Composite Structures Design, Mechanics, Analysis, Manufacturing, and Testing Manoj Kumar Buragohain

Total Page:16

File Type:pdf, Size:1020Kb

Composite Structures Design, Mechanics, Analysis, Manufacturing, and Testing Manoj Kumar Buragohain This article was downloaded by: 10.3.98.104 On: 26 Sep 2021 Access details: subscription number Publisher: CRC Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK Composite Structures Design, Mechanics, Analysis, Manufacturing, and Testing Manoj Kumar Buragohain Micromechanics of a Lamina Publication details https://www.routledgehandbooks.com/doi/10.1201/9781315268057-3 Manoj Kumar Buragohain Published online on: 20 Sep 2017 How to cite :- Manoj Kumar Buragohain. 20 Sep 2017, Micromechanics of a Lamina from: Composite Structures, Design, Mechanics, Analysis, Manufacturing, and Testing CRC Press Accessed on: 26 Sep 2021 https://www.routledgehandbooks.com/doi/10.1201/9781315268057-3 PLEASE SCROLL DOWN FOR DOCUMENT Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. 3 Micromechanics of a Lamina 3.1 CHAPTER ROAD MAP A laminate is a laminated composite structural element, and laminate design is a cru- cial aspect in the overall design of a composite structure. As mentioned in Chapter 1, laminae are the building blocks in a composite structure; knowledge of lamina behav- ior is essential for the design of a composite structure and analysis of a lamina is the starting point. Figure 3.1 presents a schematic representation of the process of compos- ite laminate analysis (and design) at different levels. A lamina is a multiphase element and its behavior can be studied at two levels—micro level and macro level. For micro- mechanical analysis of a lamina, the necessary input data are obtained from the experi- mental study of its constituents, viz. reinforcements and matrix, and lamina behavior is estimated as functions of the constituent properties. The lamina characteristics are then used in the analysis of the lamina at the macro level and subsequent laminate design and analysis. Alternatively, the input data for the macro-level analysis of a lamina and subsequent laminate design and analysis can be directly obtained from an experimental study of the lamina. Thus, in the context of product design, the micromechanics of a lamina can be considered as an alternative to the experimental study of the lamina. In this chapter, we provide an introductory remark followed by a brief review of the basic micromechanics concepts. There are many micromechanics models in the litera- ture. Our focus is not a review of these models; instead, we dwell on the formulations of some mechanics of materials-based models for the evaluation of lamina thermoelastic parameters and briefly touch upon the elasticity-based models and semiempirical models. 3.2 PRINCIPAL NOMENCLATURE A Area of cross section of a representative volume element Ac, Af, Am Areas of cross section of composite, fibers, and matrix, respectively, in a representative volume element bc, bf, bm Widths of composite, fibers, and matrix, respectively, in a representa- tive volume element d Fiber diameter Ec Young’s modulus of isotropic composite E1c, E2c Young’s moduli in the longitudinal and transverse directions, respec- tively, of transversely isotropic composite Ef Young’s modulus of isotropic fibers E1f, E2f Young’s moduli in the longitudinal and transverse directions, respec- tively, of transversely isotropic fibers Em Young’s modulus of matrix Fc Total force on composite (representative volume element) Ff, Fm Forces shared by the fibers and matrix, respectively Gf Shear modulus of isotropic fibers Downloaded By: 10.3.98.104 At: 07:34 26 Sep 2021; For: 9781315268057, chapter3, 10.1201/9781315268057-3 79 80 Composite Structures Analysis of composite structure Analysis of composite laminate Macromechanical analysis of lamina Micromechanical Experimental Or analysis of lamina study of lamina Characterization of constituents FIGURE 3.1 Schematic representation of composite laminate analysis process. G12f, G23f Shear moduli in the longitudinal and transverse planes, respectively, of transversely isotropic fibers Gm Shear modulus of matrix l, b, t Length, width, and thickness, respectively, of a representative volume element lc, lf, lm Lengths