Use of Lipoprotein(A) in Clinical Practice: a Biomarker Whose Time Has Come
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Outcome Reporting Bias in COVID-19 Mrna Vaccine Clinical Trials
medicina Perspective Outcome Reporting Bias in COVID-19 mRNA Vaccine Clinical Trials Ronald B. Brown School of Public Health and Health Systems, University of Waterloo, Waterloo, ON N2L3G1, Canada; [email protected] Abstract: Relative risk reduction and absolute risk reduction measures in the evaluation of clinical trial data are poorly understood by health professionals and the public. The absence of reported absolute risk reduction in COVID-19 vaccine clinical trials can lead to outcome reporting bias that affects the interpretation of vaccine efficacy. The present article uses clinical epidemiologic tools to critically appraise reports of efficacy in Pfzier/BioNTech and Moderna COVID-19 mRNA vaccine clinical trials. Based on data reported by the manufacturer for Pfzier/BioNTech vaccine BNT162b2, this critical appraisal shows: relative risk reduction, 95.1%; 95% CI, 90.0% to 97.6%; p = 0.016; absolute risk reduction, 0.7%; 95% CI, 0.59% to 0.83%; p < 0.000. For the Moderna vaccine mRNA-1273, the appraisal shows: relative risk reduction, 94.1%; 95% CI, 89.1% to 96.8%; p = 0.004; absolute risk reduction, 1.1%; 95% CI, 0.97% to 1.32%; p < 0.000. Unreported absolute risk reduction measures of 0.7% and 1.1% for the Pfzier/BioNTech and Moderna vaccines, respectively, are very much lower than the reported relative risk reduction measures. Reporting absolute risk reduction measures is essential to prevent outcome reporting bias in evaluation of COVID-19 vaccine efficacy. Keywords: mRNA vaccine; COVID-19 vaccine; vaccine efficacy; relative risk reduction; absolute risk reduction; number needed to vaccinate; outcome reporting bias; clinical epidemiology; critical appraisal; evidence-based medicine Citation: Brown, R.B. -
Lrp1 Modulators
Last updated on February 14, 2021 Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. Lrp1 Modulators Evidence Summary Lrp1 has a variety of essential functions, mediated by a diverse array of ligands. Therapeutics will need to target specific interactions. Neuroprotective Benefit: Lrp1-mediated interactions promote Aβ clearance, Aβ generation, tau propagation, brain glucose utilization, and brain lipid homeostasis. The therapeutic effect will depend on the interaction targeted. Aging and related health concerns: Lrp1 plays mixed roles in cardiovascular diseases and cancer, dependent on context. Lrp1 is dysregulated in metabolic disease, which may contribute to insulin resistance. Safety: Broad-spectrum Lrp1 modulators are untenable therapeutics due to the high potential for extensive side effects. Therapies that target a specific Lrp1-ligand interaction are expected to have a better therapeutic profile. 1 Last updated on February 14, 2021 Availability: Research use Dose: N/A Chemical formula: N/A S16 is in clinical trials MW: N/A Half life: N/A BBB: Angiopep is a peptide that facilitates BBB penetrance by interacting with Lrp1 Clinical trials: S16, an Lrp1 Observational studies: sLrp1 levels are agonist was tested in healthy altered in Alzheimer’s disease, volunteers (n=10) in a Phase 1 cardiovascular disease, and metabolic study. -
Clinical Epidemiologic Definations
CLINICAL EPIDEMIOLOGIC DEFINATIONS 1. STUDY DESIGN Case-series: Report of a number of cases of disease. Cross-sectional study: Study design, concurrently measure outcome (disease) and risk factor. Compare proportion of diseased group with risk factor, with proportion of non-diseased group with risk factor. Case-control study: Retrospective comparison of exposures of persons with disease (cases) with those of persons without the disease (controls) (see Retrospective study). Retrospective study: Study design in which cases where individuals who had an outcome event in question are collected and analyzed after the outcomes have occurred (see also Case-control study). Cohort study: Follow-up of exposed and non-exposed defined groups, with a comparison of disease rates during the time covered. Prospective study: