Medicinal Plant Research Volume 10 Number 42, 10 November, 2016 ISSN 1996-0875

Total Page:16

File Type:pdf, Size:1020Kb

Medicinal Plant Research Volume 10 Number 42, 10 November, 2016 ISSN 1996-0875 Journal of Medicinal Plant Research Volume 10 Number 42, 10 November, 2016 ISSN 1996-0875 ABOUT JMPR The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals. The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peer reviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font). Contact Us Editorial Office: [email protected] Help Desk: [email protected] Website: http://www.academicjournals.org/journal/JMPR Submit manuscript online http://ms.academicjournals.me/ Editors Prof. Akah Peter Achunike Prof. Parveen Bansal Editor-in-chief Department of Biochemistry Department of Pharmacology & Toxicology Postgraduate Institute of Medical Education and University of Nigeria, Nsukka Research Nigeria Chandigarh India. Associate Editors Dr. Ravichandran Veerasamy AIMST University Dr. Ugur Cakilcioglu Faculty of Pharmacy, AIMST University, Semeling - Elazıg Directorate of National Education 08100, Turkey. Kedah, Malaysia. Dr. Jianxin Chen Dr. Sayeed Ahmad Information Center, Herbal Medicine Laboratory, Department of Beijing University of Chinese Medicine, Pharmacognosy and Phytochemistry, Beijing, China Faculty of Pharmacy, Jamia Hamdard (Hamdard 100029, University), Hamdard Nagar, New Delhi, 110062, China. India. Dr. Hassan Sher Dr. Cheng Tan Department of Botany and Microbiology, Department of Dermatology, first Affiliated Hospital College of Science, of Nanjing Univeristy of King Saud University, Riyadh Traditional Chinese Medicine. Kingdom of Saudi Arabia. 155 Hanzhong Road, Nanjing, Jiangsu Province, China. 210029 Dr. Jin Tao Professor and Dong-Wu Scholar, Dr. Naseem Ahmad Department of Neurobiology, Young Scientist (DST, FAST TRACK Scheme) Medical College of Soochow University, Plant Biotechnology Laboratory 199 Ren-Ai Road, Dushu Lake Campus, Department of Botany Suzhou Industrial Park, Aligarh Muslim University Suzhou 215123, Aligarh- 202 002,(UP) P.R.China. India. Dr. Pongsak Rattanachaikunsopon Dr. Isiaka A. Ogunwande Department of Biological Science, Dept. Of Chemistry, Faculty of Science, Lagos State University, Ojo, Lagos, Ubon Ratchathani University, Nigeria. Ubon Ratchathani 34190, Thailand. Editorial Board Prof Hatil Hashim EL-Kamali Dr. Arash Kheradmand Omdurman Islamic University, Botany Department, Lorestan University, Sudan. Iran. Prof. Dr. Muradiye Nacak Prof Dr Cemşit Karakurt Department of Pharmacology, Faculty of Medicine, Pediatrics and Pediatric Cardiology Gaziantep University, Inonu University Faculty of Medicine, Turkey. Turkey. Dr. Sadiq Azam Samuel Adelani Babarinde Department of Biotechnology, Department of Crop and Environmental Protection, Abdul Wali Khan University Mardan, Ladoke Akintola University of Technology, Pakistan. Ogbomoso Nigeria. Kongyun Wu Department of Biology and Environment Engineering, Dr.Wafaa Ibrahim Rasheed Guiyang College, Professor of Medical Biochemistry National Research Center China. Cairo Egypt. Prof Swati Sen Mandi Division of plant Biology, Bose Institute India. Dr. Ujjwal Kumar De Indian Vetreinary Research Institute, Izatnagar, Bareilly, UP-243122 Veterinary Medicine, India. Journal of Medicinal Plants Research Table of Contents: Volume 10 Number 42 10 November, 2016 ARTICLES Insignificant activity of Allium paradoxium and Tanacetum parthenium on protoscoleces of Echinococcus granulosus: In vitro study 771 Elham Raeisi and Bahman Rahimi Esboei Antileishmanial effects of the alkaloid-rich fraction of