of composite, fibers, and matrix, respectively, in a represen- tative volume element s Fiber spacing tc, tf, tm Thicknesses of composite, fibers, and matrix, respectively, in a repre- sentative volume element Vf, Vm, Vv Fiber volume fraction, matrix volume fraction, and voids volume fraction, respectively (Vf )cri, (Vf )min Critical fiber volume fraction and minimum fiber volume fraction, respectively vc Total volume of composite vf, vm, vv Volumes of fibers, matrix, and voids, respectively Wf, Wm Mass fraction of fibers and mass fraction of matrix, respectively wc Total weight of composite wf, wm Mass of fibers and mass of matrix, respectively αc Coefficient of thermal expansion of isotropic composite α1c, α2c Longitudinal and transverse coefficients of thermal expansion, respectively, of transversely isotropic composite α1f, α2f Longitudinal and transverse coefficients of thermal expansion, respectively, of transversely isotropic fibers αm Coefficient of thermal expansion of matrix βc Coefficient of moisture expansion of isotropic composite β1c, β2c Longitudinal and transverse coefficients of moisture expansion, respectively, of transversely isotropic composite β1f, β2f Longitudinal and transverse coefficients of moisture expansion, respectively, of transversely isotropic fibers βm Coefficient of moisture expansion of matrix γ12c, γ23c Longitudinal (in a longitudinal plane) and transverse (in a transverse plane) shear strains, respectively, in composite Downloaded By: 10.3.98.104 At: 07:34 26 Sep 2021; For: 9781315268057, chapter3, 10.1201/9781315268057-3 Micromechanics of a Lamina 81 (γc)ult Ultimate shear strain in isotropic composite (γ12c)ult, (γ23c)ult Ultimate longitudinal (in a longitudinal plane) and transverse (in a transverse plane) shear strains, respectively, in transversely isotropic composite γ12f, γ23f Longitudinal (in a longitudinal plane) and transverse (in a transverse plane) shear strains, respectively, in fibers (γf )ult Ultimate shear strain in isotropic fibers (γ12f)ult, (γ23f)ult Ultimate longitudinal (in a longitudinal plane) and transverse (in a transverse plane) shear strains, respectively, in transversely isotropic fibers γ12m, γ23m Longitudinal (in a longitudinal plane) and transverse (in a transverse plane) shear strain, respectively, in matrix (γm)ult Ultimate shear strain in matrix Δc, Δf, Δm Deformations in composite, fibers, and matrix, respectively ΔCc, ΔCf, ΔCm Changes in moisture content in composite, fibers, and matrix, respectively Δl Change in length of a representative volume element Δlc, Δlf, Δlm Changes in length of composite, fibers, and matrix, respectively, in a representative volume element ΔT Change in temperature T T εε12c , c Longitudinal and transverse tensile strains, respectively, in composite C C εε12c , c Longitudinal and transverse compressive strains, respectively, in composite T ()εc ult Ultimate tensile strain in isotropic composite T T ()εε12c ultc,( )ult Ultimate longitudinal and transverse tensile strains, respectively, in transversely isotropic composite C C ()εε12c ultc,( )ult Ultimate longitudinal and transverse compressive strains, respec- tively, in transversely isotropic composite T T εε12f , f Longitudinal and transverse tensile strains, respectively, in fibers C C εε12f , f Longitudinal and transverse compressive strains, respectively, in fibers T ()ε f ult Ultimate tensile strain in isotropic fibers T T ()εε12f ultf,( )ult Ultimate longitudinal and transverse tensile strains, respectively, in transversely isotropic fibers C C ()εε12f ultf,( )ult Ultimate longitudinal and transverse compressive strains, respec- tively, in transversely isotropic fibers T T εε12m , m Longitudinal and transverse tensile strains, respectively, in matrix C C εε12m , m Longitudinal and transverse compressive strains, respectively, in matrix T ()εm ult Ultimate tensile strain in matrix η Fiber packing factor (in Halpin–Tsai equations) νf Poisson’s ratio of isotropic fibers ν12f, ν23f Major Poisson’s ratios (in the longitudinal plane and transverse plane, respectively) of transversely isotropic fibers νm Poisson’s ratio of matrix ξ Reinforcing factor (in Halpin–Tsai equations) ρc, ρf, ρm Density of composite, fibers, and matrix, respectively T T σσ12c , c Longitudinal and transverse tensile stresses, respectively, in composite C C σσ12c , c Longitudinal and transverse compressive stresses, respectively, in composite T ()σc ult Ultimate tensile stress in isotropic composite (i.e., tensile strength of isotropic composite) Downloaded By: 10.3.98.104 At: 07:34 26 Sep 2021; For: 9781315268057, chapter3, 10.1201/9781315268057-3 82 Composite Structures T T ()σσ12c ultc,( )ult Ultimate longitudinal and transverse tensile stresses, respectively, in transversely isotropic composite