Study design where one or more groups (cohorts) of individuals who have not yet had the outcome event in question are monitored for the number of such events, which occur over time. Randomized controlled trial: Study design where treatments, interventions, or enrollment into different study groups are assigned by random allocation rather than by conscious decisions of clinicians or patients. If the sample size is large enough, this study design avoids problems of bias and confounding variables by assuring that both known and unknown determinants of outcome are evenly distributed between treatment and control groups. Bias (Syn: systematic error): Deviation of results or inferences from the truth, or processes leading to such deviation. See also Referral Bias, Selection Bias. Recall bias: Systematic error due to the differences in accuracy or completeness of recall to memory of past events or experiences. -
Enrichment Strategies for Clinical Trials to Support Determination of Effectiveness of Human Drugs and Biological Products Guidance for Industry
Enrichment Strategies for Clinical Trials to Support Determination of Effectiveness of Human Drugs and Biological Products Guidance for Industry U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) March 2019 Clinical/Medical Enrichment Strategies for Clinical Trials to Support Determination of Effectiveness of Human Drugs and Biological Products Guidance for Industry Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353; Email: [email protected] https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm and/or Office of Communication, Outreach, and Development Center for Biologics Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Bldg. 71, rm. 3128 Silver Spring, MD 20993-0002 Phone: 800-835-4709 or 240-402-8010; Email: [email protected] https://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) March 2019 Clinical/Medical TABLE OF CONTENTS I. INTRODUCTION............................................................................................................ -
Elevated Lipoprotein (A) Patient-Centered Education from the National Lipid Association
Elevated Lipoprotein (a) Patient-Centered Education From the National Lipid Association What is Elevated Lipoprotein (a) ? Apo-B Apo (a) Lipoprotein (a) is a form of Low Density Lipoprotein (LDL) in which another protein, called Apo(a), is attached to each LDL particle as it carries cholesterol around in the body. Having elevated blood levels of Lipoprotein (a) raises a person’s risk of heart attack and stroke beyond what is normally seen from elevated LDL cholesterol alone. This is believed to be due to the Apo(a) protein, which may reduce the body’s ability to break down clots. Elevated Lipoprotein (a) is usually inherited from one parent. About 1 in 4 people in the population are believed to have elevated blood levels of Lipoprotein (a). African Americans may have higher levels. Besides genetics, Lipoprotein (a) levels may result from increased intake of some types of fats, and some medical conditions. Treatment of elevated Lipoprotein (a) is based on a person’s risk of heart attack or stroke. A healthy diet and lifestyle are the first step to reducing heart attack and stroke risk from elevated Lipoprotein (a). Medications also may help. ‘ Statins’ do not lower Lipoprotein (a) levels. However, statins are the most used medication for lowering heart attack and stroke risk in general, and so they are the most used medicine to treat risk from elevated Lipoprotein (a). Niacin can lower Lipoprotein (a) levels by 25-40%, as can PCSK9 inhibitors, but both are used less often. A new medication for lowering Lipoprotein (a) is being tested. -
Evidence-Based Clinical Question Does Dantrolene Sodium Prevent Recurrent Exertional Rhabdomyolysis in Horses? M