Quassia amara L. 775 Renata S. Gabriel, Ana Claudia F. Amaral, Suzana Corte-Real, Rosana C. Lopes, Celuta S. Alviano, Alane B. Vermelho, Daniela S. Alviano and Igor A. Rodrigue In silico physico-chemical evaluation, anti-inflammatory and mcf-7 breast cancer cell line growth inhibition effects of trolline isolated from Mirabilis jalapa 783 Mas’ud Eneji Sadiq, Hajia Mairo Inuwa, Mujeeb-ur-Rehman and Khalid Ahmad Vol. 10(42), pp. 771-774, 10 November, 2016 DOI: 10.5897/JMPR2016.6155 Article Number: 0E2746061461 ISSN 1996-0875 Journal of Medicinal Plants Research Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR Full Length Research Paper Insignificant activity of Allium paradoxium and Tanacetum parthenium on protoscoleces of Echinococcus granulosus: In vitro study Elham Raeisi1 and Bahman Rahimi Esboei2* 1Department of Microbiology, Health center laboratory, Ardabil University of Medical Sciences, Ardabil, Iran. 2Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Iran. Received 23 May, 2016: Accepted 5 October, 2016. Medicinal plants are now recognized as most important alternative for chemical drugs resource, especially for anti-microbial targets. The current study aimed to determine the scolicidal effect of Allium paradoxium and Tanacetum parthenium as medicinal plants in vitro. Protoscoleces were exposed to different concentrations of chloroformic and hydroalcholic extracts (1, 10, 50 and 100 mg/mL) for 5, 10, 30, 60 and 120 min. Viability of protoscolices was confirmed by 0.1% Eosin staining. The results of this study showed that all extracts used were not significantly effective in comparison with the control group. Therefore, chloroformic and hydroalcholic extracts of A. paradoxium and T. parthenium could not be used during hydatid cyst treatment. However, there remains the need to perform advanced comparative clinical studies on the efficacy of A. paradoxium and T. parthenium and other scolicidal agents. Chloroformic and hydroalcoholic extract of A. paradoxium and T. parthenium, did not show any scolicidal activity at the concentration of 1, 10, 50 and 100 mg/ml. Key words: Allium paradoxium, Tanacetum parthenium, Echinococcus granulosus, in vitro. INTRODUCTION Hydatid disease due to Echinococcus granulosus remains the recurrence rate of disease, it is necessary to avoid an imperative, challenging medical problem (Brunetti et spilling of the cyst contents and the use of active al., 2010). It is endemic in developing regions because of scolicidal agents (Eckert et al., 2001). The World Health their poor socioeconomic conditions, but because of Organization (WHO) regards the use of both effective travelling and migration, it continues to have a global and safe agents for intraoperative killing of infectious distribution. Hydatid cysts may be found anywhere in the material, but unfortunately; there is no ideal agent up to body, but liver and lungs are the most infected organs now. According to WHO reports, therapeutic plants with a (Pawlowski et al., 2001). Surgery is still the chosen relatively low risk are the suggested for traditional method of treatment (Topcu et al., 2006). Repetition treatment of disease (WHO, 1996). during the long-term follow-up period is the most usual Allium paradoxium and Tanacetum partheniumon are problem with this therapeutic technique. For decrease in the Iranian native plants that indicate antimicrobial, *Corresponding author. E-mail: [email protected]. Tel: +989112139542. Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License 772 J. Med. Plants Res. Figure 1. The effects of chloroformic extract of A. paradoxium on viability of protoscoleces of hydatid cyst in concentration of 1, 10, 50 and 100 mg/ml after 5, 10, 30, 60 and 180 min in comparison with the control group. antifungal and antiviral effects. Also, these two plants solution, separately for 72 h in room temperature. The obtained showed antigiardial effects in vitro (Shirzad et al., 2014). solution was passed through filter paper (Whatman No.3, Sigma, Germany) to remove plant debris. Finally, the extracts were B-Pinene (6.45%), limonene (3.4%), Z-nerolidol (18.01%), concentrated using a rotary evaporator (Heidolph, Germany), spathulenol (22.06%), alpha-bisabolol (5.06%), phytol placed in a sterile glass and stored at -4°C for later use (Shirzad et (9.15%), n-docosane (4.79%) and n-tricosane (3.8%) are al., 2014). the most important identified compounds of A. paradoxium (Akbar and Ahmadi, 2010). Camphor and chrysanthenyl acetate are the main components of flower Scolicidal tests heads of T. parthenium (Mostafa et al., 2007). The scolicidal tests were done three times (triplicate) and based on Considering the low range of scolicidal compounds, Rahimi-Esboei et al. (2013). In the current study, four concentrations searching for a new scolicidal agents, particularly from (1, 10, 50 and 100 mg/ml) of extracts were examined for 5, 10, 30, natural sources is of great interest (Rahimi-Esboei et al., 60 and 180 min. 2 ml of each concentration was transferred to a 2012; Gholami et al., 2013). test tube; 50 µl of sediment protoscoleces was added to the tube Since A. paradoxium and T. partheniumon has been and mixed lightly. The tube was then incubated at 37°C for 5, 10, 30, 60 and 180 min. At the end of each incubation time, viability of shown to have a number of medicinal and anti-parasitic the protoscoleces was evaluated by 0.1% eosin
Recommended publications
  • Draft Recovery Plan for Quassia Sp
    Draft NSW & National Recovery Plan Quassia sp. B (Moonee Quassia) August 2004 © NSW Department of Environment and Conservation, 2004. This work is copyright. However, material presented in this plan may be copied for personal use or published for educational purposes, providing that any extracts are fully acknowledged. Apart from this and any other use as permitted under the Copyright Act 1968 (NSW), no part may be reproduced without prior written permission from NSW Department of Environment and Conservation. NSW Department of Environment and Conservation 43 Bridge Street (PO Box 1967) Hurstville NSW 2220 Tel: 02 9585 6444 www.nationalparks.nsw.gov.au Requests for information or comments regarding the recovery program for the Moonee Quassia are best directed to: The Moonee Quassia Recovery Co-ordinator Threatened Species Unit, North East Branch NSW Department of Environment and Conservation Locked Bag 914 Coffs Harbour NSW 2450 Tel: 02 6651 5946 Cover illustrator: Liesel Yates This plan should be cited as follows: NSW Department of Environment and Conservation 2004, Draft Recovery Plan for Quassia sp. B (Moonee Quassia), NSW Department of Environment and Conservation, Hurstville. ISBN 07313 69270 Draft Recovery Plan The Moonee Quassia Draft Recovery Plan for Quassia sp. B (Moonee Quassia). Foreword The New South Wales Government established a new environment agency on 24 September 2003, the Department of Environment and Conservation, which incorporates the New South Wales National Parks and Wildlife Service. Responsibility for the preparation of Recovery Plans now rests with this new department. This document, when finalised, will constitute the formal National and New South Wales State Recovery Plan for Quassia sp.
