NMDA Receptor Modulators: an Updated Patent Review (2013-2014) Katie L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Présentation HJ
Conflits d’intérêts Astra-Zeneca, Janssen, Abacus international, Laboratoire ETAP, Institut Pasteur. Dr Hervé JAVELOT Pharmacien PH Etablissement Public de Santé Alsace Nord Service Pharmacie 141 avenue de Strasbourg 67 170 BRUMATH Tél. : 03 88 64 61 70 Fax : 03 88 64 61 58 Mail : [email protected] Perspectives dans la psychopharmacologie de l’anxiété et de la dépression Hervé JAVELOT Etablissement Public de Santé Alsace Nord Perspectives dans la psychopharmacologie de l’anxiété et de la dépression Traitements des troubles anxio-dépressifs. Les perspectives. ◦ L’axe GABAergique…éternellement prometteur ? ◦ L’incontournable théorie « monoaminergique »… ◦ Des théories alternatives à suivre … Traitements des troubles anxio-dépressifs. Contexte : ◦ XXI ème siècle : Le « siècle de la dépression » s’installe ? (Hardeveld et al., 2010) L’« ère de l’angoisse » s’affirme ? (Auden, 1947) ◦ Prévalence au cours de la vie : 16 à 17% pour la dépression, 17 à 18% pour les troubles anxieux Co-morbidité des 2 troubles dans 20 à 40% des cas (Antony, 2011 ; Depping et al., 2010 ; Hardeveld et al., 2010 ; Huppert, 2009) Auden WH (1947). The Age of Anxiety: A Baroque Eclogue. Random House: New York. Hardeveld F, Spijker J, De Graaf R, Nolen WA, Beekman AT. Prevalence and predictors of recurrence of major depressive disorder in the adult population. Acta Psychiatr Scand. 2010;122(3):184-91. Antony MM. Recent advances in the treatment of anxiety disorders. Canadian Psychology 2011;52(1), 10-19. Depping AM, Komossa K, Kissling W, Leucht S. Second-generation antipsychotics for anxiety disorders. Cochrane Database Syst Rev. 2010;(12):CD008120. Huppert JD. Anxiety disorders and depression comorbidity. -
A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling
biomolecules Review Inhibition of Glycine Re-Uptake: A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling Christopher L. Cioffi Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA; christopher.cioffi@acphs.edu; Tel.: +1-518-694-7224 Abstract: Among the myriad of cellular and molecular processes identified as contributing to patho- logical pain, disinhibition of spinal cord nociceptive signaling to higher cortical centers plays a critical role. Importantly, evidence suggests that impaired glycinergic neurotransmission develops in the dorsal horn of the spinal cord in inflammatory and neuropathic pain models and is a key maladaptive mechanism causing mechanical hyperalgesia and allodynia. Thus, it has been hypothesized that pharmacological agents capable of augmenting glycinergic tone within the dorsal horn may be able to blunt or block aberrant nociceptor signaling to the brain and serve as a novel class of analgesics for various pathological pain states. Indeed, drugs that enhance dysfunctional glycinergic transmission, and in particular inhibitors of the glycine transporters (GlyT1 and GlyT2), are generating widespread + − interest as a potential class of novel analgesics. The GlyTs are Na /Cl -dependent transporters of the solute carrier 6 (SLC6) family and it has been proposed that the inhibition of them presents a Citation: Cioffi, C.L. Inhibition of possible mechanism -
Exploring the Activity of an Inhibitory Neurosteroid at GABAA Receptors
1 Exploring the activity of an inhibitory neurosteroid at GABAA receptors Sandra Seljeset A thesis submitted to University College London for the Degree of Doctor of Philosophy November 2016 Department of Neuroscience, Physiology and Pharmacology University College London Gower Street WC1E 6BT 2 Declaration I, Sandra Seljeset, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I can confirm that this has been indicated in the thesis. 3 Abstract The GABAA receptor is the main mediator of inhibitory neurotransmission in the central nervous system. Its activity is regulated by various endogenous molecules that act either by directly modulating the receptor or by affecting the presynaptic release of GABA. Neurosteroids are an important class of endogenous modulators, and can either potentiate or inhibit GABAA receptor function. Whereas the binding site and physiological roles of the potentiating neurosteroids are well characterised, less is known about the role of inhibitory neurosteroids in modulating GABAA receptors. Using hippocampal cultures and recombinant GABAA receptors expressed in HEK cells, the binding and functional profile of the inhibitory neurosteroid pregnenolone sulphate (PS) were studied using whole-cell patch-clamp recordings. In HEK cells, PS inhibited steady-state GABA currents more than peak currents. Receptor subtype selectivity was minimal, except that the ρ1 receptor was largely insensitive. PS showed state-dependence but little voltage-sensitivity and did not compete with the open-channel blocker picrotoxinin for binding, suggesting that the channel pore is an unlikely binding site. By using ρ1-α1/β2/γ2L receptor chimeras and point mutations, the binding site for PS was probed. -
Prevention Or Amelioration of Autism-Like Symptoms in Animal Models: Will It Bring Us Closer to Treating Human ASD?