EQUINE VETERINARY EDUCATION / AE / March 2007 97 Evidence-based Clinical Question Does dantrolene sodium prevent recurrent exertional rhabdomyolysis in horses? M. A. HOLMES University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK. Three part question of any other clinical manifestation of disease. An arbitrary level of >900 iu/l was selected as a case definition to provide In Thoroughbred horses (population) does treatment with a means of counting the number of animals that might be dantrolene sodium (intervention) reduce the recurrence of described as constituting a case of exertional rhabdomyolysis exertional rhabdomyolysis (outcome)? (ER). Clinical cases of ER may exhibit considerably greater levels of CK and it should not be implied that lower CK levels Clinical scenario may not be associated with clinical signs of ER. The key results are presented as absolute risk reductions A client requests advice on the prevention of recurrent (ARR) and relative risk reductions (RRR). The ARR indicates the exertional rhabdomyloysis (RER) for a Thoroughbred horse proportion of all horses in the treatment group that have an with a history of this condition. The veterinarian is aware that improved clinical outcome as a result of the treatment (i.e. the dantrolene sodium has been suggested as a suitable proportion of horses that benefit from dantrolene treatment). preventive treatment. Both the trials described here are unusual in that a number of horses are being treated that might not be considered Search strategy appropriate candidates for prophylactic treatment. There were 74 horses in the Edwards trial and 3 horses in the McKenzie Pubmed/Medline (1966–Jan 2007) (http://pubmed.org/): trial that failed to develop high CK levels either with or dantrolene AND equine. -
Understanding Measures of Treatment Effect in Clinical Trials a K Akobeng
54 Arch Dis Child: first published as 10.1136/adc.2004.061747 on 21 December 2004. Downloaded from CURRENT TOPIC Understanding measures of treatment effect in clinical trials A K Akobeng ............................................................................................................................... Arch Dis Child 2005;90:54–56. doi: 10.1136/adc.2004.052233 Evidence based medicine implies that healthcare admitted with RSV infection was10.6% for those receiving placebo and 4.8% for those receiving professionals are expected to base their practice on the prophylactic palivizumab. It should be noted that best available evidence. This means that we should acquire AR and all the other measures of treatment effect the necessary skills for appraising the medical literature, discussed below are statistical estimates and the uncertainty in the estimates should be accom- including the ability to understand and interpret the results panied by confidence intervals. of published articles. This article discusses in a simple, practical, ‘non-statistician’ fashion some of the important Absolute risk reduction outcome measures used to report clinical trials comparing In a study comparing a group of patients who different treatments or interventions. Absolute and relative were exposed to a particular intervention with another group who did not receive the interven- risk measures are explained, and their merits and demerits tion, the absolute risk reduction (ARR) is discussed. The article aims to encourage healthcare calculated as the arithmetic difference in the professionals to appreciate the use and misuse of these AR of an outcome in individuals who were outcome measures and to empower them to calculate these exposed to the intervention and the AR of the outcome in those unexposed to the intervention. -
SUPPLEMENTARY APPENDIX Powering Bias and Clinically
SUPPLEMENTARY APPENDIX Powering bias and clinically important treatment effects in randomized trials of critical illness Darryl Abrams, MD, Sydney B. Montesi, MD, Sarah K. L. Moore, MD, Daniel K. Manson, MD, Kaitlin M. Klipper, MD, Meredith A. Case, MD, MBE, Daniel Brodie, MD, Jeremy R. Beitler, MD, MPH Supplementary Appendix 1 Table of Contents Content Page 1. Additional Methods 3 2. Additional Results 4 3. Supplemental Tables a. Table S1. Sample size by trial type 6 b. Table S2. Accuracy of control group mortality by trial type 6 c. Table S3. Predicted absolute risk reduction in mortality by trial type 6 d. Table S4. Difference in predicted verses observed treatment effect, absolute risk difference 6 e. Table S5. Characteristics of