Modern Ergodic Theory; from a Physics Hypothesis to a Mathematical Theory

Total Page:16

File Type:pdf, Size:1020Kb

Modern Ergodic Theory; from a Physics Hypothesis to a Mathematical Theory Modern ergodic theory; from a physics hypothesis to a mathematical theory Do˘ganC¸¨omez Department of Physics and Astrophysics, University of North Dakota October 30, 2015 establishing a connection between the ensembles typically studied in statistical mechanics and the properties of single systems. More specifically, in solving problems of demonstrating the equality of infinite time averages and phase averages. Preamble Mathematical study of ergodicity Preamble Origins of Ergodic theory goes back to statistical mechanics; Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory More specifically, in solving problems of demonstrating the equality of infinite time averages and phase averages. Preamble Mathematical study of ergodicity Preamble Origins of Ergodic theory goes back to statistical mechanics; establishing a connection between the ensembles typically studied in statistical mechanics and the properties of single systems. Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory Preamble Mathematical study of ergodicity Preamble Origins of Ergodic theory goes back to statistical mechanics; establishing a connection between the ensembles typically studied in statistical mechanics and the properties of single systems. More specifically, in solving problems of demonstrating the equality of infinite time averages and phase averages. Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory The state of a single particle moving in this space can be described by the trajectory of a point x = (p; q); where N p; q 2 R are position and momenta of all N particles in the system. If the energy of the system is E, then x must lie on the energy surface H(x) = E; where H is the Hamiltonian dq @H dp @H i = ; i = − ; 1 ≤ i ≤ N: dt @pi dt @qi Preamble Mathematical study of ergodicity Consider a physical system of N particles confined in a compact phase space X : Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory If the energy of the system is E, then x must lie on the energy surface H(x) = E; where H is the Hamiltonian dq @H dp @H i = ; i = − ; 1 ≤ i ≤ N: dt @pi dt @qi Preamble Mathematical study of ergodicity Consider a physical system of N particles confined in a compact phase space X : The state of a single particle moving in this space can be described by the trajectory of a point x = (p; q); where N p; q 2 R are position and momenta of all N particles in the system. Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory where H is the Hamiltonian dq @H dp @H i = ; i = − ; 1 ≤ i ≤ N: dt @pi dt @qi Preamble Mathematical study of ergodicity Consider a physical system of N particles confined in a compact phase space X : The state of a single particle moving in this space can be described by the trajectory of a point x = (p; q); where N p; q 2 R are position and momenta of all N particles in the system. If the energy of the system is E, then x must lie on the energy surface H(x) = E; Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory Preamble Mathematical study of ergodicity Consider a physical system of N particles confined in a compact phase space X : The state of a single particle moving in this space can be described by the trajectory of a point x = (p; q); where N p; q 2 R are position and momenta of all N particles in the system. If the energy of the system is E, then x must lie on the energy surface H(x) = E; where H is the Hamiltonian dq @H dp @H i = ; i = − ; 1 ≤ i ≤ N: dt @pi dt @qi Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory Hence, we have a one-parameter continuous flow of 2N transformations τ = fTt gt2R on the phase space X ⊂ R that describes the evolution of the system. 2N So, the orbit of a particle x = (p; q) is Ox = fTt (x)g ⊂ R : By Liouville's Theorem, τ preserves the normalized Lebesgue measure on X : Preamble Mathematical study of ergodicity Given an initial state x; such a system always has a unique solution, which determines the state Tt (p; q) = (p(t); q(t)) at any time t 2 R: Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory 2N So, the orbit of a particle x = (p; q) is Ox = fTt (x)g ⊂ R : By Liouville's Theorem, τ preserves the normalized Lebesgue measure on X : Preamble Mathematical study of ergodicity Given an initial state x; such a system always has a unique solution, which determines the state Tt (p; q) = (p(t); q(t)) at any time t 2 R: Hence, we have a one-parameter continuous flow of 2N transformations τ = fTt gt2R on the phase space X ⊂ R that describes the evolution of the system. Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory By Liouville's Theorem, τ preserves the normalized Lebesgue measure on X : Preamble Mathematical study of ergodicity Given an initial state x; such a system always has a unique solution, which determines the state Tt (p; q) = (p(t); q(t)) at any time t 2 R: Hence, we have a one-parameter continuous flow of 2N transformations τ = fTt gt2R on the phase space X ⊂ R that describes the evolution of the system. 2N So, the orbit of a particle x = (p; q) is Ox = fTt (x)g ⊂ R : Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory Preamble Mathematical study of ergodicity Given an initial state x; such a system always has a unique solution, which determines the state Tt (p; q) = (p(t); q(t)) at any time t 2 R: Hence, we have a one-parameter continuous flow of 2N transformations τ = fTt gt2R on the phase space X ⊂ R that describes the evolution of the system. 2N So, the orbit of a particle x = (p; q) is Ox = fTt (x)g ⊂ R : By Liouville's Theorem, τ preserves the normalized Lebesgue measure on X : Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory namely, (X ; B; µ); where B is the Borel σ-algebra of subsets of X and µ is the normalized Lebesgue measure. (X ; B; µ, τ) is a measurable as well as topological dynamical system. If f : X ! R denotes a function of a physical quantity, measured during an experiment, for any t ≥ 0; f (Tt x) is the value it takes at the instant t; provided that the system is at x when t = 0: Preamble Mathematical study of ergodicity Structures on X : 2N X ⊂ R is a compact manifold inheriting its topological 2N structure from R : 2N X has a measurable structure inherited from R ; Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory If f : X ! R denotes a function of a physical quantity, measured during an experiment, for any t ≥ 0; f (Tt x) is the value it takes at the instant t; provided that the system is at x when t = 0: Preamble Mathematical study of ergodicity Structures on X : 2N X ⊂ R is a compact manifold inheriting its topological 2N structure from R : 2N X has a measurable structure inherited from R ; namely, (X ; B; µ); where B is the Borel σ-algebra of subsets of X and µ is the normalized Lebesgue measure. (X ; B; µ, τ) is a measurable as well as topological dynamical system. Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory Preamble Mathematical study of ergodicity Structures on X : 2N X ⊂ R is a compact manifold inheriting its topological 2N structure from R : 2N X has a measurable structure inherited from R ; namely, (X ; B; µ); where B is the Borel σ-algebra of subsets of X and µ is the normalized Lebesgue measure. (X ; B; µ, τ) is a measurable as well as topological dynamical system. If f : X ! R denotes a function of a physical quantity, measured during an experiment, for any t ≥ 0; f (Tt x) is the value it takes at the instant t; provided that the system is at x when t = 0: Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory Hence, the result of a measurement is actually the time average of f ; i.e., 1 Z t f (Tt x)dt: t 0 Since macroscopic interval of time for the measurements is extremely large from the microscopic point of view, one may actually consider the limit of the time averages: 1 Z t lim f (Tt x)dt: t!1 t 0 Preamble Mathematical study of ergodicity Boltzmann: The measurements of the precise values of f (Tt x) is not possible since it requires knowing the detailed positions and momenta of all N particles. Do˘ganC¸¨omez Modern ergodic theory; from a physics hypothesis to a mathematical theory Since macroscopic interval of time for the measurements is extremely large from the microscopic point of view, one may actually consider the limit of the time averages: 1 Z t lim f (Tt x)dt: t!1 t 0 Preamble Mathematical study of ergodicity Boltzmann: The measurements of the precise values of f (Tt x) is not possible since it requires knowing the detailed positions and momenta of all N particles.
