Bibliography
Total Page:16
File Type:pdf, Size:1020Kb
Bibliography [1] Abad Blazquez, A. M., Herraez Matesanz, M., Navarro Ugena, C., and Barbero, E. J. (2013). Acoustic emission characterization of intralaminar damage in composite lami- nates. In Asociaci´onEspa~nolade Materiales Compuestos MATCOMP 2013, Algeciras, Spain. AEMAC. [2] ACI (2008). ACI 440.2R-08, Guide for the Design and Construction of Externally Bonded FRP Strengthening System for Strengthening Concrete Structures. American Concrete Institute, Farmington Hills, MI. [3] ACI (2014). ACI 318-14, Building Code Requirements of Structural Concrete, and Com- mentary. American Concrete Institute, Farmington Hills, MI. [4] Adams, R. C. and Bogner, B. R. (1993). Long-term use of isopolyesters in corrosion resistance. 1-C:1{5. SPI Composites Institute 48th Conference. [5] Agarwal, B. D. and Broutman, L. J. (1990). Analysis and Performance of Fiber Com- posites. Wiley, New York, NY, 2nd edition. [6] Akzo Nobel. Akzo Nobel, Knoxville, TN. [7] Anderson, T. L. (1995). Fracture Mechanics. CRC, Boca Raton, FL. [8] Andrew, W. (1991). Plastics Design Library: The Effect of Creep and Other Time Related Factors on Plastics. William Andrew Publishing, Norwich, NY. [9] Arbelaiz, A. (2006). Mechanical properties of short flax fibre bundle/poly([epsilon]- caprolactone) composites: Influence of matrix modification and fibre content. Carbohy- drate Polymers, 64(2):224{232. [10] Arnold, R. R. and Mayers, J. (1984). Buckling, post buckling, and crippling of mate- rially nonlinear laminated plates. Int. J. Solids Struct., 20(9/10):863{880. [11] Arridge, R. G. C. (1985). An Introduction to Polymer Mechanics. Taylor and Francis, London. [12] Ashland. Hetron and Aropol Resin Selection Guide for Corrosion Resistant FRP Ap- plications. Ashland Chemical Co., Columbus, OH. [13] ASME. ASME Boiler and Pressure Vessel Code, Section XIII. ASME, New York, NY. [14] ASTM International. Web Resource. www.astm.org. 513 514 Introduction to Composite Materials Design [15] ASTM International. ASTM D 7290. Standard practice for evaluating material property characteristic values for polymeric composites for civil engineering applications. American Society for Testing and Materials, Philadelphia, PA. [16] Averous, L. and Pollet, E. (2012). Biodegradable Polymers, chapter 2, pages 13{39. Springer-Verlag. In Environmental Silicate Nano-Composites. [17] Babu, R. P., O'Connor, K., and Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(8):1{16. [18] Barbero, E. J. Web resource. http://barbero.cadec-online.com/icmd/. [19] Barbero, E. J. Scilab's Probability Distribution Functions toolbox. http://barbero. cadec-online.com/lib/ScilabDistfun.html. [20] Barbero, E. J. Computer Aided Design Environment for Composites. www. cadec-online.com. [21] Barbero, E. J. Periodic Microstructure Micromechanics (PMM): source code. http: //barbero.cadec-online.com/lib/. [22] Barbero, E. J. (1998). Prediction of compressive strength of unidirectional polymer matrix composites. J. Compos. Mater., 32(5):483{502. [23] Barbero, E. J. (1999). Introduction to Composite Materials Design. Taylor and Francis, Philadelphia, PA, 1st edition. [24] Barbero, E. J. (2009). Prediction of long-term creep of composites from doubly-shifted polymer creep data. J. Compos. Mater., 43(19):2109{2124. [25] Barbero, E. J. (2013). Finite Element Analysis of Composite Materials Using Abaqus. CRC Press, Boca Raton, FL, 2nd edition. [26] Barbero, E. J. (2014). Finite Element Analysis of Composite Materials Using ANSYS. CRC Press, Boca Raton, FL, 2nd edition. [27] Barbero, E. J. (2015). Workbook for Introduction to Composite Materials Design. Create Space Independent Publishing. https://www.createspace.com/5257408. [28] Barbero, E. J. (2016). Multifunctional Composites. Create Space Independent Publis- hing. https://www.createspace.com/4957307. [29] Barbero, E. J. (2017). Universal carpet plots for stiffness and strength of carbon/epoxy laminates. SAMPE Composites and Materials Expo., TP17(0006). [30] Barbero, E. J. (2018). Workbook for Introduction to Composite Materials Design. Create Space Independent Publishing, 3rd edition. ISBN: 978-1542723398. https:// www.createspace.com/6883964. [31] Barbero, E. J. and Cabrera Barbero, J. (2016). Analytical solution for bending of laminated composites with matrix cracks. Composite Structures, 135:140{155. [32] Barbero, E. J. and Cortes, D. H. (2010). A mechanistic model for transverse damage initiation, evolution, and stiffness reduction in laminated composites. Composites: Part B, 41(2):124{132. Bibliography 515 [33] Barbero, E. J. and Damiani, T. (2003a). Interaction between static fatigue and zero- stress aging in e-glass fiber