molecules Review The Concept of Folic Acid in Health and Disease Yulia Shulpekova 1, Vladimir Nechaev 1, Svetlana Kardasheva 1 , Alla Sedova 1, Anastasia Kurbatova 1, Elena Bueverova 1, Arthur Kopylov 2 , Kristina Malsagova 2,* , Jabulani Clement Dlamini 3 and Vladimir Ivashkin 1 1 Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia;
[email protected] (Y.S.);
[email protected] (V.N.);
[email protected] (S.K.);
[email protected] (A.S.);
[email protected] (A.K.);
[email protected] (E.B.);
[email protected] (V.I.) 2 Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119121 Moscow, Russia;
[email protected] 3 Institute of Clinical Medicine, Sechenov University, 119121 Moscow, Russia;
[email protected] * Correspondence:
[email protected]; Tel.: +7-499-764-9878 Abstract: Folates have a pterine core structure and high metabolic activity due to their ability to accept electrons and react with O-, S-, N-, C-bounds. Folates play a role as cofactors in essential one-carbon pathways donating methyl-groups to choline phospholipids, creatine, epinephrine, DNA. Compounds similar to folates are ubiquitous and have been found in different animals, plants, and microorganisms. Folates enter the body from the diet and are also synthesized by intestinal bacteria with consequent adsorption from the colon. Three types of folate and antifolate cellular transporters have been found, differing in tissue localization, substrate affinity, type of transferring, Citation: Shulpekova, Y.; Nechaev, V.; and optimal pH for function. Laboratory criteria of folate deficiency are accepted by WHO.