Recommended publications
  • Symmetry and Ergodicity Breaking, Mean-Field Study of the Ising Model
    Symmetry and ergodicity breaking, mean-field study of the Ising model Rafael Mottl, ETH Zurich Advisor: Dr. Ingo Kirsch Topics Introduction Formalism The model system: Ising model Solutions in one and more dimensions Symmetry and ergodicity breaking Conclusion Introduction phase A phase B Tc temperature T phase transition order parameter Critical exponents Tc T Formalism Statistical mechanical basics sample region Ω i) certain dimension d ii) volume V (Ω) iii) number of particles/sites N(Ω) iv) boundary conditions Hamiltonian defined on the sample region H − Ω = K Θ k T n n B n Depending on the degrees of freedom Coupling constants Partition function 1 −βHΩ({Kn},{Θn}) β = ZΩ[{Kn}] = T r exp kBT Free energy FΩ[{Kn}] = FΩ[K] = −kBT logZΩ[{Kn}] Free energy per site FΩ[K] fb[K] = lim N(Ω)→∞ N(Ω) i) Non-trivial existence of limit ii) Independent of Ω iii) N(Ω) lim = const N(Ω)→∞ V (Ω) Phases and phase boundaries Supp.: -fb[K] exists - there exist D coulping constants: {K1,...,KD} -fb[K] is analytic almost everywhere - non-analyticities of f b [ { K n } ] are points, lines, planes, hyperplanes in the phase diagram Dimension of these singular loci: Ds = 0, 1, 2,... Codimension C for each type of singular loci: C = D − Ds Phase : region of analyticity of fb[K] Phase boundaries : loci of codimension C = 1 Types of phase transitions fb[K] is everywhere continuous. Two types of phase transitions: ∂fb[K] a) Discontinuity across the phase boundary of ∂Ki first-order phase transition b) All derivatives of the free energy per site are continuous
    [Show full text]
  • Ergodic Theory
    MATH41112/61112 Ergodic Theory Charles Walkden 4th January, 2018 MATH4/61112 Contents Contents 0 Preliminaries 2 1 An introduction to ergodic theory. Uniform distribution of real se- quences 4 2 More on uniform distribution mod 1. Measure spaces. 13 3 Lebesgue integration. Invariant measures 23 4 More examples of invariant measures 38 5 Ergodic measures: definition, criteria, and basic examples 43 6 Ergodic measures: Using the Hahn-Kolmogorov Extension Theorem to prove ergodicity 53 7 Continuous transformations on compact metric spaces 62 8 Ergodic measures for continuous transformations 72 9 Recurrence 83 10 Birkhoff’s Ergodic Theorem 89 11 Applications of Birkhoff’s Ergodic Theorem 99 12 Solutions to the Exercises 108 1 MATH4/61112 0. Preliminaries 0. Preliminaries 0.1 Contact details § The lecturer is Dr Charles Walkden, Room 2.241, Tel: 0161 275 5805, Email: [email protected]. My office hour is: Monday 2pm-3pm. If you want to see me at another time then please email me first to arrange a mutually convenient time. 0.2 Course structure § This is a reading course, supported by one lecture per week. I have split the notes into weekly sections. You are expected to have read through the material before the lecture, and then go over it again afterwards in your own time. In the lectures I will highlight the most important parts, explain the statements of the theorems and what they mean in practice, and point out common misunderstandings. As a general rule, I will not normally go through the proofs in great detail (but they are examinable unless indicated otherwise).
    [Show full text]
  • MA427 Ergodic Theory
    MA427 Ergodic Theory Course Notes (2012-13) 1 Introduction 1.1 Orbits Let X be a mathematical space. For example, X could be the unit interval [0; 1], a circle, a torus, or something far more complicated like a Cantor set. Let T : X ! X be a function that maps X into itself. Let x 2 X be a point. We can repeatedly apply the map T to the point x to obtain the sequence: fx; T (x);T (T (x));T (T (T (x))); : : : ; :::g: We will often write T n(x) = T (··· (T (T (x)))) (n times). The sequence of points x; T (x);T 2(x);::: is called the orbit of x. We think of applying the map T as the passage of time. Thus we think of T (x) as where the point x has moved to after time 1, T 2(x) is where the point x has moved to after time 2, etc. Some points x 2 X return to where they started. That is, T n(x) = x for some n > 1. We say that such a point x is periodic with period n. By way of contrast, points may move move densely around the space X. (A sequence is said to be dense if (loosely speaking) it comes arbitrarily close to every point of X.) If we take two points x; y of X that start very close then their orbits will initially be close. However, it often happens that in the long term their orbits move apart and indeed become dramatically different.
