Identification of a WNT5A-Responsive Degradation Domain in the Kinesin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Snapshot: Formins Christian Baarlink, Dominique Brandt, and Robert Grosse University of Marburg, Marburg 35032, Germany
SnapShot: Formins Christian Baarlink, Dominique Brandt, and Robert Grosse University of Marburg, Marburg 35032, Germany Formin Regulators Localization Cellular Function Disease Association DIAPH1/DIA1 RhoA, RhoC Cell cortex, Polarized cell migration, microtubule stabilization, Autosomal-dominant nonsyndromic deafness (DFNA1), myeloproliferative (mDia1) phagocytic cup, phagocytosis, axon elongation defects, defects in T lymphocyte traffi cking and proliferation, tumor cell mitotic spindle invasion, defects in natural killer lymphocyte function DIAPH2 Cdc42 Kinetochore Stable microtubule attachment to kinetochore for Premature ovarian failure (mDia3) chromosome alignment DIAPH3 Rif, Cdc42, Filopodia, Filopodia formation, removing the nucleus from Increased chromosomal deletion of gene locus in metastatic tumors (mDia2) Rac, RhoB, endosomes erythroblast, endosome motility, microtubule DIP* stabilization FMNL1 (FRLα) Cdc42 Cell cortex, Phagocytosis, T cell polarity Overexpression is linked to leukemia and non-Hodgkin lymphoma microtubule- organizing center FMNL2/FRL3/ RhoC ND Cell motility Upregulated in metastatic colorectal cancer, chromosomal deletion is FHOD2 associated with mental retardation FMNL3/FRL2 Constituently Stress fi bers ND ND active DAAM1 Dishevelled Cell cortex Planar cell polarity ND DAAM2 ND ND ND Overexpressed in schizophrenia patients Human (Mouse) FHOD1 ROCK Stress fi bers Cell motility FHOD3 ND Nestin, sarcomere Organizing sarcomeres in striated muscle cells Single-nucleotide polymorphisms associated with type 1 diabetes -
Expression of Wnt5a and Wnt10b in Non-Immortalized Breast Cancer Cells
903-907 24/2/07 13:56 Page 903 ONCOLOGY REPORTS 17: 903-907, 2007 903 Expression of Wnt5A and Wnt10B in non-immortalized breast cancer cells MARIANA FERNANDEZ-COBO1, FRANCESCA ZAMMARCHI3, JOHN MANDELI4, JAMES F. HOLLAND1 and BEATRIZ G.T. POGO1,2 Departments of 1Medicine, 2Microbiology and Community, and 4Preventive Medicine, Mount Sinai School of Medicine; 3Department of Molecular Pharmacology and Chemistry, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA Received October 23, 2006; Accepted November 7, 2006 Abstract. Wnt signaling is usually divided into two path- transcriptional factors of the LEF/TCF family and the TCF/ ways: the ‘canonical’, acting through ß-catenin, and the ‘non- ß-catenin complexes regulate expression of specific target canonical’ acting through the Ca2+ and planar cell polarity genes. In the non-canonical pathway there are mainly two alter- pathway. Both pathways have been implicated in different native ways of Wnt signaling which do not involve ß-catenin: types of cancer. Most results obtained with established cell the Wnt/Ca2+ pathway, which acts via calmodulin kinase II and lines have been contradictory. Here, we have investigated the protein kinase C, and the planar cell polarity pathway, which expression of Wnt10B (canonical) and Wnt5A (non-canonical) controls cytoskeletal rearrangements through Jun N-terminal in a panel of finite life-span and established normal and kinase (2). breast cancer cells using quantitative RT-PCR. It was found The role of Wnt genes in breast cancer has been studied that there were both significant overexpression of Wnt5A and since 1982, when the first Wnt member (called int-1) was underexpression of Wnt10B in the metastasis-derived finite identified as the gene activated by integration of the mouse life-span breast cancer cells when they were compared to the mammary tumor virus, resulting in the development of finite life-span normal and established normal and breast mammary tumors in mice (3). -
A Global Transcriptional Network Connecting Noncoding Mutations to Changes in Tumor Gene Expression
