Lake Chad Experience and Lessons Learned Brief
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  The Disappearance of Lake Chad: History of a MythThe disappearance of Lake Chad: history of a myth Géraud Magrin1 Université Paris 1 Panthéon-Sorbonne, France Abstract The article explores the hydropolitics of Lake Chad. Scientific and popular views on the fate of Lake Chad differ widely. The supposed 'disappearance' of the Lake through water abstraction and climate change is a popular myth that endures because it serves a large set of heterogeneous interests, including those supporting inter-basin water transfers. Meanwhile scientific investigations show substantial and continuing Lake level fluctuations over time, and do not support its projected disappearance. The task is to understand how the myth of the disappearing Lake has been engendered and used, by studying the discourses and the strategies of the main stakeholders involved. The Lake has been protected so far from massive water abstraction, and inter-basin transfer projects, due to the fragmentation of its political management, new security threats, and the piecemeal nature of the interests in play. Key words: Lake Chad; environmental myths; hydropolitics; political ecology; inter-basin transfers Résumé Cet article aborde le lac Tchad d’un point de vue hydropolitique. Les discours scientifique et du grand public sur l'état du lac Tchad diffèrent largement. La « disparition » supposée du lac sous l’effet des prélèvements anthropiques pour l’irrigation et du changement climatique est un mythe qui perdure car il sert un ensemble d'intérêts hétérogènes, dont ceux favorables à un projet de transfert d'eau inter-bassins. Or les recherches scientifiques montrent que le lac a toujours fluctué au cours du temps, et que les dynamiques récentes ne conduisent pas à sa disparition, si souvent annoncée.
- 
												  Sitwa Report on Infrastructure DevelopmentSITWA PROJECT: STRENGTHENING THE INSTITUTIONS FOR TRANSBOUNDARY WATER MANAGEMENT IN AFRICA CONSULTANCY SERVICES TO ASSESS THE NEEDS AND PREPARE AN ACTION PLAN FOR SITWA/ANBO SUPPORT SERVICES IN INFRASTRUCTURE DEVELOPMENT IN THE AFRICAN RIVER BASIN ORGANIZATIONS SITWA REPORT ON INFRASTRUCTURE DEVELOPMENT This document has been produced with the financial assistance of the European Union. The views expressed herein can in no way be taken to reflect the official opinion of the European Union RAPPORT SITWA SUR LE DÉVELOPPEMENT DES INFRASTRUCTURES DANS LES OBF AFRICAINS 3 Table des matiÈRES Table des matières ...................................................................................... 3 AbrEviations ............................................................................................... 5 Acknowledgements .................................................................................... 7 Executive summary .................................................................................... 8 List of tables .............................................................................................. 9 List of figures ............................................................................................ 9 1. Background and objectives of the consultancy ........................................ 10 1.1 ANBO’s historical background and objectives ............................................................................. 10 1.2 Background and objectives of SITWA .........................................................................................
- 
												  When “Evaporites” Are Not Formed by Evaporation: the Role OfWhen “evaporites” are not formed by evaporation: The role of temperature and pCO2 on saline deposits of the Eocene Green River Formation, Colorado, USA Robert V. Demicco† and Tim K. Lowenstein Department of Geological Sciences and Environmental Studies, Binghamton University, Binghamton, New York 13902-6000, USA ABSTRACT INTRODUCTION rated with halite. During summer, the waters of the lake above the thermocline (at <25 m depth) Halite precipitates in the Dead Sea during Geologists studying salt deposits have noticed warm to ∼34 °C, become undersaturated with ha- winter but re-dissolves above the thermo- that very soluble minerals that occur in the cen- lite due to the temperature increase, and the bulk cline upon summer warming, “focusing” ha- ter of a basin do not extend out to the edges of of the winter-deposited halite above the thermo- lite deposition below the thermocline (Sirota the basin (Hsü et al., 1973; Dyni, 1981; Lowen- cline re-dissolves. Summer dissolution of halite et al., 2016, 2017, 2018). Here we develop an stein, 1988). This is true even where: (1) soluble occurs in the Dead Sea despite any increase in “evaporite focusing” model for evaporites salts are interpreted to have been deposited in evaporative concentration at the surface. The ha- (nahcolite + halite) preserved in a restricted a deep evaporitic lake or marine basin and (2) lite that settled into the deeper, cooler isothermal area of the Eocene Green River Formation deep-water deposits that encase salts in the cen- bottom waters, however, accumulates as an an- in the Piceance Creek Basin of Colorado, ter of the basin can be confidently traced to pe- nual layer at depths below the 25 m deep ther- USA.