composites. ASCE J. Compos. Constr., 7(1):3{9. [34] Barbero, E. J. and Damiani, T. (2003b). Phenomenological prediction of tensile strength of e-glass composites from available aging and stress corrosion data. J. Reinf. Plastics Compos., 22(4):373{394. [35] Barbero, E. J., Damiani, T. M., and Trovillion, J. (2005). Micromechanics of fabric reinforced composites with periodic microstructure. Int. J. Solids Struct., 42:2489{2504. [36] Barbero, E. J. and Ford, K. J. (2004). Equivalent time-temperature model for physical aging and temperature effects on polymer creep and relaxation. ASME J. Eng. Mat. Tech., 126(4):413{419. [37] Barbero, E. J. and Ford, K. J. (2006). Determination of aging shift factor rates for field-processed polymers. SAMPE J. Adv. Mater., 38(2):7{13. [38] Barbero, E. J., Godoy, L. A., and Raftoyiannis, I. (1996). Finite elements for three- mode interaction in buckling analysis. Int. J. Numer. Methods Eng., 39:469{488. [39] Barbero, E. J. and Gutierrez, J. M. (2012). Determination of basis values from ex- perimental data for fabrics and composites. In SAMPE 2012 Conference and Exibition, Baltimore, May 21-24. [40] Barbero, E. J. and Kelly, K. (1993). Predicting high temperature ultimate strength of continuous fiber metal matrix composites. J. Compos. Mater., 27(12):1214{1235. [41] Barbero, E. J., Lonetti, P., and Sikkil, K. (2006a). Finite element continuum damage modeling of plain weave reinforced composites. Composites: Part B, 37:137{147. [42] Barbero, E. J. and Luciano, R. (1995). Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers. Int. J. Solids Struct., 32(13):1859{1872. [43] Barbero, E. J. and Raftoyiannis, I. (1994). Lateral and distortional buckling of pultru- ded I-beams. Composite Struct., 27:261{268. [44] Barbero, E. J. and Rangarajan, S. (2005). Long-term testing of trenchless pipe-liners. ASTM J. Testing Eval., 33(6):377{384. [45] Barbero, E. J., Sgambitterra, G., Adumitroiae, A., and Martinez, J. (2011a). A discrete constitutive model for transverse and shear damage of symmetric laminates with arbitrary stacking sequence. Composite Structures, 93:1021{1030. [46] Barbero, E. J., Sgambitterra, G., and Tessler, A. (2011b). A robust three-node shell element for laminated composites with matrix damage. Composites Part B: Engineering, 42:41{50. [47] Barbero, E. J., Sosa, E. M., Martinez, X., and Gutierrez, J. A. (2013). Reliability design methodology for confined high pressure inflatable structures, http://dx.doi. org/10.1016/j.engstruct.2013.01.011. Engineering Structures, 51:1{9. [48] Barbero, E. J. and Tomblin, J. (1994). A phenomenological design equation for frp columns with interaction between local and global buckling. Thin-Walled Struct., 18:117{ 131. 516 Introduction to Composite Materials Design [49] Barbero, E. J. and Tomblin, J. S. (1996). A damage mechanics model for compression strength of composites. Int. J. Solids Struct., 33(29):4379{4393. [50] Barbero, E. J., Trovillion, J., Mayugo, J., and Sikkil, K. (2006b). Finite element modeling of plain weave fabrics from photomicrograph measurements. Composite Struct., 73(1):41{52. [51] Bethune, D. S., Klang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363(6430):605{607. [52] Bismarck, A., Mishra, S., and Lampke, T. (2005). Plant Fibers as Reinforcement for Green Composites, pages 37{108. Taylor and Francis, Boca Raton. In Natural Fibers Biopolymers and Biocomposites. [53] Bogoeva-Gaceva, G. (2007). Natural fiber eco-composites. Polymer Composites, 28(1):98{107. [54] Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M. (1993). Advanced Strength of Materials. Wiley, New York, NY, 5th edition. [55] Brouwer, W. D. (2000). Natural fibre composites: Where can flax compete with glass. SAMPE Journal, 36(6):18{23. [56] Bruno, D., Carpino, R., and Greco, F. (2007). Modeling of mixed mode debonding in externally frp reinforced beams. Compos. Sci. Technol., 67:1459{1474. [57] Brunswick Technologies Inc. Brunswick Technology Product Catalog, Brunswick Technology Inc., Brunswick, ME. [58] Budinas, R. G. and Nisbett, J. K. (2015). Shigley's Mechanical Engineering Design. McGraw-Hill, New York, NY, 10th edition. [59] Bunsell, A. R. (1988). Fibre Reinforcements for Composite Materials, Composite Ma- terials Series 2. Elsevier, Amsterdam. [60] Bushnell, D. (1987). Panda2. program for minimum weight design of stiffened composite locally buckled panels. Computer and Struct., 25(4):469{605. [61] Cabral-Fonseca, S., Paiva, M. C., Nunes, J. P., and Bernardo, C. A. (2003). A novel technique for the interfacial characterisation of glass fibrepolypropylene systems. Polymer Testing, 22:907{913. [62] Camanho, P. P., D´avila,C. G., Pinho, S. T., Iannucci, L., and