Recommended publications
  • Chapter 10: Composite Micromechanics
    Application of the Finite Element Method Using MARC and Mentat 10-1 Chapter 10: Composite Micromechanics 10.1 Problem Statement and Objectives Given the micromechanical geometry and the material properties of each constituent, it is possible to estimate the effective composite material properties and the micromechanical stress/strain state of a composite material. The objectives of this project are (1) to determine the effective stiffness c c ν c ν c properties E1 , E2 , 12 , 23 of a unidirectional composite material and (2) to determine the strain concentration factor in the matrix region when the composite material is subjected to a uniform transverse normal strain in the X 2 direction. NOTE TO ME 424 CLASS: Only do Part (2). 10.2 Background A composite material is often defined as a combination of two or more materials fabricated in such a way that the individual constituents (materials) can still be readily identified in the final form. If designed properly, this combination of materials yields a composite material that exhibits the best properties of each constituent as well as some advantageous properties not exhibited by the individual constituents. One example of such a material is a unidirectional fiber reinforced composite, which is often used in aerospace structures. An idealized micromechanical view of a unidirectional fiber reinforced composite material is shown in Figure 10.1. In these materials, the fibers have a very small diameter and a very high length-to-diameter ratio. This geometry yields excellent stiffness and strength characteristics in the fiber, since the crystals tend to align along the fiber axis and there are fewer internal and surface defects than in the bulk material.
    [Show full text]
  • Micromechanics As a Basis of Stochastic Finite Elements And
    Micromechanics as a basis of stochastic finite elements and differences: An overview M Ostoja-Starzewski Department of Materials Science and Mechanics Michigan State University, East Lansing, MI 48824-1226 A generalization of conventional deterministic finite element and difference methods to deal with spatial material fluctuations hinges on the problem of determination of stochastic constitutive laws. This problem is analyzed here through a paradigm of micromechanics of elastic polycrystals and matrix-inclusion composites. Passage to a sought-for random meso-continuum is based on a scale dependent window playing the role of a Representative Volume Element (RVE). It turns out that the microstructure cannot be uniquely approximated by a random field of stiffness with continuous realizations, but, rather, two random continuum fields may be introduced to bound the material response from above and from below. Since the RVE corresponds to a single finite element, or finite difference cell, not infinitely larger than the crystal size, these two random fields are to be used to bound the solution of a given boundary value problem at a given scale of resolution. The window- based random continuum formulation is also employed in analysis of rigid perfectly-plastic mate­ rials, whereby the classical method of slip-lines is generalized to a stochastic finite difference scheme. The present paper is complemented by a comparison of this methodology to other existing stochastic solution methods. 1. INTRODUCTION a locally isotropic form The necessity to account for random effects in determining a.. = X(x, co) 5..e +2u(x, co)e.. n ^ the response of a mechanical system is due, in general, to »J iJ kk 'J {Li> three different sources: random external forcing, random is adopted by simply postulating one or both elastic constants, boundary conditions, and random material parameters.