    [Show full text]
  • Conformal Fractals – Ergodic Theory Methods
    Conformal Fractals – Ergodic Theory Methods Feliks Przytycki Mariusz Urba´nski May 17, 2009 2 Contents Introduction 7 0 Basic examples and definitions 15 1 Measure preserving endomorphisms 25 1.1 Measurespacesandmartingaletheorem . 25 1.2 Measure preserving endomorphisms, ergodicity . .. 28 1.3 Entropyofpartition ........................ 34 1.4 Entropyofendomorphism . 37 1.5 Shannon-Mcmillan-Breimantheorem . 41 1.6 Lebesguespaces............................ 44 1.7 Rohlinnaturalextension . 48 1.8 Generalized entropy, convergence theorems . .. 54 1.9 Countabletoonemaps.. .. .. .. .. .. .. .. .. .. 58 1.10 Mixingproperties . .. .. .. .. .. .. .. .. .. .. 61 1.11 Probabilitylawsand Bernoulliproperty . 63 Exercises .................................. 68 Bibliographicalnotes. 73 2 Compact metric spaces 75 2.1 Invariantmeasures . .. .. .. .. .. .. .. .. .. .. 75 2.2 Topological pressure and topological entropy . ... 83 2.3 Pressureoncompactmetricspaces . 87 2.4 VariationalPrinciple . 89 2.5 Equilibrium states and expansive maps . 94 2.6 Functionalanalysisapproach . 97 Exercises ..................................106 Bibliographicalnotes. 109 3 Distance expanding maps 111 3.1 Distance expanding open maps, basic properties . 112 3.2 Shadowingofpseudoorbits . 114 3.3 Spectral decomposition. Mixing properties . 116 3.4 H¨older continuous functions . 122 3 4 CONTENTS 3.5 Markov partitions and symbolic representation . 127 3.6 Expansive maps are expanding in some metric . 134 Exercises .................................. 136 Bibliographicalnotes. 138 4
    [Show full text]
  • AN INTRODUCTION to DYNAMICAL BILLIARDS Contents 1
    AN INTRODUCTION TO DYNAMICAL BILLIARDS SUN WOO PARK 2 Abstract. Some billiard tables in R contain crucial references to dynamical systems but can be analyzed with Euclidean geometry. In this expository paper, we will analyze billiard trajectories in circles, circular rings, and ellipses as well as relate their charactersitics to ergodic theory and dynamical systems. Contents 1. Background 1 1.1. Recurrence 1 1.2. Invariance and Ergodicity 2 1.3. Rotation 3 2. Dynamical Billiards 4 2.1. Circle 5 2.2. Circular Ring 7 2.3. Ellipse 9 2.4. Completely Integrable 14 Acknowledgments 15 References 15 Dynamical billiards exhibits crucial characteristics related to dynamical systems. Some billiard tables in R2 can be understood with Euclidean geometry. In this ex- pository paper, we will analyze some of the billiard tables in R2, specifically circles, circular rings, and ellipses. In the first section we will present some preliminary background. In the second section we will analyze billiard trajectories in the afore- mentioned billiard tables and relate their characteristics with dynamical systems. We will also briefly discuss the notion of completely integrable billiard mappings and Birkhoff's conjecture. 1. Background (This section follows Chapter 1 and 2 of Chernov [1] and Chapter 3 and 4 of Rudin [2]) In this section, we define basic concepts in measure theory and ergodic theory. We will focus on probability measures, related theorems, and recurrent sets on certain maps. The definitions of probability measures and σ-algebra are in Chapter 1 of Chernov [1]. 1.1. Recurrence. Definition 1.1. Let (X,A,µ) and (Y ,B,υ) be measure spaces.