trials by government funding 6 f. Table S6. Proportion of trials for which effect estimate includes specified treatment effect size, 7 all trials g. Table S7. Inconclusiveness of important effect size for reduction in mortality among trials 7 without a statistically significant treatment benefit h. Table S8. Inconclusiveness of important effect size for increase in mortality among trials 7 without a statistically significant treatment harm 4. Supplemental Figures a. Figure S1. Screening and inclusion of potentially eligible studies 8 b. Figure S2. Butterfly plot of predicted and observed mortality risk difference, grouped by 9 journal c. Figure S3. Butterfly plot of predicted and observed mortality risk difference, grouped by 10 disease area d. Figure S4. Trial results according to clinically important difference in mortality on absolute 11 and relative scales, grouped by journal e. Figure S5. Trial results according to clinically important difference in mortality on absolute 12 and relative scales, grouped by disease area f. -
Increased Prebeta-High Density Lipoprotein, Apolipoprotein AI, And
Increased prebeta-high density lipoprotein, apolipoprotein AI, and phospholipid in mice expressing the human phospholipid transfer protein and human apolipoprotein AI transgenes. X Jiang, … , J L Breslow, A R Tall J Clin Invest. 1996;98(10):2373-2380. https://doi.org/10.1172/JCI119050. Research Article Human plasma phospholipid transfer protein (PLTP) circulates bound to high density lipoprotein (HDL) and mediates both net transfer and exchange of phospholipids between different lipoproteins. However, its overall function in lipoprotein metabolism is unknown. To assess the effects of increased plasma levels of PLTP, human PLTP transgenic mice were established using the human PLTP gene driven by its natural promoter. One line of PLTP transgenic mice with moderate expression of PLTP mRNA and protein was obtained. The order of human PLTP mRNA expression in tissues was: liver, kidney, brain, small intestine > lung > spleen > heart, adipose tissue. Western blotting using a human PLTP monoclonal antibody revealed authentic human PLTP (Mr 80 kD) in plasma. Plasma PLTP activity was increased by 29% in PLTP transgenic mice. However, plasma lipoprotein analysis, comparing PLTP transgenic mice to control littermates, revealed no significant changes in the plasma lipoprotein lipids or apolipoproteins. Since previous studies have shown that human cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase only function optimally in human apoAI transgenic mice, the human PLTP transgenic mice were cross-bred with human apoAI transgenic mice. In the human apoAI transgenic background, PLTP expression resulted in increased PLTP activity (47%), HDL phospholipid (26%), cholesteryl ester (24%), free cholesterol (37%), and apoAI (22%). There was a major increase of apoAI in prebeta-HDL (56%) and […] Find the latest version: https://jci.me/119050/pdf Increased Pre-high Density Lipoprotein, Apolipoprotein AI, and Phospholipid in Mice Expressing the Human Phospholipid Transfer Protein and Human Apolipoprotein AI Transgenes Xian-cheng Jiang,* Omar L. -
LEADERS FREE II – Lessons Learned
LEADERS FREE II – Lessons Learned Hans-Peter Stoll, MD Chief Medical Officer Biosensors International Hans-Peter Stoll, MD Disclosure: I am a full-time employee of Biosensors International Group LEADERS FREE 2,466 HBR Patients 30 day DAPT Primary Endpoints and Major Bleeding at 1 Year DCS BMS Efficacy (TLR) Safety (cardiac death, MI, ST) Bleeding (BARC 3-5) % 12 % HR 0.50, (95% CI = 0.37‒0.69) % HR 0.71, (95% CI = 0.56‒0.91) p < 0.001 for superiority 9.8% 15 p < 0.0001 for non-inferiority 12.9% p = 0.005 for superiority 9 12 7.3% 9 6 9.4% 7.2% 5.1% 6 3 3 Cumulative Cumulative Percentage with Event 0 0 0 90 180 270 390 Days 0 90 180 270 390 Days *Urban P et al, NEJM 2015, N Engl J Med 2015;373:2038-47 BioFreedom™: Polymer-free Biolimus A9™ Drug-Coated Stent (DCS) 1. Tada et al., Circ Cardiovasc Interv 2010;3; 174-183 LEADERS FREE II: Inclusion Criteria Identical to LEADERS FREE Age (≥ 75 yrs) Courtesy of Davide Capodanno and the High Bleeding Risk Academic Research Consortium Initiative. LEADERS FREE II Statistical Analysis Plan ➢ Controls: Leaders Free BMS patients (n=1,189) ➢ Primary Safety Endpoint: Composite of cardiac death and MI at 1 year (non-inferiority then superiority) ➢ Primary Efficacy Endpoint: Clinically-driven TLR at 1 year (superiority) DC BMS Propensity Analysis: S • 40 baseline variable propensity profile • 5 strata (quintiles) – Compute Primary Endpoint per treatment within quintile 1 2 3 4 5 – Average treatment effect over quintiles Overall Outcome per Treatment Group Clinical Trial Operations Supporting SAP Optimizing -