International Journal of Molecular Sciences Review Prevention or Amelioration of Autism-Like Symptoms in Animal Models: Will it Bring Us Closer to Treating Human ASD? Asher Ornoy 1,* , Liza Weinstein-Fudim 1 and Zivanit Ergaz 1,2 1 Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel; [email protected] 2 Neonatology Department, Hadassah Hebrew University Medical Center, Jerusalem 9112001, Israel; [email protected] * Correspondence: [email protected]; Tel.: +972-2-6758329 Received: 17 February 2019; Accepted: 23 February 2019; Published: 1 March 2019 Abstract: Since the first animal model of valproic acid (VPA) induced autistic-like behavior, many genetic and non-genetic experimental animal models for Autism Spectrum Disorder (ASD) have been described. The more common non-genetic animal models induce ASD in rats and mice by infection/inflammation or the prenatal or early postnatal administration of VPA. Through the establishment of these models, attempts have been made to ameliorate or even prevent ASD-like symptoms. Some of the genetic models have been successfully treated by genetic manipulations or the manipulation of neurotransmission. Different antioxidants have been used (i.e., astaxanthin, green tea, piperine) to reduce brain oxidative stress in VPA-induced ASD models. Agents affecting brain neurotransmitters (donepezil, agmatine, agomelatine, memantine, oxytocin) also successfully reduced ASD-like symptoms. However, complete prevention of the development of symptoms was achieved only rarely. In our recent study, we treated mouse offspring exposed on postnatal day four to VPA with S-adenosine methionine (SAM) for three days, and prevented ASD-like behavior, brain oxidative stress, and the changes in gene expression induced by VPA. -
Targeting Glycine Reuptake in Alcohol Seeking and Relapse
JPET Fast Forward. Published on January 24, 2018 as DOI: 10.1124/jpet.117.244822 This article has not been copyedited and formatted. The final version may differ from this version. TITLE PAGE Targeting Glycine Reuptake in Alcohol Seeking and Relapse Valentina Vengeliene, Martin Roßmanith, Tatiane T. Takahashi, Daniela Alberati, Berthold Behl, Anton Bespalov, Rainer Spanagel Downloaded from The primary laboratory of origin: Institute of Psychopharmacology, Central Institute of jpet.aspetjournals.org Mental Health, Faculty of Medicine Mannheim, Heidelberg University, Germany; at ASPET Journals on September 30, 2021 VV, MR, TTT, RS: Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, Heidelberg University, Germany; DA: Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, CH-4070 Basel, Switzerland; BB, AB: Department of Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany; AB: Department of Psychopharmacology, Pavlov Medical University, St Petersburg, Russia JPET #244822 JPET Fast Forward. Published on January 24, 2018 as DOI: 10.1124/jpet.117.244822 This article has not been copyedited and formatted. The final version may differ from this version. RUNNING TITLE GlyT1 in Alcohol Seeking and Relapse Corresponding author with complete address: Valentina Vengeliene, Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), J5, 68159 Mannheim, Germany Email: [email protected], phone: +49-621-17036261; fax: +49-621- Downloaded from 17036255 jpet.aspetjournals.org The number of text pages: 33 Number of tables: 0 Number of figures: 6 Number of references: 44 at ASPET Journals on September 30, 2021 Number of words in the Abstract: 153 Number of words in the Introduction: 729 Number of words in the Discussion: 999 A recommended section assignment to guide the listing in the table of content: Drug Discovery and Translational Medicine 2 JPET #244822 JPET Fast Forward. -
Treatment of Schizophrenia Course Director: Philip Janicak, M.D