- 
												  Region: West Africa (14 Countries) (Benin, Burkina Faso, Cameroon, Chad, Côte D’Ivoire, Gambia, Ghana, Guinea, Guinea Bissau, Mali, Niger, Senegal, Togo)Region: West Africa (14 Countries) (Benin, Burkina Faso, Cameroon, Chad, Côte d’Ivoire, Gambia, Ghana, Guinea, Guinea Bissau, Mali, Niger, Senegal, Togo) Project title: Emergency assistance for early detection and prevention of avian influenza in Western Africa Project number: TCP/RAF/3016 (E) Starting date: November 2005 Completion date: April 2007 Government counterpart Ministries of Agriculture responsible for project execution: FAO contribution: US$ 400 000 Signed: ..................................... Signed: ........................................ (on behalf of Government) Jacques Diouf Director-General (on behalf of FAO) Date of signature: ..................... Date of signature: ........................ I. BACKGROUND AND JUSTIFICATION In line with the FAO/World Organization for Animal Health (OIE) Global Strategy for the Progressive Control of Highly Pathogenic Avian Influenza (HPAI), this project has been developed to provide support to the regional grouping of West African countries to strengthen emergency preparedness against the eventuality of HPAI being introduced into this currently free area. There is growing evidence that the avian influenza, which has been responsible for serious disease outbreaks in poultry and humans in several Asian countries since 2003, is spread through a number of sources, including poor biosecurity at poultry farms, movement of poultry and poultry products and live market trade, illegal and legal trade in wild birds. Although unproven, it is also suspected that the virus could possibly be carried over long distances along the migratory bird flyways to regions previously unaffected (Table 1) is a cause of serious concern for the region. Avian influenza subtype H5N1 could be transported along these routes to densely populated areas in the South Asian Subcontinent and to the Middle East, Africa and Europe.
- 
												  Large Hydro-Electricity and Hydro-Agricultural Schemes in AfricaFAO AQUASTAT Dams Africa – 070524 DAMS AND AGRICULTURE IN AFRICA Prepared by the AQUASTAT Programme May 2007 Water Development and Management Unit (NRLW) Land and Water Division (NRL) Food and Agriculture Organization of the United Nations (FAO) Dams According to ICOLD (International Commission on Large Dams), a large dam is a dam with the height of 15 m or more from the foundation. If dams are 5-15 metres high and have a reservoir volume of more than three million m3, they are also classified as large dams. Using this definition, there are more than 45 000 large dams around the world, almost half of them in China. Most of them were built in the 20th century to meet the constantly growing demand for water and electricity. Hydropower supplies 2.2% of the world’s energy and 19% of the world’s electricity needs and in 24 countries, including Brazil, Zambia and Norway, hydropower covers more than 90% of national electricity supply. Half of the world’s large dams were built exclusively or primarily for irrigation, and an estimated 30-40% of the 277 million hectares of irrigated lands worldwide rely on dams. As such, dams are estimated to contribute to 12-16% of world food production. Regional inventories include almost 1 300 large and medium-size dams in Africa, 40% of which are located in South Africa (517) (Figure 1). Most of these were constructed during the past 30 years, coinciding with rising demands for water from growing populations. Information on dam height is only available for about 600 dams and of these 550 dams have a height of more than 15 m.