    [Show full text]
  • MICROMECHANICS of STRESS-INDUCED MARTENSITIC TRANSFORMATION in MONO- and POLYCRYSTALLINE SHAPE MEMORY ALLOYS; Ni-Ti
    Advanced Materials for the 21st Century: The 1999 Julia R. Weertman Symposium, 1999 TMS Fall Meeting in Cincinnati, OH, USA., Oct. 31-Nov.4, pp.385-396 MICROMECHANICS OF STRESS-INDUCED MARTENSITIC TRANSFORMATION IN MONO- AND POLYCRYSTALLINE SHAPE MEMORY ALLOYS; Ni-Ti Y. Liang, M. Taya and T. Mori* Department of Mechanical Engineering University of Washington Seattle, WA 98195-2600 Abstract Stress-induced martensitic transformation in single crystals and polycrystals are examined on the basis of micromechanics. A simple method to find a stress- and elastic energy-free martensite plate (combined variant), which consists of two variants, is presented. External and internal stresses preferentially produce a combined variant, to which the stresses supply the largest work upon its formation. Using the chemical energy change with temperature, the phase boundary between the parent and martensitic phases is determined in stress-temperature diagrams. The method is extended to a polycrystal, modeled as an aggregate of spherical grains. The grains constitute axisymmetric multiple fiber textures and a uniaxial load is applied to the fiber axis. The occurrence and progress of transformation are followed by examining a stress state in the grains. The stress is the sum of the external stress and internal stress. The difference in the fraction of transformation and, thus, in transformation strains between the grains causes the internal stress, which is calculated with the average field method. After a short transition stage, all the grains start to transform, and the external uniaxial stress to continue the transformation increases linearly thereafter. The external stress at the end of the transition is defined as the macroscopic yield stress due to the transformation in polycrystals.
    [Show full text]
  • Viscoelastic Behavior of Polymer-Modified Cement
    applied sciences Article Viscoelastic Behavior of Polymer-Modified Cement Pastes: Insight from Downscaling Short-Term Macroscopic Creep Tests by Means of Multiscale Modeling Luise Göbel 1,2,*,†, Markus Königsberger 2,3 ID , Andrea Osburg 1 ID and Bernhard Pichler 2 1 F.A. Finger-Institute for Building Material Engineering, Bauhaus-Universität Weimar, 99423 Weimar, Germany; [email protected] 2 Institute for Mechanics of Materials and Structures, TU Wien—Vienna University of Technology, 1040 Vienna, Austria; [email protected] (M.K.); [email protected] (B.P.) 3 BATir Department, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium * Correspondence: [email protected]; Tel.: +49-3643-584743 † Current address: Coudraystraße 11 A, 99423 Weimar, Germany. Received: 28 February 2018; Accepted: 21 March 2018; Published: 23 March 2018 Abstract: Adding polymers to cementitious materials improves their workability and impermeability, but also increases their creep activity. In the present paper, the creep behavior of polymer-modified cement pastes is analyzed based on macroscopic creep tests and a multiscale model. The continuum micromechanics model allows for “downscaling” the results of macroscopic hourly-repeated ultra-short creep experiments to the viscoelastic behavior of micron-sized hydration products and polymer particles. This way, the increased creep activity of polymer-modified cement pastes is traced back to an isochoric power-law-type creep behavior of the polymers. The shear creep modulus of the polymers is found (i) to be two orders of magnitude smaller than that of the hydrates and (ii) to increase considerably with increasing material age. The latter result suggests that the creep activity of the polymers decreases with the self-desiccation-related decrease of the relative humidity inside the air-filled pores of cement paste.
    [Show full text]
  • Chiral Metamaterial Predicted by Granular Micromechanics: Verified With
    1 Chiral Metamaterial Predicted by Granular Micromechanics: Verified with 2 1D Example Synthesized using Additive Manufacturing 3 4 5 Anil Misra1*, Nima Nejadsadeghi 2, Michele De Angelo 1,3, Luca Placidi 4 6 7 8 1Civil, Environmental and Architectural Engineering Department, 9 University of Kansas, 1530 W. 15th Street, Learned Hall, Lawrence, KS 66045-7609. 10 2Mechanical Engineering Department, 11 University of Kansas, 1530 W. 15th Street, Learned Hall, Lawrence, KS 66045-7609. 12 3Dipartimento di Ingegneria Civile, Edile-Architettura e Ambientale, Università degli Studi 13 dellAquila, Via Giovanni Gronchi 18 - Zona industriale di Pile, 67100 LAquila, Italy 14 3International Telematic University Uninettuno, 15 C. so Vittorio Emanuele II 39, 00186 Rome, Italy 16 *corresponding author: Ph: (785) 864-1750, Fax: (785) 864-5631, Email: [email protected] 17 18 19 20 21 22 23 Continuum Mechanics and Thermodynamics 24 25 26 27 28 Abstract 29 Granular micromechanics approach (GMA) provides a predictive theory for granular material 30 behavior by connecting the grain-scale interactions to continuum models. Here we have used 31 GMA to predict the closed-form expressions for elastic constants of macro-scale chiral granular 32 metamaterial. It is shown that for macro-scale chirality, the grain-pair interactions must include 33 coupling between normal and tangential deformations. We have designed such a grain-pair 34 connection for physical realization and quantified with FE model. The verification of the 35 prediction is then performed using a physical model of 1D bead string obtained by 3D printing. 36 The behavior is also verified using a discrete model of 1D bead string.