S6735- Treatment of Schizophrenia Course Director: Philip Janicak, M.D. #APAAM2016 Saturday, May 14, 2016 Marriott Marquis - Marquis Ballroom D psychiatry.org/ annualmeetingS4637 ANNUAL MEETING May 14-18, 2016 • Atlanta Reference • Janicak PG, Marder SR, Tandon R, Goldman M (Eds.). Schizophrenia: Recent Advances in Diagnosis and Treatment. New York, NY: Springer; 2014. Schizophrenia: Recent Diagnostic Advances, Neurobiology, and the Neuropharmacology of Antipsychotic Drug Therapy Rajiv Tandon, MD Professor of Psychiatry University of Florida College of Medicine Gainesville, Florida Annual Meeting of the American Psychiatric Association New York, New York May 3–7, 2014 Disclosure Information MEMBER, WPA PHARMACOPSYCHIATRY SECTION MEMBER, DSM-5 WORKGROUP ON PSYCHOTIC DISORDERS A CLINICIAN AND CLINICAL RESEARCHER Pharmacological Treatment of Any Disease • Know the Disease that you are treating • Nature; Treatment targets; Treatment goals; • Know the Treatments at your disposal • What they do; How they compare; Costs; • Principles of Treatment • Measurement-based; Targeted; Individualized Program Outline • Nature and Definition of psychosis? • Clinical description • What is wrong in psychotic illness • Dimensions of Psychopathology • Neurobiological Abnormalities • Mechanisms underlying antipsychotic effects? • What contributes to Efficacy • Basis of Side-effect differences 5 Challenges in DSM-IV Construct of Psychotic Disorders ♦ Indistinct Boundaries ♦ With Other Disorders (eg., with OCD) ♦ Within Group of Psychotic Disorders (eg. between -
The Impact of D-Cycloserine and Sarcosine on in Vivo Frontal Neural
Yao et al. BMC Psychiatry (2019) 19:314 https://doi.org/10.1186/s12888-019-2306-1 RESEARCH ARTICLE Open Access The impact of D-cycloserine and sarcosine on in vivo frontal neural activity in a schizophrenia-like model Lulu Yao1, Zongliang Wang1, Di Deng1, Rongzhen Yan1, Jun Ju1 and Qiang Zhou1,2* Abstract Background: N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie the pathogenesis of schizophrenia. Specifically, reduced function of NMDARs leads to altered balance between excitation and inhibition which further drives neural network malfunctions. Clinical studies suggested that NMDAR modulators (glycine, D-serine, D-cycloserine and glycine transporter inhibitors) may be beneficial in treating schizophrenia patients. Preclinical evidence also suggested that these NMDAR modulators may enhance synaptic NMDAR function and synaptic plasticity in brain slices. However, an important issue that has not been addressed is whether these NMDAR modulators modulate neural activity/spiking in vivo. Methods: By using in vivo calcium imaging and single unit recording, we tested the effect of D-cycloserine, sarcosine (glycine transporter 1 inhibitor) and glycine, on schizophrenia-like model mice. Results: In vivo neural activity is significantly higher in the schizophrenia-like model mice, compared to control mice. D-cycloserine and sarcosine showed no significant effect on neural activity in the schizophrenia-like model mice. Glycine induced a large reduction in movement in home cage and reduced in vivo brain activity in control mice which prevented further analysis of its effect in schizophrenia-like model mice. Conclusions: We conclude that there is no significant impact of the tested NMDAR modulators on neural spiking in the schizophrenia-like model mice. -
NMDA Receptors Containing the Glun2d Subunit Control Neuronal Function in the Subthalamic Nucleus
The Journal of Neuroscience, December 2, 2015 • 35(48):15971–15983 • 15971 Cellular/Molecular NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus X Sharon A. Swanger,1* Katie M. Vance,1* Jean-Franc¸ois Pare,3 Florence Sotty,4 Karina Fog,4 Yoland Smith,2,3 and X Stephen F. Traynelis1 1Department of Pharmacology and 2Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, 3Yerkes National Primate Research Center and Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Emory University, Atlanta, Georgia 30329, and 4H. Lundbeck A/S, Division of Neurodegeneration and Biologics, Ottiliavej 9, DK-2500 Valby, Denmark The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)–P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. -
Stems for Nonproprietary Drug Names
USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol -
GLYX-13 Produces Rapid Antidepressant Responses with Key Synaptic and Behavioral Effects Distinct from Ketamine