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Genet Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 October 02. Published in final edited form as: Nat Genet. 2018 April ; 50(4): 613–620. doi:10.1038/s41588-018-0091-2. A global transcriptional network connecting noncoding mutations to changes in tumor gene expression Wei Zhang1,†,*, Ana Bojorquez-Gomez1,†, Daniel Ortiz Velez2, Guorong Xu3, Kyle S. Sanchez1, John Paul Shen1, Kevin Chen2, Katherine Licon1, Collin Melton4, Katrina M. Olson1,5, Michael Ku Yu1, Justin K. Huang1,6, Hannah Carter1, Emma K. Farley1,5, Michael Snyder4, Stephanie I. Fraley2, Jason F. Kreisberg1,*, and Trey Ideker1,2,6,* 1Department of Medicine, University of California, San Diego, La Jolla, California, USA 2Department of Bioengineering, University of California San Diego, La Jolla, CA, USA 3Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, California, USA 4Department of Genetics, Stanford University School of Medicine, Stanford, California, USA 5Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA 6Bioinformatics and Systems Biology Program, UC San Diego, La Jolla, California, USA Abstract Although cancer genomes are replete with noncoding mutations, the effects of these mutations remain poorly characterized. Here we perform an integrative analysis of 930 tumor whole genomes and matched transcriptomes, identifying a network of 193 noncoding loci in which mutations disrupt target gene expression. These “somatic eQTLs” (expression Quantitative Trait Loci) are frequently mutated in specific cancer tissues, and the majority can be validated in an independent cohort of 3,382 tumors. Among these, we find that the effects of noncoding mutations on DAAM1, MTG2 and HYI transcription are recapitulated in multiple cancer cell lines, and that increasing DAAM1 expression leads to invasive cell migration. -
Daam2 Couples Translocation and Clustering of Wnt Receptor Signalosomes Through Rac1 Carlo D
© 2021. Published by The Company of Biologists Ltd | Journal of Cell Science (2021) 134, jcs251140. doi:10.1242/jcs.251140 RESEARCH ARTICLE Daam2 couples translocation and clustering of Wnt receptor signalosomes through Rac1 Carlo D. Cristobal1,QiYe2, Juyeon Jo2, Xiaoyun Ding3, Chih-Yen Wang2, Diego Cortes2, Zheng Chen4 and Hyun Kyoung Lee1,3,5,* ABSTRACT Dynamic polymerization of the Dishevelled proteins functions at Wnt signaling plays a critical role in development across species and the core of the Wnt signalosome by interacting with both the is dysregulated in a host of human diseases. A key step in signal Frizzled Wnt receptors and low-density lipoprotein receptor-related transduction is the formation of Wnt receptor signalosomes, during protein 5/6 (LRP5/6), leading to recruitment of Axin proteins β which a large number of components translocate to the membrane, from the -catenin destruction complex (MacDonald et al., 2009; cluster together and amplify downstream signaling. However, the Schwarz-Romond et al., 2007). However, the exact composition molecular processes that coordinate these events remain poorly and mechanisms of signalosome assembly at the plasma membrane defined. Here, we show that Daam2 regulates canonical Wnt remain unclear. signaling via the PIP –PIP5K axis through its association with Rac1. The hallmark of canonical Wnt signaling is the accumulation and 2 β Clustering of Daam2-mediated Wnt receptor complexes requires both translocation of -catenin into the nucleus for gene transcription, β Rac1 and PIP5K, and PIP5K promotes membrane localization of these whereas non-canonical Wnt signaling is -catenin independent and complexes in a Rac1-dependent manner. Importantly, the localization involves assembly/disassembly of the actin cytoskeleton, polarized of Daam2 complexes and Daam2-mediated canonical Wnt signaling is cell shape changes and cell migration (Niehrs, 2012; Schlessinger dependent upon actin polymerization. -
Wnt5a Modulates Integrin Expression in a Receptor-Dependent Manner In