    [Show full text]
  • Download Herbal Gram.Pdf
    The Arenal Volcano. Photo ©2010 Steven Foster Plants of By Rafael Ocampo and Michael J. Balick, PhD 32 | HerbalGram 87 2010 www.herbalgram.org Chaya Cnidoscolus chayamansa Photo ©2010 Steven Foster Editor's Note: In 1994, Paul Schulick, founder of the herb and dietary supplement company New Chapter (Brattleboro, VT), established Finca Luna Nueva, an organic farm, in the volcanic rainforest of northern Costa Rica. Its mission is the organic production of tropical plants for use in New Chapter’s products. A decade later, through the enthusiasm and commitment of three other individuals, Rafael Ocampo, Steven Farrell, and Thomas Newmark, along with the hard work of many local people, Semillas Sagradas—the Sacred Seed Sanc- tuary—was established on the grounds of Finca Luna Nueva. This sanctuary is now a place where a collec- tion of over 300 species of medicinal plants grows, is studied by researchers, and enjoyed by visitors. Semillas Sagradas, the first in a movement of many similar gardens to be established around the world, is devoted to preserving the diversity of local and regional medicinal plants, as well as the traditional wisdom and cultural knowledge of healing herbs. A book celebrating the plants of Semillas Sagradas was American Botanical Council permission to excerpt passages on published in 2009, co-authored by Rafael Ocampo and Michael a few of the medicinal plant species profiled in the book. Those J. Balick, PhD, and edited by Ruth Goldstein and Katherine excerpts are reprinted here with only minor stylistic editing. Herrera. Ocampo is a botanist, author, and technical advisor The American Botanical Council thanks the book’s authors on many medicinal plant projects in Central America, and Dr.
    [Show full text]
  • Consequences of Nectar Robbing for Realized Male Function in a Hummingbird-Pollinated Plant Author(S): Rebecca E
    Consequences of Nectar Robbing for Realized Male Function in a Hummingbird-Pollinated Plant Author(s): Rebecca E. Irwin and Alison K. Brody Source: Ecology, Vol. 81, No. 9 (Sep., 2000), pp. 2637-2643 Published by: Ecological Society of America Stable URL: http://www.jstor.org/stable/177481 Accessed: 26/06/2010 00:19 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=esa. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology. http://www.jstor.org September2000 NOTES 2637 Ecology, 81(9), 2000, pp.
    [Show full text]
  • Coloring Book Are Taken from Two Volumes in the Health Sciences and Human Services Library’S Historical Collections
    Images in this coloring book are taken from two volumes in the Health Sciences and Human Services Library’s Historical Collections. Historical Collections contains the library’s rare book collection as well as archival materials documenting the history of the University of Maryland, Baltimore. William Withering (1741-1799) was a botanist, geologist, chemist, and physician from England. He introduced the value of digitalis (Foxglove) for medical purposes, specifically to treat dropsy, now known as edema. An Account of the Foxglove covers some of his clinical trials using digitalis as well as its medical benefits and toxicity. The Health Sciences and Human Services Library (HSHSL) received the first edition of Withering’s volume from Dr. Mordecai Blaustein and his wife Ellen in 2018. William Woodville (1752-1805) was a physician and botanist from England. Medical Botany is a four volume set published between 1790 and 1794. It includes 300 plant illustrations by James Sowerby. Through the 20th Century these beautiful volumes were heavily used and referenced by physicians. The HSHSL Historical Collections holds copies of these volumes in both the Pharmacy and Cordell book collections. Latin Name: Quassia Amara Common Name: Bitter Quassia Perennial woody plant native to South America & West Indies Traditionally the root, bark, and wood were used to treat endemic fevers and stomach issues or to treat parasites such as lice or worms. Latin Name: Pulsatilla pratensis or Anemone pratensis (historic) Common Name: Pasque Flower or Meadow Anemone Perennial native to central and eastern Europe. The plant is toxic but can be used medicinally when heated. It has been used to externally to treat ulcers and inflammation of the eyes Latin Name: Aloe Perfoliata Socotorina Common Name: Socotorine Aloe Succulent plant native to South Africa The juice from the leaves of the plan were historically used as a purgative or laxative and to calm stomach ailments.