    [Show full text]
  • Josiah Willard Gibbs
    GENERAL ARTICLE Josiah Willard Gibbs V Kumaran The foundations of classical thermodynamics, as taught in V Kumaran is a professor textbooks today, were laid down in nearly complete form by of chemical engineering at the Indian Institute of Josiah Willard Gibbs more than a century ago. This article Science, Bangalore. His presentsaportraitofGibbs,aquietandmodestmanwhowas research interests include responsible for some of the most important advances in the statistical mechanics and history of science. fluid mechanics. Thermodynamics, the science of the interconversion of heat and work, originated from the necessity of designing efficient engines in the late 18th and early 19th centuries. Engines are machines that convert heat energy obtained by combustion of coal, wood or other types of fuel into useful work for running trains, ships, etc. The efficiency of an engine is determined by the amount of useful work obtained for a given amount of heat input. There are two laws related to the efficiency of an engine. The first law of thermodynamics states that heat and work are inter-convertible, and it is not possible to obtain more work than the amount of heat input into the machine. The formulation of this law can be traced back to the work of Leibniz, Dalton, Joule, Clausius, and a host of other scientists in the late 17th and early 18th century. The more subtle second law of thermodynamics states that it is not possible to convert all heat into work; all engines have to ‘waste’ some of the heat input by transferring it to a heat sink. The second law also established the minimum amount of heat that has to be wasted based on the absolute temperatures of the heat source and the heat sink.
    [Show full text]
  • Viscosity from Newton to Modern Non-Equilibrium Statistical Mechanics
    Viscosity from Newton to Modern Non-equilibrium Statistical Mechanics S´ebastien Viscardy Belgian Institute for Space Aeronomy, 3, Avenue Circulaire, B-1180 Brussels, Belgium Abstract In the second half of the 19th century, the kinetic theory of gases has probably raised one of the most impassioned de- bates in the history of science. The so-called reversibility paradox around which intense polemics occurred reveals the apparent incompatibility between the microscopic and macroscopic levels. While classical mechanics describes the motionof bodies such as atoms and moleculesby means of time reversible equations, thermodynamics emphasizes the irreversible character of macroscopic phenomena such as viscosity. Aiming at reconciling both levels of description, Boltzmann proposed a probabilistic explanation. Nevertheless, such an interpretation has not totally convinced gen- erations of physicists, so that this question has constantly animated the scientific community since his seminal work. In this context, an important breakthrough in dynamical systems theory has shown that the hypothesis of microscopic chaos played a key role and provided a dynamical interpretation of the emergence of irreversibility. Using viscosity as a leading concept, we sketch the historical development of the concepts related to this fundamental issue up to recent advances. Following the analysis of the Liouville equation introducing the concept of Pollicott-Ruelle resonances, two successful approaches — the escape-rate formalism and the hydrodynamic-mode method — establish remarkable relationships between transport processes and chaotic properties of the underlying Hamiltonian dynamics. Keywords: statistical mechanics, viscosity, reversibility paradox, chaos, dynamical systems theory Contents 1 Introduction 2 2 Irreversibility 3 2.1 Mechanics. Energyconservationand reversibility . ........................ 3 2.2 Thermodynamics.