- 
												![Bibliography [PDF]](https://docslib.b-cdn.net/cover/7993/bibliography-pdf-487993.webp)  Bibliography [PDF]Ancient TL Vol. 30 No.1 2012 31 Bibliography Compiled by Daniel Richter _____________________________________________________________________________________________ From 1st November 2011 to 31st May 2012 Abafoni, J. D., Mallam, S. P., and Akpa, T. C. (2012). Comparison of OSL and ITL measurements on quartz grains extracted from sediments of the Chad Basin, N.E. Nigeria. Research Journal of Applied Sciences 6, 483-486. Altay Atlıhan, M., Şahiner, E., and Soykal Alanyalı, F. (2012). Dose estimation and dating of pottery from Turkey. Radiation Physics and Chemistry 81, 594-598. Amos, C. B., Lapwood, J. J., Nobes, D. C., Burbank, D. W., Rieser, U., and Wade, A. (2011). Palaeoseismic constraints on Holocene surface ruptures along the Ostler Fault, southern New Zealand. New Zealand Journal of Geology and Geophysics 54, 367-378. Andreucci, S., Bateman, M. D., Zucca, C., Kapur, S., Aksit, İ., Dunajko, A., and Pascucci, V. (2012). Evidence of Saharan dust in upper Pleistocene reworked palaeosols of North-west Sardinia, Italy: palaeoenvironmental implications. Sedimentology 59, 917-938. Anjar, J., Adrielsson, L., Bennike, O., Björck, S., Filipsson, H. L., Groeneveld, J., Knudsen, K. L., Larsen, N. K., and Möller, P. (2012). Palaeoenvironments in the southern Baltic Sea Basin during Marine Isotope Stage 3: a multi- proxy reconstruction. Quaternary Science Reviews 34, 81-92. Athanassas, C., Bassiakos, Y., Wagner, G. A., and Timpson, M. E. (2012). Exploring paleogeographic conditions at two paleolithic sites in Navarino, southwest Greece, dated by optically stimulated luminescence. Geoarchaeology 27, 237-258. Atkinson, O. A. C., Thomas, D. S. G., Goudie, A. S., and Parker, A. G. (2012). Holocene development of multiple dune generations in the northeast Rub‘ al-Khali, United Arab Emirates.
- 
												  Special Feature the Lake Chad BasinSpecial feature Number 70 October 2017 Humanitarian The Lake Chad Basin: Exchange an overlooked crisis? Humanitarian Exchange Number 70 October 2017 About HPN Contents 21. Integrating civilian protection into Nigerian military policy and practice The Humanitarian Practice Network 05. Chitra Nagarajan at the Overseas Development The Lake Chad crisis: drivers, responses Institute is an independent forum and ways forward 24. where field workers, managers and Toby Lanzer policymakers in the humanitarian Sexual violence and the Boko Haram sector share information, analysis and 07. crisis in north-east Nigeria experience. The views and opinions Joe Read expressed in HPN’s publications do The evolution and impact of Boko Haram in the Lake Chad Basin not necessarily state or reflect those of 27. Virginia Comolli the Humanitarian Policy Group or the Mental health and psychosocial needs Overseas Development Institute. and response in conflict-affected areas 10. of north-east Nigeria A collective shame: the response to the Luana Giardinelli humanitarian crisis in north-eastern Nigeria 30. Patricia McIlreavy and Julien Schopp The challenges of emergency response in Cameroon’s Far North: humanitarian 13. response in a mixed IDP/refugee setting A square peg in a round hole: the politics Sara Karimbhoy of disaster management in north- eastern Nigeria 33. Virginie Roiron Adaptive humanitarian programming in Diffa, Niger Cover photo: Zainab Tijani, 20, a Nigerian refugee 16. Matias Meier recently returned from Cameroon in the home she shares with her family in the town of Banki, Nigeria, 2017 State governance and coordination of © UNHCR the humanitarian response in north-east Nigeria Zainab Murtala and Bashir Abubakar 17.