    [Show full text]
  • Current Status: Mexican Medicinal Plants with Insecticidal Potential
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 5,400 134,000 165M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com 3 Current Status: Mexican Medicinal Plants with Insecticidal Potential Ludmila Elisa Guzmán-Pantoja, Laura P. Lina-García, Graciela Bustos-Zagal and Víctor M. Hernández-Velázquez Laboratorio de Control Biológico, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Morelos, Mexico 1. Introduction Plants have been used for thousand of year as a source of bioactive substances for therapeutic, agricultural and industrial purpose; in this regard the search for compounds active on these sources is an alternative for development of agrochemicals (Dayane et al., 2009). The plans, their derivatives or extracts have been studied for different biological activities in economically important pests, assessing their toxic effects lethal, antifeedant, repellent, fumigant, growth regulation and deterrent to oviposition, among other (Isman, 2006; Singh and Saratchandra, 2005). The ecological balance and the organisms of various ecosystems are vulnerable by excessive or careless use of pesticides in agricultural or urban system. In theory, through using these products is to provide enough food and pest control, in contrast, often cause undesirable and dangerous environmental situations.
    [Show full text]
  • APPENDIX K Biological Resource Tables
    APPENDIX K Biological Resource Tables APPENDIX K Biology Addendum VASCULAR SPECIES GYMNOSPERMS AND GNETOPHYTES PINACEAE—PINE FAMILY Pinus sp.—pine MONOCOTS ARECACEAE—PALM FAMILY * Archontophoenix cunninghamiana—queen palm * Washingtonia robusta—Washington fan palm EUDICOTS APOCYNACEAE—DOGBANE FAMILY * Nerium oleander—oleander ARALIACEAE—GINSENG FAMILY * Hedera helix—English ivy HAMAMELIDACEAE—WITCH HAZEL FAMILY * Liquidambar sp.—sweet gum MYRTACEAE—MYRTLE FAMILY * Eucalyptus sp.—eucalyptus * Eucalyptus sideroxylon—red ironbark ROSACEAE—ROSE FAMILY * Eriobotrya deflexa—bronze loquat * Rhaphiolepis indica—India hawthorn SCROPHULARIACEAE—FIGWORT FAMILY * Myoporum laetum—myoporum SIMAROUBACEAE—QUASSIA OR SIMAROUBA FAMILY * Ailanthus altissima—tree of heaven ULMACEAE—ELM FAMILY * Ulmus parvifolia—Chinese elm * signifies introduced (non-native) species K-1 February 2016 APPENDIX K (Continued) BIRD Accipiter cooperii—Cooper’s hawk Bombycilla cedrorum—cedar waxwing Corvus brachyrhynchos—American crow Mimus polyglottos—northern mockingbird Spinus psaltria—lesser goldfinch Zenaida macroura—mourning dove Haemorhous mexicanus—house finch K-2 February 2016 APPENDIX K (Continued) Primary Habitat Associations/ Life Form/ Blooming Period/ Elevation Range (feet) Potential to Occur Coastal bluff scrub, coastal dunes, coastal scrub; sandy or gravelly/ annual herb/ Mar–June/ 3-1001 Not expected to occur. The site is outside of the species’ known elevation range and there is no suitable habitat present. Chaparral, coastal scrub, riparian forest, riparian scrub, riparian woodland; sandy, mesic/ perennial Not expected to occur. The site is outside of the species’ known deciduous shrub/ (Feb) May–Sep/ 49-3002 elevation range and there is no suitable habitat present. Chaparral, cismontane woodland, coastal scrub; rocky/ perennial rhizomatous herb/ Feb–June/ 591- Not expected to occur. No suitable habitat present. 3281 Coastal bluff scrub, coastal dunes, coastal scrub, valley and foothill grassland; alkaline or clay/ Not expected to occur.