    [Show full text]
  • Hamiltonian Mechanics Wednesday, ß November Óþõõ
    Hamiltonian Mechanics Wednesday, ß November óþÕÕ Lagrange developed an alternative formulation of Newtonian me- Physics ÕÕÕ chanics, and Hamilton developed yet another. Of the three methods, Hamilton’s proved the most readily extensible to the elds of statistical mechanics and quantum mechanics. We have already been introduced to the Hamiltonian, N ∂L = Q ˙ − = Q( ˙ ) − (Õ) H q j ˙ L q j p j L j=Õ ∂q j j where the generalized momenta are dened by ∂L p j ≡ (ó) ∂q˙j and we have shown that dH = −∂L dt ∂t Õ. Legendre Transformation We will now show that the Hamiltonian is a so-called “natural function” of the general- ized coordinates and generalized momenta, using a trick that is just about as sophisticated as the product rule of dierentiation. You may have seen Legendre transformations in ther- modynamics, where they are used to switch independent variables from the ones you have to the ones you want. For example, the internal energy U satises ∂U ∂U dU = T dS − p dV = dS + dV (ì) ∂S V ∂V S e expression between the equal signs has the physics. It says that you can change the internal energy by changing the entropy S (scaled by the temperature T) or by changing the volume V (scaled by the negative of the pressure p). e nal expression is simply a mathematical statement that the function U(S, V) has a total dierential. By lining up the various quantities, we deduce that = ∂U and = − ∂U . T ∂S V p ∂V S In performing an experiment at constant temperature, however, the T dS term is awk- ward.
    [Show full text]
  • Ergodic Theory, Fractal Tops and Colour Stealing 1
    ERGODIC THEORY, FRACTAL TOPS AND COLOUR STEALING MICHAEL BARNSLEY Abstract. A new structure that may be associated with IFS and superIFS is described. In computer graphics applications this structure can be rendered using a new algorithm, called the “colour stealing”. 1. Ergodic Theory and Fractal Tops The goal of this lecture is to describe informally some recent realizations and work in progress concerning IFS theory with application to the geometric modelling and assignment of colours to IFS fractals and superfractals. The results will be described in the simplest setting of a single IFS with probabilities, but many generalizations are possible, most notably to superfractals. Let the iterated function system (IFS) be denoted (1.1) X; f1, ..., fN ; p1,...,pN . { } This consists of a finite set of contraction mappings (1.2) fn : X X,n=1, 2, ..., N → acting on the compact metric space (1.3) (X,d) with metric d so that for some (1.4) 0 l<1 ≤ we have (1.5) d(fn(x),fn(y)) l d(x, y) ≤ · for all x, y X.Thepn’s are strictly positive probabilities with ∈ (1.6) pn =1. n X The probability pn is associated with the map fn. We begin by reviewing the two standard structures (one and two)thatare associated with the IFS 1.1, namely its set attractor and its measure attractor, with emphasis on the Collage Property, described below. This property is of particular interest for geometrical modelling and computer graphics applications because it is the key to designing IFSs with attractor structures that model given inputs.
    [Show full text]
  • Dynamical Systems and Ergodic Theory
    MATH36206 - MATHM6206 Dynamical Systems and Ergodic Theory Teaching Block 1, 2017/18 Lecturer: Prof. Alexander Gorodnik PART III: LECTURES 16{30 course web site: people.maths.bris.ac.uk/∼mazag/ds17/ Copyright c University of Bristol 2010 & 2016. This material is copyright of the University. It is provided exclusively for educational purposes at the University and is to be downloaded or copied for your private study only. Chapter 3 Ergodic Theory In this last part of our course we will introduce the main ideas and concepts in ergodic theory. Ergodic theory is a branch of dynamical systems which has strict connections with analysis and probability theory. The discrete dynamical systems f : X X studied in topological dynamics were continuous maps f on metric spaces X (or more in general, topological→ spaces). In ergodic theory, f : X X will be a measure-preserving map on a measure space X (we will see the corresponding definitions below).→ While the focus in topological dynamics was to understand the qualitative behavior (for example, periodicity or density) of all orbits, in ergodic theory we will not study all orbits, but only typical1 orbits, but will investigate more quantitative dynamical properties, as frequencies of visits, equidistribution and mixing. An example of a basic question studied in ergodic theory is the following. Let A X be a subset of O+ ⊂ the space X. Consider the visits of an orbit f (x) to the set A. If we consider a finite orbit segment x, f(x),...,f n−1(x) , the number of visits to A up to time n is given by { } Card 0 k n 1, f k(x) A .