- 
												  Rising Food Insecurity Across Lake Chad Basin Humanitarian BulletinHumanitarian Bulletin West and Central Africa April 2016 In this issue Lake Chad food insecurity on the rise P.1 Sahel food insecurity remains high P.3 New displacements in Côte d’Ivoire P.5 HIGHLIGHTS Ebola resurfaces in Guinea and Liberia P.6 Three million people in the Regional update on epidemics P.7 Lake Chad region are facing Sahel funding update P.8 severe food shortages. In Nigeria’s Borno and Yobe states, 800,000 people need immediate assistance. Rising food insecurity across Lake Chad Basin Clashes between herders and farmers in Côte d’Ivoire Food insecurity in the Lake Chad region, already at crisis levels, is expected to further deepen as families exhaust their last reserves and the lean season progresses. displace over 6,000 people. Between January and April, Three million people are currently facing severe food shortages. The majority of the food insecure people are in Nigeria’s north-eastern Borno and Yobe states. DRC reports 5,757 cholera cases. Ebola resurfaces for the third time in Liberia, Guinea sees its first flare-up. KEY FIGURES People 2.4M displaced in Lake Chad Basin Severely food 2.9M insecure people in Lake Chad Basin People facing 6.7M crisis level of food insecurity in the Sahel SAHEL FUNDING US $1.9 billion requested in 2016 12% funded Humanitarian Bulletin | 2 In Borno, 1.6 million Immediate emergency assistance required people are in emergency According to a joint UN multi-sectoral assessment, carried out in April, in Borno alone, some 1.6 million people are facing severe food insecurity, with more than 550,000 in phase of food insecurity.
- 
												  SODIUM BICARBONATE (NAHCOLITE) from COLORADOOIL SHALE1 Tbr-R-Enrr-2SODIUM BICARBONATE (NAHCOLITE) FROM COLORADOOIL SHALE1 TBr-r-Enrr-2 Assrnact Sodium bicarbonate (nahcolite) was found in the high-grade oil-shale zone of tfre Para- chute Creek member of the Eocene Green River formation in ttre underground development openings of ttre Bureau of Mines Oil-Shale Demonstration Mine at Anvil Points, 10 miles west of Rifle, Colo. It occurs as concretions varying up to five feet in diameter and as layers up to four inches thick, intercalated between rich oil-shale beds. It is suggested tlat the concretions were formed while the ooze, which had been deposited in the bottom of the former Uinta Lake, was still soft and plastic. INrnorucrrorq Natural sodium bicarbonate (NaHCOa) was reported first by P. Wal- thera from Little Magadi dry lake, in British East Africa, but no con- flmatory evidence was given. F. A. Bannister,a who reported natural sodium bicarbonate in an efforescencefrom an old Roman underground conduit from hot springs at Stufe de Nerone, near Naples, gave the min- eral the name "nahcolite." Later the mineral was reported by E. Quer- cighs as an incrustation in a lava grotto, apparently mixed with thenar- dite and halite. Large quantities of nahcolite were found in a well core- dritled below the central salt crust of Searles Lake and described by William F. Foshag.6 The presenceof saline phasesin the eastern part of the Uinta Basin in the high-grade oil-shale facies of the Parachute Creek member of the Eocene Green Eiver formation was noted by W. H. Bradley.T He states that ellipsoidal cavities whose major axes range from a fraction of an inch to more than five feet in length contained molds of radial aggregates of a saline mineral that could not be determined becauseof the complex intergrowth of the crystal molds.