    [Show full text]
  • Simarouba Monograph 3/1/04 Simarouba Amara, Glauca
    Simarouba Monograph 3/1/04 Simarouba amara, glauca Family: Simaroubaceae Synonyms: Quassia simarouba, Zwingera amara, Picraena officinalis, Simarouba medicinalis Other Common Names: Aceituno, bitterwood, bois blanc, bois amer, bois frene, bois negresse, caixeta, cajú-rana, cedro blanco daguilla, dysentery bark, gavilan, malacacheta, marubá, marupá, negrito, palo blanco, palo amargo, paradise tree, pitomba, robleceillo, simaba. Overview Botanical Description Simarouba is indigenous to the Amazon rainforest and other tropical areas in Mexico, Cuba, Haita, Jamaica and Central America. It grows up to 20 m high and has a trunk 50 to 80 cm in diameter. It produces bright green leaves 20 to 50 cm in length, small white flowers, and small red fruit. Ethnobotanical Uses In traditional herbal medicine systems the bark, wood and leaves of simarouba have been used for their amoebicide, analgesic, anthelmintic, antibacterial, antidysenteric, antimalarial, antimicrobial, astringent, febrifuge, stomachic, sudorific, tonic and vermifuge properties. The traditional use of graviola has been recorded in herbal medicine systems in the following countries: Guiana,1 Belize,2 Brazil,3-6 Cuba,7,8 French Guyana,9 Haiti10 and Peru.11 Summary of Traditional Uses of Simarouba:12 Bark: Anemia, anorexia, bitter,diarrhea, dysentery, dyspepsia, emmenagogue, fever, hemorrhages, internal bleeding, intestinal worms, malaria, skin sores, sores, stomach and bowel disorders, tonic, wounds. Leaf: Astringent, colitis, diarrhea, digestive, dysentery, emmenogogue,intestinal worms, malaria, skin affections. Root: Diarrhea, dysentery, flatulence, intestinal worms, malaria, stomach pain, tonic. Primary Uses Internal A bark tea is primarily used as the first line of defense for amebic dysentery and diarrhea. It’s also used for viruses.13 External The bark has been traditionally used in herbal medicine systems externally for wounds and skin sores.2,7 © Copyrighted 2004.
    [Show full text]
  • Approved Conservation Advice for Quassia Bidwillii (Quassia)
    This Conservation Advice was approved by the Minister/Delegate of the Minister on: 3/07/2008 Approved Conservation Advice (s266B of the Environment Protection and Biodiversity Conservation Act 1999). Approved Conservation Advice for Quassia bidwillii (Quassia) This Conservation Advice has been developed based on the best available information at the time this conservation advice was approved. Description Quassia bidwillii, Family Simaroubaceae, commonly known as Quassia, is a small shrub or tree that grows to about 6 m in height, with red fruit and red flowers from November to March. Its leaves are 4.5–9 cm long, 6–12 mm wide, glabrous (hairless) or sometimes silky to pubescent only on the lower surface, with secondary veins numerous and regularly arranged. Quassia flowers occur in clusters of 1–4, and each flower has 8 to 10 stamens, with filaments densely villous (covered in small hairs) on the outer surface (Harden, 2000). Conservation Status Quassia is listed as vulnerable. This species is eligible for listing as vulnerable under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act) as, prior to the commencement of the EPBC Act, it was listed as vulnerable under Schedule 1 of the Endangered Species Protection Act 1992 (Cwlth). Quassia is also listed as vulnerable under Schedule 3 of the Nature Conservation Act 1992 and on the Nature Conservation (Wildlife) Regulation 2006 (Queensland). Distribution and Habitat Quassia is endemic to Queensland and is currently known to occur in several localities between Scawfell Island, near Mackay, and Goomboorian, north of Gympie (QDNR, 2000). Quassia has been confirmed as occurring in at least 40 known sites (QDNR, 2001).
    [Show full text]
  • INSECTICIDAL ACTIVITY of NEEM, PYRETHRUM and QUASSIA EXTRACTS and THEIR MIXTURES AGAINST DIAMONDBACK MOTH LARVAE (Plutella Xylostella L.)
