Peering Partners
AUSTRALIAN NATIONAL PEERING POLICY Guidelines for potential national peering partners LAST UPDATED SEPTEMBER 2021 aarnet.edu.au CONTENTS 1. Introduction ........................................................................................................................................ 3 2. Interconnection Requirements ....................................................................................................... 4 Bilateral Peering. ...................................................................................................................................................4 Geographic Scope. ..............................................................................................................................................4 Traffic Exchange Ratio. ........................................................................................................................................4 Traffic Exchange Volume. ...................................................................................................................................4 Backbone Capacity. .............................................................................................................................................4 Dedicated peering. ...............................................................................................................................................4 Access to the AARNet Mirror. ............................................................................................................................4 -
Annual Report
2015 Annual Report ANNUAL 2015 REPORT CONTENTS i Letter from the President 4 ii NYSERNet Names New President 6 iii NYSERNet Members Institutions 8 iv Membership Update 9 v Data Center 10 vi VMWare Quilt Project 11 vii Working Groups 12 viii Education Services 13 ix iGlass 14 x Network 16 xi Internet Services 17 xii Board Members 18 xiii Our Staff 19 xiv Human Face of Research 20 LETTER FROM THE PRESIDENT Dear Colleagues, I am pleased to present to you NYSERNet’s 2015 Annual Report. Through more than three decades, NYSERNet’s members have addressed the education and research community’s networking and other technology needs together, with trust in each other guiding us through every transition. This spring inaugurates more change, as City. The terrible attack of Sept. 11, 2001, we welcome a new president and I will step complicated achievement of that goal, made down from that position to focus on the it more essential, and taught a sobering research community’s work and needs. lesson concerning the importance of communication and the need to harden the By itself, working with NYSERNet’s infrastructure that supports it. We invested extraordinary Board and staff to support in a wounded New York City, deploying fiber and building what today has become a global exchange point at “ These two ventures formed pieces 32 Avenue of the Americas. In the process, we forged partnerships in a puzzle that, when assembled, that have proved deep and durable. benefited all of New York and beyond.” Despite inherent risks, and a perception that New York City the collective missions of our members institutions might principally benefit, for the past 18 years has been a privilege NYSERNet’s Board unanimously supported beyond my imagining. -
Broadband for Education: the National Internet2 K20 Initiative’S and WICHE’S Recommendations to the FCC
Broadband for Education: The National Internet2 K20 Initiative’s and WICHE’s Recommendations to the FCC Who are we? Internet2: We bring together Internet2’s world-class network and research community members with innovators from colleges and universities, primary and secondary schools, libraries, museums and other educational institutions, the full spectrum of America’s education community, including both formal and informal education. The National K20 Initiative extends new technologies, applications, and rich educational content to all students, their families and communities – no matter where they’re located. We have had immense success connecting the institutions above – in fact, over 65,000 institutions are now connected to the National Internet2 network – but to realize fully the potential of Internet2 all institutions must have adequate bandwidth. What follows are principles we endorse and urge the FCC to adopt. We divide our recommendations into two interrelated categories: connectivity and e-rate support. Western Interstate Commission for Higher Education (WICHE): WICHE and its 15 member states work to improve access to higher education and ensure student success. Our student exchange programs, regional initiatives, and our research and policy work allow us to assist constituents in the West and beyond. Equitable access to broadband technology and, in particular, technology-enabled education, is among our strategies. At present much of the West, particularly the “frontier West,” has little or no access to adequate bandwidth. Many of our institutions are not among those connected by and participating in the Internet2 K20 Initiative. The principles and recommendations below would remedy this situation. Our recommendations: (1) Connectivity • Elementary schools, secondary schools, and branch libraries should be connected at 100 Mbps to 10 Gbps. -
Bulletin Year 13
Bulletin Year 13 Pure life and knowledge! Europe and Latin America RedCLARA partner TICAL's Costa Rican expand their collaboration networks have fast and edition will host two more for open science direct access to Microsoft events services n˚ 49 RedCLARA announces peering with Google April 2017 Contents Editorial - Mariano José Sánchez 5 Bontempo, Executive Director of RedCONARE Pure life and knowledge! TICAL's Costa 6 Rican edition will host two more events 11 BELLA-T opens tender for infrastructure "The mother of the Internet": Former 12 president of RedCLARA was honored by the Uruguayan television on Women's Day RedCLARA partner networks have fast and 13 direct access to Microsoft services RedCLARA announces peering with 14 Google RedCLARA: Europe and Latin America expand their Editing 15 María José López Pourailly collaboration for open science Contents A clear path for your data María José López Pourailly Using RedCUDI in the Pierre Auger Luiz Alberto Rasseli 16 Observatory Remote Control Room Translation into Portuguese located at UNAM Luiz Alberto Rasseli Translation into English We empower your research and María José López Pourailly Leonardo Rodríguez: "We hope to developments Luiz Alberto Rasseli 17 strengthen the articulation with the Graphic design scientific communities of the other María José López Pourailly national networks" 19 Agenda Press Contact: María José López Pourailly Communications and Public Relations Manager [email protected] (+56) 2 2584 86 18 # 504 Avenida del Parque 4680-A Edifico Europa, oficina 108 Ciudad Empresarial Huechuraba Santiago, CHILE Editorial TICAL will be held in Costa Rica this year! For Another event that will be held during these RedCLARA, the National Council of Rectors days is the meeting of Internet Society, called (CONARE) and RedCONARE (the Costa Rican “ION Costa Rica 2017”. -
May 2013 Report APPENDIX D
APPENDIX D 2013 ESINet Steering Committee Report to the 130th General Assembly Technical Standards Subcommittee INFRASTRUCTURE EVALUATION An examination of the readiness of the state’s current technology infrastructure to support a statewide emergency services internet protocol network for Next Generation 9-1-1 Services. 0 | P a g e Table of Contents PURPOSE ....................................................................................................................................................... 2 EXISTING TECHNOLOGY INFRASTRUCTURE .................................................................................................. 2 OHIO OFFICE OF INFORMATION TECHNOLOGY ............................................................................................ 3 OIT Telecommunications .............................................................................................................................. 3 Procurement ................................................................................................................................................. 3 DAS Network Contract Management Services ............................................................................................. 4 Contracts by Service ...................................................................................................................................... 4 Reach…. ......................................................................................................................................................... 5 Capacity