www.nature.com/scientificreports OPEN Wnt5A modulates integrin expression in a receptor‑dependent manner in ovarian cancer cells Vajihe Azimian‑Zavareh 1,2, Zeinab Dehghani‑Ghobadi1, Marzieh Ebrahimi 3*, Kian Mirzazadeh1, Irina Nazarenko4 & Ghamartaj Hossein 1,4* Wnt5A signals through various receptors that confer versatile biological functions. Here, we used Wnt5A overexpressing human ovarian SKOV‑3 and OVCAR‑3 stable clones for assessing integrin expression, cell proliferation, migration, invasion, and the ability of multicellular aggregates (MCAs) formation. We found here, that Wnt5A regulates diferently the expression of its receptors in the stable Wnt5A overexpressing clones. The expression levels of Frizzled (FZD)‑2 and ‑5, were increased in diferent clones. However ROR‑1, ‑2 expression levels were diferently regulated in clones. Wnt5A overexpressing clones showed increased cell proliferation, migration, and clonogenicity. Moreover, Wnt5A overexpressing SKOV‑3 clone showed increased MCAs formation ability. Cell invasion had been increased in OVCAR‑3‑derived clones, while this was decreased in SKOV‑3‑derived clone. Importantly, αv integrin expression levels were increased in all assessed clones, accompanied by increased cell attachment to fbronectin and focal adhesion kinase activity. Moreover, the treatment of clones with Box5 as a Wnt5A/FZD5 antagonist abrogates ITGAV increase, cell proliferation, migration, and their attachment to fbronectin. Accordingly, we observed signifcantly higher expression levels of ITGAV and ITGB3 in human high‑grade serous ovarian cancer specimens and ITGAV correlated positively with Wnt5A in metastatic serous type ovarian cancer. In summary, we hypothesize here, that Wnt5A/FZD‑5 signaling modulate αv integrin expression levels that could be associated with ovarian cancer cell proliferation, migration, and fbronectin attachment. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
WNT2 and WNT7B Cooperative Signaling in Lung Development
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2012 WNT2 and WNT7B Cooperative Signaling in Lung Development Mayumi Miller University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Developmental Biology Commons, and the Molecular Biology Commons Recommended Citation Miller, Mayumi, "WNT2 and WNT7B Cooperative Signaling in Lung Development" (2012). Publicly Accessible Penn Dissertations. 674. https://repository.upenn.edu/edissertations/674 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/674 For more information, please contact [email protected]. WNT2 and WNT7B Cooperative Signaling in Lung Development Abstract The development of a complex organ, such as the lung, relies upon precisely controlled temporal and spatial expression patterns of signaling pathways for proper specification and differentiation of the cell types required to build a lung. While progress has been made in dissecting the network of signaling pathways and the integration of their positive and negative feedback mechanisms, there is still much to discover. For example, the Wnt signaling pathway is required for lung specification and growth, but a combinatorial role for Wnt ligands has not been investigated. In this dissertation, I combine mouse genetic models and in vitro and ex vivo lung culture assays, to determine a cooperative role for Wnt2 and Wnt7b in the developing lung. This body of work reveals the requirement of cooperative signaling between Wnt2 and Wnt7b for smooth muscle development and proximal to distal patterning of the lung. Additional findings er veal a role for the Pdgf pathway and homeobox genes in potentiating this cooperation. -
Wnt5a-ROR Signaling Is Essential for Alveologenesis