    MENDELNET 2016 INSECTICIDAL ACTIVITY OF NEEM, PYRETHRUM AND QUASSIA EXTRACTS AND THEIR MIXTURES AGAINST DIAMONDBACK MOTH LARVAE (Plutella xylostella L.) NAMBE JABABU, TOMAS KOPTA, ROBERT POKLUDA Department of Vegetable Science and Floriculture Mendel University in Brno Valticka 337, 69144 Lednice CZECH REPUBLIC [email protected] Abstract: The diamondback moth is known globally by many as the most destructive and economically important insect pest of cruciferous crops. It is also known to have developed resistance to numerous synthetic insecticides including those with newer active ingredients (Shelton et al. 2008); and this has triggered the development of alternative measures, including botanical insecticides (Oyedokun et al. 2011). The aim of this study was to evaluate the toxic effect of Azadirachta indica, Chrysanthemum cinerariaefolium and Quassia amara extracts and their mixtures on the diamondback moth larvae; in an attempt to find a superior mixture with more than one major active ingredient for the control of diamondback moth. The study consisted of two separate experiments; a feeding test, and a tarsal contact test. Mortality was recorded at 24, 48 and 72-h intervals from the start of the study. Varying levels of mortalities was recorded in both tests; mortalities ranged between 2–58% and 8% to 76% for the feeding test and the tarsal contact experiment respectively. In both experiments, the highest mortality was recorded in the first 24h and in formulations with the highest concentration. For the feeding test, Pyrethrins, Azadirachtin + Pyrethrins and Azadirachtin + Pyrethrins + Quassin extract/extract mixtures, produced the best effect; with Pyrethrins recording a 54% total mortality count, Azadirachtin + Pyrethrins combination producing a 48% mortality count and a 58% mortality count from Azadirachtin + Pyrethrins + Quassin extract combination.
    [Show full text]
  • Obdiplostemony: the Occurrence of a Transitional Stage Linking Robust Flower Configurations
    Annals of Botany 117: 709–724, 2016 doi:10.1093/aob/mcw017, available online at www.aob.oxfordjournals.org VIEWPOINT: PART OF A SPECIAL ISSUE ON DEVELOPMENTAL ROBUSTNESS AND SPECIES DIVERSITY Obdiplostemony: the occurrence of a transitional stage linking robust flower configurations Louis Ronse De Craene1* and Kester Bull-Herenu~ 2,3,4 1Royal Botanic Garden Edinburgh, Edinburgh, UK, 2Departamento de Ecologıa, Pontificia Universidad Catolica de Chile, 3 4 Santiago, Chile, Escuela de Pedagogıa en Biologıa y Ciencias, Universidad Central de Chile and Fundacion Flores, Ministro Downloaded from https://academic.oup.com/aob/article/117/5/709/1742492 by guest on 24 December 2020 Carvajal 30, Santiago, Chile * For correspondence. E-mail [email protected] Received: 17 July 2015 Returned for revision: 1 September 2015 Accepted: 23 December 2015 Published electronically: 24 March 2016 Background and Aims Obdiplostemony has long been a controversial condition as it diverges from diploste- mony found among most core eudicot orders by the more external insertion of the alternisepalous stamens. In this paper we review the definition and occurrence of obdiplostemony, and analyse how the condition has impacted on floral diversification and species evolution. Key Results Obdiplostemony represents an amalgamation of at least five different floral developmental pathways, all of them leading to the external positioning of the alternisepalous stamen whorl within a two-whorled androe- cium. In secondary obdiplostemony the antesepalous stamens arise before the alternisepalous stamens. The position of alternisepalous stamens at maturity is more external due to subtle shifts of stamens linked to a weakening of the alternisepalous sector including stamen and petal (type I), alternisepalous stamens arising de facto externally of antesepalous stamens (type II) or alternisepalous stamens shifting outside due to the sterilization of antesepalous sta- mens (type III: Sapotaceae).