Handout 11 Lipoprotein Metabolism
Handout 11 Lipoprotein Metabolism ANSC/NUTR 618 LIPIDS & LIPID METABOLISM Lipoprotein Metabolism I. Chylomicrons (exogenous pathway) A. 83% triacylglycerol, 2% protein, 8% cholesterol plus cholesterol esters, 7% phospholipid (esp. phosphatidylcholine) B. Secreted as nascent chylomicrons from mucosal cells with ApoB48 and ApoA1 C. Acquire ApoC1, C2, and C3 in blood (from high-density lipoproteins) 1. ApoC1 activates lecithin:cholesterol acyltransferase (LCAT; in blood) and ApoC2 activates lipoprotein lipase. ApoC3 prevents uptake by the liver. 2. Required for conversion of chylomicrons to remnant particles. D. Triacylgycerols are removed from chylomicrons at extrahepatic tissues by lipoprotein lipase (LPL). E. Chylomicron remnants are taken up by the LDL-receptor-related protein (LRP). Exceptions: In birds, the lymphatic system is poorly developed. Instead, pro-microns are formed, which enter the hepatic portal system (like bile salts) and are transported directly to the liver. 1 Handout 11 Lipoprotein Metabolism Ruminants do not synthesis chylomicrons primarily due to low fat intake. Rather, their dietary fats are transported from the small intestine as very low-density lipoproteins. F. Lipoprotein lipase 1. Lipoprotein lipase is synthesized by various cells (e.g., adipose tissue, cardiac and skeletal muscle) and secreted to the capillary endothelial cells. a. LPL is bound to the endothelial cells by a heparin sulfate bond. b. LPL requires lipoproteins (i.e., apoC2) for activity, hence the name. 2. TAG within the chylomicrons and VLDL are hydrolyzed to NEFA, glycerol, and 2-MAG. a. NEFA and 2-MAG are taken up the tissues and reesterified to TAG b. Glycerol is taken up by the liver for metabolism and converted to G-3-P by glycerol kinase (not present in adipose tissue). -
Multiple Choice Questions in Evidence Based Medicine
594 Postgrad Med J 2000;76:594–595 Postgrad Med J: first published as 10.1136/pmj.76.899.594 on 1 September 2000. Downloaded from Multiple choice questions in evidence based medicine Wai-Ching Leung Questions 1–3 Questions 4–7 A psychiatrist devised a short screening test for A total of 360 patients participated in a depression. An independent blind comparison randomised controlled trial designed to com- was made with a gold standard for diagnosis of pare the eVectiveness of drug X in reducing depression among 200 psychiatric outpatients. deaths with a placebo. Out of 120 patients in Among the 50 outpatients found to be the treatment group, 12 patients died within depressed according to the gold standard, 35 three years. Out of 240 patients in the control patients were positive for the test. Among 150 group, 48 patients died within three years. patients found not to be depressed according to the gold standard, 30 patients were found to be 4. The following measures for the risk of death positive for the test. within three years (correct to the nearest 1 decimal place) are true: (A) The event rate in the control group is 0.3 1. Corrected to the nearest decimal place: (B) The event rate in the treatment group is (A) The sensitivity was 80% 0.1 (B) The specificity was 80% (C) The relative risk (of treatment compared (C) The positive predictive value was 70% with control group) is 0.25 (D) The negative predictive value was 88.9% (D) The relative risk reduction is 67% (to the (E) The prevalence of depression was 25% nearest %) A general practitioner decides to use the (E) The number needed to treat to prevent 1 screening test for his patients.