cells Article WNT5a-ROR Signaling Is Essential for Alveologenesis Changgong Li 1,* , Susan M Smith 1, Neil Peinado 1, Feng Gao 1, Wei Li 1, Matt K Lee 1, Beiyun Zhou 2, Saverio Bellusci 1,3 , Gloria S Pryhuber 4, Hsin-Yi Henry Ho 5 , Zea Borok 2 and Parviz Minoo 1,* 1 Division of Neonatology, Departments of Pediatrics, LAC+USC Medical Center and Childrens Hospital, Los Angeles, CA 90033, USA; [email protected] (S.M.S.); [email protected] (N.P.); [email protected] (F.G.); [email protected] (W.L.); [email protected] (M.K.L.); [email protected] (S.B.) 2 Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; [email protected] (B.Z.); [email protected] (Z.B.) 3 Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen 35390, Germany 4 Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; [email protected] 5 Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA; [email protected] * Correspondence: [email protected] (C.L.); [email protected] (P.M.); Tel.: 3234420383 (C.L.); 3234093406 (P.M.) Received: 20 December 2019; Accepted: 6 February 2020; Published: 7 February 2020 Abstract: WNT5a is a mainly “non-canonical” WNT ligand whose dysregulation is observed in lung diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and asthma. -
Role of Rho Family Gtpases in Epithelial Morphogenesis
Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Role of Rho family GTPases in epithelial morphogenesis Linda Van Aelst1,3 and Marc Symons2 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 2Center for Oncology and Cell Biology, North Shore-Long Island Jewish Research Institute and Department of Surgery, North Shore-Long Island Jewish Medical Center, Manhasset, New York 11030, USA Epithelial cell sheets line the organ and body surfaces will also discuss the participation of these GTPases in and the specialized barrier functions of these epithelia epithelial remodeling during wound-healing and epithe- regulate the exchange of substances with the outside en- lial-mesenchymal transitions. vironment and between different body compartments. As other members of the Ras superfamily, Rho Epithelia play a role in a wide range of physiological GTPases cycle between a GDP-bound (inactive) state processes such as digestion, excretion, and leukocyte and a GTP-bound (active) state. In the active state, these trafficking. In addition, during development, some epi- GTPases relay signals from growth factors, cytokines, thelia form transient primitive structures, including the and adhesion molecules to regulate a wide range of bio- neural tube and somites, which are essential for the de- logical processes, including actin cytoskeleton organiza- velopment of more complex organs. tion, transcriptional regulation, and vesicle trafficking The establishment and maintenance of epithelial cell (Van Aelst and D’Souza-Schorey 1997; Hall 1998). polarity is critical for the development and functioning The nucleotide state of Rho family proteins is con- of multicellular organisms (Nelson 2000). -
Ror2 Functions As a Noncanonical Wnt Receptor That Regulates NMDAR-Mediated Synaptic Transmission
RoR2 functions as a noncanonical Wnt receptor that regulates NMDAR-mediated synaptic transmission Waldo Cerpaa,1, Elena Latorre-Estevesa,b, and Andres Barriaa,2 aDepartment of Physiology and Biophysics and bMolecular and Cellular Biology Program, University of Washington, Seattle, WA 98195 Edited* by Richard L. Huganir, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved March 6, 2015 (received for review September 16, 2014) Wnt signaling has a well-established role as a regulator of nervous receptor for noncanonical Wnt ligands capable of regulating syn- system development, but its role in the maintenance and regula- aptic NMDARs. In hippocampal neurons, activation of RoR2 by tion of established synapses in the mature brain remains poorly noncanonical Wnt ligand Wnt5a activates PKC and JNK, two understood. At excitatory glutamatergic synapses, NMDA receptors kinases involved in the regulation of NMDAR currents. In ad- (NMDARs) have a fundamental role in synaptogenesis, synaptic dition, we show that signaling through RoR2 is necessary for plasticity, and learning and memory; however, it is not known what the maintenance of basal NMDAR-mediated synaptic trans- controls their number and subunit composition. Here we show that mission and the acute regulation of NMDAR synaptic responses the receptor tyrosine kinase-like orphan receptor 2 (RoR2) func- by Wnt5a. tions as a Wnt receptor required to maintain basal NMDAR- Identification of RoR2 as a Wnt receptor that regulates syn- aptic NMDARs provides a mechanism for Wnt signaling to mediated synaptic transmission. In addition, RoR2 activation by a control synaptic transmission and synaptic plasticity acutely, and noncanonical Wnt ligand activates PKC and JNK and acutely en- is a critical first step toward understanding the role played by hances NMDAR synaptic responses. -