    [Show full text]
  • Micromechanics Models for Viscoelastic Plain-Weave Composite Tape Springs
    AIAA JOURNAL Vol. 55, No. 1, January 2017 Micromechanics Models for Viscoelastic Plain-Weave Composite Tape Springs Kawai Kwok∗ Technical University of Denmark, 4000 Roskilde, Denmark and Sergio Pellegrino† California Institute of Technology, Pasadena, California 91125 DOI: 10.2514/1.J055041 The viscoelastic behavior of polymer composites decreases the deployment force and the postdeployment shape accuracy of composite deployable space structures. This paper presents a viscoelastic model for single-ply cylindrical shells (tape springs) that are deployed after being held folded for a given period of time. The model is derived from a representative unit cell of the composite material, based on the microstructure geometry. Key ingredients are the fiber volume density in the composite tows and the constitutive behavior of the fibers (assumed to be linear elastic and transversely isotropic) and of the matrix (assumed to be linear viscoelastic). Finite-element-based homogenizations at two scales are conducted to obtain the Prony series that characterize the orthotropic behavior of the composite tow, using the measured relaxation modulus of the matrix as an input. A further homogenization leads to the lamina relaxation ABD matrix. The accuracy of the proposed model is verified against the experimentally measured time- dependent compliance of single lamina in either pure tension or pure bending. Finite element simulations of single-ply tape springs based on the proposed model are compared to experimental measurements that were also obtained during
    [Show full text]
  • Variational Asymptotic Micromechanics Modeling of Composite Materials
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2008 Variational Asymptotic Micromechanics Modeling of Composite Materials Tian Tang Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Applied Mechanics Commons Recommended Citation Tang, Tian, "Variational Asymptotic Micromechanics Modeling of Composite Materials" (2008). All Graduate Theses and Dissertations. 72. https://digitalcommons.usu.edu/etd/72 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. VARIATIONAL ASYMPTOTIC MICROMECHANICS MODELING OF COMPOSITE MATERIALS by Tian Tang A dissertation submitted in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Mechanical Engineering Approved: Dr. Wenbin Yu Dr. Leijun Li Major Professor Committee Member Dr. Brent E. Stucker Dr. Thomas H. Fronk Committee Member Committee Member Dr. David E. Richardson Dr. Byron R. Burnham Committee Member Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2008 ii Copyright °c Tian Tang 2008 All Rights Reserved iii Abstract Variational Asymptotic Micromechanics Modeling of Composite Materials by Tian Tang, Doctor of Philosophy Utah State University, 2008 Major Professor: Dr. Wenbin Yu Department: Mechanical and Aerospace Engineering The issue of accurately determining the e®ective properties of composite materials has received the attention of numerous researchers in the last few decades and continues to be in the forefront of material research. Micromechanics models have been proven to be very useful tools for design and analysis of composite materials.