    [Show full text]
  • Ergodic Theory Approach to Chaos: Remarks and Computational Aspects
    Int. J. Appl. Math. Comput. Sci., 2012, Vol. 22, No. 2, 259–267 DOI: 10.2478/v10006-012-0019-4 ERGODIC THEORY APPROACH TO CHAOS: REMARKS AND COMPUTATIONAL ASPECTS ∗ ∗∗ PAWEŁ J. MITKOWSKI ,WOJCIECH MITKOWSKI ∗ Faculty of Electrical Engineering, Automatics, Computer Science and Electronics AGH University of Science and Technology, al. Mickiewicza 30/B-1, 30-059 Cracow, Poland e-mail: [email protected] ∗∗Department of Automatics AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland e-mail: [email protected] We discuss basic notions of the ergodic theory approach to chaos. Based on simple examples we show some characteristic features of ergodic and mixing behaviour. Then we investigate an infinite dimensional model (delay differential equation) of erythropoiesis (red blood cell production process) formulated by Lasota. We show its computational analysis on the pre- viously presented theory and examples. Our calculations suggest that the infinite dimensional model considered possesses an attractor of a nonsimple structure, supporting an invariant mixing measure. This observation verifies Lasota’s conjecture concerning nontrivial ergodic properties of the model. Keywords: ergodic theory, chaos, invariant measures, attractors, delay differential equations. 1. Introduction man, 2001). Transformations (or flows) with an invariant measure display three main levels of irregular behaviour, In the literature concerning dynamical systems we can i.e., (ranging from the lowest to the highest) ergodicity, find many definitions of chaos in various approaches mixing and exactness. Between ergodicity and mixing we (Rudnicki, 2004; Devaney, 1987; Bronsztejn et al., 2004). can also distinguish light mixing, mild mixing and weak Our central issue here will be the ergodic theory appro- mixing (Lasota and Mackey, 1994; Silva, 2010) and, on ach.
    [Show full text]
  • STABLE ERGODICITY 1. Introduction a Dynamical System Is Ergodic If It
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 41, Number 1, Pages 1{41 S 0273-0979(03)00998-4 Article electronically published on November 4, 2003 STABLE ERGODICITY CHARLES PUGH, MICHAEL SHUB, AND AN APPENDIX BY ALEXANDER STARKOV 1. Introduction A dynamical system is ergodic if it preserves a measure and each measurable invariant set is a zero set or the complement of a zero set. No measurable invariant set has intermediate measure. See also Section 6. The classic real world example of ergodicity is how gas particles mix. At time zero, chambers of oxygen and nitrogen are separated by a wall. When the wall is removed, the gasses mix thoroughly as time tends to infinity. In contrast think of the rotation of a sphere. All points move along latitudes, and ergodicity fails due to existence of invariant equatorial bands. Ergodicity is stable if it persists under perturbation of the dynamical system. In this paper we ask: \How common are ergodicity and stable ergodicity?" and we propose an answer along the lines of the Boltzmann hypothesis { \very." There are two competing forces that govern ergodicity { hyperbolicity and the Kolmogorov-Arnold-Moser (KAM) phenomenon. The former promotes ergodicity and the latter impedes it. One of the striking applications of KAM theory and its more recent variants is the existence of open sets of volume preserving dynamical systems, each of which possesses a positive measure set of invariant tori and hence fails to be ergodic. Stable ergodicity fails dramatically for these systems. But does the lack of ergodicity persist if the system is weakly coupled to another? That is, what happens if you have a KAM system or one of its perturbations that refuses to be ergodic, due to these positive measure sets of invariant tori, but somewhere in the universe there is a hyperbolic or partially hyperbolic system weakly coupled to it? Does the lack of egrodicity persist? The answer is \no," at least under reasonable conditions on the hyperbolic factor.
    [Show full text]