    [Show full text]
  • Ailanthus SP.Indd
    AILANTHUS Science Page DID YOU KNOW? THE AILANTHUS PLANT .usbg.gov Ailanthus trees grow rapidly, and can reach w Ailanthus can grow in places where 25 meters (80 ft) or more in height. ww almost nothing else All parts of the plant, but will grow. It can especially the flowers, have a strong smell. even grow out of cracks in sidewalks In spring, yellow flowers in polluted cities. appear at the tips of the branches. Male and female flowers are on different trees. male The roots flower UNITEDSTATES BOTANIC GARDEN ORIGINS exude a chemical that Ailanthus is a female hinders the flower native of China. growth of In the US, it was other plants. In summer first planted in and early fall, Philadelphia in The leaves are large clusters of red 1784. It was with pointed leaflets. fruits ripen a popular tree on the female trees. One tree among urban can produce gardeners because thousands of A cluster of its large, fruits each of fruit is year, which are beautiful leaves, rapid growth, and hardiness. Each fruit blown by the 15-30 cm Now the plant is considered a weedy pest 30-60 cm has one (6-12 in) (12-24 in) wind to new seed. long. because it quickly takes over new areas. growing places. CLASSIFYING AILANTHUS FAMILY GENUS SPECIES Simaroubaceae (Quassia family) Ailanthus altissima There are about 150 members in this family. There are about 10 species in “Altissima” is Latin for Most are tropical trees and shrubs. The common name for this genus, all native to Asia “tallest.” Ailanthus grows and Australia.
    [Show full text]
  • Witold DANELSKI, Teresa BADOWSKA-CZUBIK, Elżbieta ROZPARA, Michał PNIAK 27 „Journal of Research and Applications in Agricultural Engineering” 2014, Vol
    Witold DANELSKI1, Teresa BADOWSKA-CZUBIK1, Elżbieta ROZPARA1, Michał PNIAK2 1 Research Institute of Horticulture, Department of Pomology ul. Pomologiczna 18, 96-100 Skierniewice, Poland e-mail: [email protected] 2 Biocont Poland ul. Jaracza 24/38, 31-215 Kraków e-mail: [email protected] A STUDY ON THE POSSIBILITY OF LIMITING DAMAGE TO FRUIT BY THE APPLE SAWFLY (Hoplocampa testudinea Klug) IN ORGANIC APPLE ORCHARDS Summary In 2010-2012, in the Experimental Ecological Orchard of the Research Institute of Horticulture in Skierniewice, a study was conducted on the possibility of reducing populations of the apple sawfly (Hoplocampa testudinea Klug) using biologi- cal formulations. The tests involved treatments with an extract from the wood of Quassia amara (4 kg/ha) and an extract from the seeds of Azadirachta indica in the form of a ready-made formulation NeemAzal-T/S at a rate of 2.5 l/ha with the addition of a 0.3% sugar solution. A single treatment was performed in the first two years, and two treatments in the last year. The effectiveness of the protection of fruitlets against damage varied and for the Q. amara extract was from 8.3% (one treatment) to 86.1% (two treatments), and for the NeemAzal-T/S formulation from 4.8% (one treatment) to 44.3% (two treatments). In relation to the damage to fruits, the efficacy of the treatments also varied, ranging from 10.3% to 60% for the Q. amara extract, and from 0% to 46.7% for NeemAzal-T/S. Key words: organic orchard, Hoplocampa testudinea Klug, Quassia amara, NeemAzal-T/S, experimentation MOŻLIWOŚĆ OGRANICZENIA USZKODZEŃ OWOCÓW PRZEZ OWOCNICĘ JABŁKOWĄ (Hoplocampa testudinea Klug) W EKOLOGICZNYM SADZIE JABŁONIOWYM Streszczenie W latach 2010–2012 w Ekologicznym Sadzie Doświadczalnym Instytutu Ogrodnictwa wykonano badania nad możliwością ograniczenia populacji owocnicy jabłkowej (Hoplocampa testudinea Klug) przy pomocy preparatów biologicznych.
    [Show full text]