    [Show full text]
  • Micromechanics-Based Prediction of the Effective Properties of Piezoelectric Composite Having Interfacial Imperfections
    Micromechanics-based prediction of the effective properties of piezoelectric composite having interfacial imperfections Sangryun Leea, Jiyoung Junga, and Seunghwa Ryua,* Affiliations aDepartment of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea *Corresponding author e-mail: [email protected] Abstract We derive an analytical expression to predict the effective properties of a particulate- reinforced piezoelectric composite with interfacial imperfections using a micromechanics- based mean–field approach. We correctly derive the analytical formula of the modified Eshelby tensor, the modified concentration tensor, and the effective property equations based on the modified Mori–Tanaka method in the presence of interfacial imperfections. Our results are validated against finite element analyses (FEA) for the entire range of interfacial damage levels, from a perfect to a completely disconnected and insulated interface. For the facile evaluation of the nontrivial tensorial equations, we adopt the Mandel notation to perform tensor operations with 99 symmetric matrix operations. We apply the method to predict the effective properties of a representative piezoelectric composite consisting of PVDF and SiC reinforcements. Keywords Piezoelectric composite, Eshelby tensor, Interfacial damage, Effective modulus 1. Introduction Piezoelectricity refers to the electric charge accumulation in response to an applied mechanical loading, or, conversely, the mechanical
    [Show full text]
  • Viscoelastic Interphases in Polymer–Matrix Composites: Theoretical Models and finite-Element Analysis
    Composites Science and Technology 61 (2001) 731–748 www.elsevier.com/locate/compscitech Viscoelastic interphases in polymer–matrix composites: theoretical models and finite-element analysis F.T. Fisher, L.C. Brinson * Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Received 21 January 2000; received in revised form 7 December 2000; accepted 18 January 2001 Abstract We investigate the mechanical property predictions for a three-phase viscoelastic (VE) composite by the use of two micro- mechanical models: the original Mori–Tanaka (MT) method and an extension of the Mori–Tanaka solution developed by Benve- niste to treat fibers with interphase regions. These micro-mechanical solutions were compared to a suitable finite-element analysis, which provided the benchmark numerical results for a periodic array of inclusions. Several case studies compare the composite moduli predicted by each of these methods, highlighting the role of the interphase. We show that the MT method, in general, provides the better micromechanical approximation of the viscoelastic behavior of the composite; however, the micromechanical methods only provide an order-of-magnitude approximation for the effective moduli. Finally, these methods were used to study the physical aging of a viscoelastic composite. The results imply that the existence of an interphase region, with viscoelastic moduli different from those of the bulk matrix, is not responsible for the difference in the shift rates, 22 and 66, describing the transverse Young’s axial shear moduli, found experimentally. # 2001 Published by Elsevier Science Ltd. All rights reserved. Keywords: Interphase; Micromechanics; Viscoelasticity; Finite element analysis; Physical aging 1. Introduction PMC with a viscoelastic interphase may be undertaken.
    [Show full text]
  • A New Definition of the Representative Volument Element in Numerical
    UNIVERSITE´ DE MONTREAL´ A NEW DEFINITION OF THE REPRESENTATIVE VOLUMENT ELEMENT IN NUMERICAL HOMOGENIZATION PROBLEMS AND ITS APPLICATION TO THE PERFORMANCE EVALUATION OF ANALYTICAL HOMOGENIZATION MODELS HADI MOUSSADDY DEPARTEMENT´ DE GENIE´ MECANIQUE´ ECOLE´ POLYTECHNIQUE DE MONTREAL´ THESE` PRESENT´ EE´ EN VUE DE L'OBTENTION DU DIPLOME^ DE PHILOSOPHIÆ DOCTOR (GENIE´ MECANIQUE)´ AVRIL 2013 © Hadi Moussaddy, 2013. UNIVERSITE´ DE MONTREAL´ ECOLE´ POLYTECHNIQUE DE MONTREAL´ Cette th`eseintitul´ee : A NEW DEFINITION OF THE REPRESENTATIVE VOLUMENT ELEMENT IN NUMERICAL HOMOGENIZATION PROBLEMS AND ITS APPLICATION TO THE PERFORMANCE EVALUATION OF ANALYTICAL HOMOGENIZATION MODELS pr´esent´ee par : MOUSSADDY Hadi en vue de l'obtention du dipl^ome de : Philosophiæ Doctor a ´et´ed^ument accept´eepar le jury d'examen constitu´ede : M. GOSSELIN Fr´ed´eric, Ph.D., pr´esident M. THERRIAULT Daniel, Ph.D., membre et directeur de recherche M. LE´VESQUE Martin, Ph.D., membre et codirecteur de recherche M. LESSARD Larry, Ph.D., membre M. BOHM¨ Helmut J., Techn. Doct., membre iii To my parents Safwan and Aisha To my wife Nour To my whole family... iv ACKNOWLEDGEMENTS I would like to thank Pr. Daniel Therriault and Pr. Martin L´evesque for their guidance throughout this project. Your insightful criticism guided me to complete a rigorous work, while gaining scientific maturity. Also, I want to thank Pr. B¨ohm, Pr. Lessard and Pr. Henry for being my committee members and Pr. Gosselin for being the Jury president. I owe special gratitude to the members of Laboratory for Multiscale Mechanics (LM2) research group. I would like to paricularly acknowledge the contributions of Maryam Pah- lavanPour by conducting parts of the analytical modeling included in this thesis, and for numerous fruitful dicussions all along this project.