- 
												  Palynological Evidence for Gradual Vegetation and Climate Changes During the African Humid Period Termination at 13◦ N from a Mega-Lake Chad Sedimentary SequenceClim. Past, 9, 223–241, 2013 www.clim-past.net/9/223/2013/ Climate doi:10.5194/cp-9-223-2013 of the Past © Author(s) 2013. CC Attribution 3.0 License. Palynological evidence for gradual vegetation and climate changes during the African Humid Period termination at 13◦ N from a Mega-Lake Chad sedimentary sequence P. G. C. Amaral1, A. Vincens1, J. Guiot1, G. Buchet1, P. Deschamps1, J.-C. Doumnang2, and F. Sylvestre1 1CEREGE, Aix-Marseille Universite,´ CNRS, IRD, College` de France, Europoleˆ Mediterran´ een´ de l’Arbois, BP 80, 13545 Aix-en-Provence cedex 4, France 2Departement´ des Sciences de la Terre, Universite´ de N’Djamena (UNDT) BP 1027 N’Djamena, Chad Correspondence to: P. G. C. Amaral ([email protected]) Received: 16 May 2012 – Published in Clim. Past Discuss.: 18 June 2012 Revised: 18 December 2012 – Accepted: 19 December 2012 – Published: 29 January 2013 Abstract. Located at the transition between the Saharan and period. However, we cannot rule out that an increase of Sahelian zones, at the center of one of the largest endorheic the Chari–Logone inputs into the Mega-Lake Chad might basins, Lake Chad is ideally located to record regional envi- have also contributed to control the abundance of these taxa. ronmental changes that occurred in the past. However, until Changes in the structure and floristic composition of the veg- now, no Holocene archive was directly cored in this lake. etation towards more open and drier formations occurred In this paper, we present pollen data from the first sed- after ca. 6050 cal yr BP, following a decrease in mean Pann imentary sequence collected in Lake Chad (13◦ N; 14◦ E; estimates to approximately 600 (−230/+600) mm.
- 
												  The Variability of Lake Chad : Hydrological Modelling and Ecosystem ServicesThe variability of Lake Chad : hydrological modelling and ecosystem services 1 1 2 Jacques Lemoalle Jean-Claude Bader Marc Leblanc (1) IRD/MSE, UMR G-Eau, BP 64501, 34394 Montpellier Cx5, France Corresponding address : [email protected] (2) School of Earth and Environmental Sci., James Cook University, Cairns, Australia Abstract As in most of West and Central Africa, the rainfall regime over the Lake Chad basin has changed around 1970 from a humid to a dry period. This rainfall change is the cause of the changes in Lake Chad area. Lake Chad being a closed lake, its surface area has changed according to the lower water inputs from the watershed. The lake, which covered about 22000 km2 in the 1960s, is now divided into different individual seasonal or perennial lake basins. In the northern basin of the lake, the seasonally inundated area has varied from zero in dry years (as in 1985, 1987) to about 6000 km2 (1979, 1989 and 1999-2001). In the southern basin of the lake, the between year variability has markedly decreased. The changes in lake area and in the links between the lake basins have been modelled as a function of the river inputs. Satellite estimates of water area in the northern basin and gauge levels in the southern basin have been used as calibration data. The water volumes incorporated in and lost by the sediments during the annual wet and dry cycle have been taken into account in the model. The hydrologic changes are the driving forces for the natural resources associated with the lake i.e.
- 
												  Lake Chad: Recent Dry Season Area Changes, Near Term Dry Season Area Projections, and Dry Season Area Projections Through the Year 2100LAKE CHAD: RECENT DRY SEASON AREA CHANGES, NEAR TERM DRY SEASON AREA PROJECTIONS, AND DRY SEASON AREA PROJECTIONS THROUGH THE YEAR 2100 by Frederick S. Policelli A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland December, 2018 © 2018 Frederick S. Policelli All Rights Reserved Lake Chad, in the Sahel region of Africa is shallow, freshwater, and the terminal lake of an enormous (2.5 million km2) endorheic basin. The lake has exhibited a wide range of area over the centuries. More recently, some of the earliest satellite photographs of Lake Chad were taken in the 1960s when the lake area was estimated to be about 25,000 km2. During the late 1960s, the 1970s and the 1980s, a recurrent set of droughts caused the lake area to decrease sharply. During the period when the lake was drying, large areas of aquatic vegetation formed in the lake, while a small area of open water persisted. It appears likely that some researchers and the popular press have focused only on the small open water area when reporting the size of Lake Chad, because it is very challenging to detect and measure the area of flooded vegetation. Reports of a decrease of ninety to ninety-five percent of lake area, relative to lake area in the 1960s, led the Lake Chad Basin Commission (LCBC) to study an interbasin water transfer from the Ubangi River, a tributary to the Congo River. The motivation for this dissertation was to use satellite data and modeling results to provide information on the recent trends of total Lake Chad area (open water and flooded vegetation), and to provide statistical models and results for near term and long term modeling of the lake area.