A DAAM1 3′-UTR SNP Mutation Regulates Breast Cancer Metastasis
Mei et al. Cancer Cell Int (2019) 19:55 https://doi.org/10.1186/s12935-019-0747-8 Cancer Cell International PRIMARY RESEARCH Open Access A DAAM1 3′-UTR SNP mutation regulates breast cancer metastasis through afecting miR-208a-5p-DAAM1-RhoA axis Jie Mei1†, Ting Yan2†, Yifu Huang1,3, Tiansong Xia4, Fei Chang1, Shuning Shen1, Leiyu Hao1, Yin Chen1, Zhongyuan Wang1, Xiaozheng Jiang1, Bujie Xu1 and Yichao Zhu1,5* Abstract Background: Dishevelled-associated activator of morphogenesis 1 (DAAM1) is a member of microflament-related formins and mediates cell motility in breast cancer (BrCa). However, the genetic mutation status of DAAM1 mRNA and its correlation with pathological characteristics are still unclearly. Methods: A patient cohort and BrCa cells were recruited to demonstrate the role of functional SNP in microRNA- 208a-5p binding site of DAAM1 3′-UTR and underlying mechanism in BrCa metastasis. Results: The expression and activation of DAAM1 increased markedly in lymphnode metastatic tissues. A genetic var- iant (rs79036859 A/G) was validated in the miR-208a-5p binding site of DAAM1 3′-UTR. The G genotype (AG/GG) was a risk genotype for the metastasis of BrCa by reducing binding afnity of miR-208a-5p for the DAAM1 3′-UTR. Further- more, the miR-208a-5p expression level was signifcantly suppressed in lymphnode metastatic tissues compared with that in non-lymphnode metastatic tissues. Overexpression of miR-208a-5p inhibited DAAM1/RhoA signaling pathway, thereby leading to the decrease of the migratory ability. Conclusion: Overall, the rs79036859 G variant of DAAM1 3′-UTR was identifed as a relevant role in BrCa metastasis via the diversity of miR-208a-5p binding afnity. -
Identification of Genetic Factors Underpinning Phenotypic Heterogeneity in Huntington’S Disease and Other Neurodegenerative Disorders
Identification of genetic factors underpinning phenotypic heterogeneity in Huntington’s disease and other neurodegenerative disorders. By Dr Davina J Hensman Moss A thesis submitted to University College London for the degree of Doctor of Philosophy Department of Neurodegenerative Disease Institute of Neurology University College London (UCL) 2020 1 I, Davina Hensman Moss confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Collaborative work is also indicated in this thesis. Signature: Date: 2 Abstract Neurodegenerative diseases including Huntington’s disease (HD), the spinocerebellar ataxias and C9orf72 associated Amyotrophic Lateral Sclerosis / Frontotemporal dementia (ALS/FTD) do not present and progress in the same way in all patients. Instead there is phenotypic variability in age at onset, progression and symptoms. Understanding this variability is not only clinically valuable, but identification of the genetic factors underpinning this variability has the potential to highlight genes and pathways which may be amenable to therapeutic manipulation, hence help find drugs for these devastating and currently incurable diseases. Identification of genetic modifiers of neurodegenerative diseases is the overarching aim of this thesis. To identify genetic variants which modify disease progression it is first necessary to have a detailed characterization of the disease and its trajectory over time. In this thesis clinical data from the TRACK-HD studies, for which I collected data as a clinical fellow, was used to study disease progression over time in HD, and give subjects a progression score for subsequent analysis. In this thesis I show blood transcriptomic signatures of HD status and stage which parallel HD brain and overlap with Alzheimer’s disease brain.