    [Show full text]
  • Micromechanically Based Stochastic Finite Elements
    Finite Elements in Analysis and Design 15 (1993) 35-41 35 Elsevier FINEL 333 Micromechanically based stochastic finite elements K. Alzebdeh and M. Ostoja-Starzewski Department of Materials Science and Mechanics, Michigan State UniL'ersity, East Lansing, MI 48824-1226, USA Abstract. A stochastic finite element method for analysis of effects of spatial variability of material properties is developed with the help of a micromechanics approach. The method is illustrated by evaluating the first and second moments of the global response of a membrane with microstructure of a spatially random inclusion- matrix composite under a deterministic uniformly distributed load. It is shown that two mesoscale random continuum fields have to be introduced to bound the material properties and, in turn, the global response from above and from below. The intrinsic scale dependence of these two random fields is dictated by the choice of the finite element mesh. Introduction In elliptic boundary value problems there may be three different sources of randomness: distortion of the boundaries, fluctuation in the external force fields, and heterogeneity of the medium. All of these sources necessitate a stochastic generalization of the conventional solution methods. Such generalizations of the finite element method were attempted since the early eighties with a goal of grasping the randomness of either external force fields or medium's variability [1-6]. However, the latter aspect has been lacking a correct formulation in all the previous works, mainly due to purely hypothetical assumptions concerning the random field description of the material. That is, in the area of linear elastic structures, all these studies relied on a stochastic interpretation of the locally isotropic constitutive law o'ij = a(x, W)ekkaij + 2/x(x, w)Eij, (1) where the Lam6 constants are taken to be random fields.
    [Show full text]
  • Micromechanics Modeling of Functionally Graded Materials Containing Multiple Heterogeneities
    Vol. 26, No. 6, 392-397 (2013) DOI: http://dx.doi.org/10.7234/composres.2013.26.6.392 ISSN 2288-2103(Print), ISSN 2288-2111(Online) Paper Micromechanics Modeling of Functionally Graded Materials Containing Multiple Heterogeneities Jaesang Yu*†, Cheol-Min Yang**, Yong Chae Jung** ABSTRACT: Functionally graded materials graded continuously and discretely, and are modeled using modified Mori- Tanaka and self-consistent methods. The proposed micromechanics model accounts for multi-phase heterogeneity and arbitrary number of layers. The influence of geometries and distinct elastic material properties of each constituent and voids on the effective elastic properties of FGM is investigated. Numerical examples of different functionally graded materials are presented. The predicted elastic properties obtained from the current model agree well with experimental results from the literature. Key Words: functionally graded material (FGM), micromechanics, heterogeneity, composites 1. INTRODUCTION of three phase FGMs. Pindera et al. [10] used a computational micromechanical model, the generalized method of cells, to Due to their unique structure and multi-functionality, func- predict local stress in the fiber and matrix phases of FGMs. tionally graded materials (FGMs) are gaining attention and are Fang et al. [11], developed a micromechanics-based elasto- being proposed for many applications [1-3]. In FGMs, the dynamic model to predict the dynamic behavior of two-phase variation of material properties along a specific direction helps functionally graded materials. the material to have the desirable material properties of each Zuiker [12] reviewed the micromechanical modeling of constituent at a specific material point with structural conti- FGMs and concluded that the self-consistent method (SCM) nuity.
    [Show full text]