Neuropsychopharmacology (2017) 42, 1231–1242 © 2017 American College of Neuropsychopharmacology. All rights reserved 0893-133X/17 www.neuropsychopharmacology.org GLYX-13 Produces Rapid Antidepressant Responses with Key Synaptic and Behavioral Effects Distinct from Ketamine 1,5 1,5 1,2 1 1 1 Rong-Jian Liu , Catharine Duman , Taro Kato , Brendan Hare , Dora Lopresto , Eunyoung Bang , 3 3,4 1 1 *,1 Jeffery Burgdorf , Joseph Moskal , Jane Taylor , George Aghajanian and Ronald S Duman 1Departments of Psychiatry and Neurosciences, Yale University School of Medicine, New Haven, CT, USA; 2Sumitomo Dainippon Pharma Co, Suita, 3 Osaka, Japan; Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston IL, USA; 4 Naurex, Inc., Evanston, IL, USA GLYX-13 is a putative NMDA receptor modulator with glycine-site partial agonist properties that produces rapid antidepressant effects, but without the psychotomimetic side effects of ketamine. Studies were conducted to examine the molecular, cellular, and behavioral actions of GLYX-13 to further characterize the mechanisms underlying the antidepressant actions of this agent. The results demonstrate that a single dose of GLYX-13 rapidly activates the mTORC1 pathway in the prefrontal cortex (PFC), and that infusion of the selective mTORC1 inhibitor rapamycin into the medial PFC (mPFC) blocks the antidepressant behavioral actions of GLYX-13, indicating a requirement for mTORC1 similar to ketamine. The results also demonstrate that GLYX-13 rapidly increases the number and function of spine synapses in the apical dendritic tuft of layer V pyramidal neurons in the mPFC. Notably, GLYX-13 significantly increased the synaptic responses to hypocretin, a measure of thalamocortical synapses, compared with its effects on 5-HT responses, a measure of cortical- cortical responses mediated by the 5-HT receptor. -
A Systematic Review of Performance-Enhancing Pharmacologicals and Biotechnologies in the Army
Bond University Research Repository A systematic review of performance-enhancing pharmacologicals and biotechnologies in the Army Ko, Henry ; Hunter, K E; Scott, A M; Ayson, Mark; Willson, M L Published in: Journal of the Royal Army Medical Corps DOI: 10.1136/jramc-2016-000752 Licence: CC BY-NC Link to output in Bond University research repository. Recommended citation(APA): Ko, H., Hunter, K. E., Scott, A. M., Ayson, M., & Willson, M. L. (2018). A systematic review of performance- enhancing pharmacologicals and biotechnologies in the Army. Journal of the Royal Army Medical Corps, 164(3). https://doi.org/10.1136/jramc-2016-000752 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository coordinator. Download date: 06 Oct 2021 ABSTRACT Introduction: In 2015, the Australian Army commissioned a systematic review to assess the evidence on effectiveness and safety of pharmacological and biotechnological products for cognitive enhancement specifically in Army personnel. Methods: Searches for studies examining biotechnological and pharmacological products in Army populations were conducted in December 2015. Cochrane CENTRAL, MEDLINE, EMBASE, CINAHL and PsycINFO were searched; no date or language restrictions were applied. WHO’s International Clinical Trials Registry Platform and ClinicalTrials.gov were searched to identify ongoing trials. Studies meeting inclusion criteria were evaluated for risk of bias using the Cochrane Risk of Bias tool. -
RAC-GWVI: Research Alerts—Pubmed Citations for August 21 to 28, 2018 1
RAC-GWVI: Research Alerts—PubMed Citations for August 21 to 28, 2018 1 GULF WAR ILLNESS Neurotoxicity in acute and repeated organophosphate exposure. Naughton SX1, Terry AV Jr2. Toxicology. 2018 Aug 22. pii: S0300-483X(18)30264-6. doi: 10.1016/j.tox.2018.08.011. PMID: 30144465. [Epub ahead of print] The term organophosphate (OP) refers to a diverse group of chemicals that are found in hundreds of products worldwide. As pesticides, their most common use, OPs are clearly beneficial for agricultural productivity and the control of deadly vector-borne illnesses. However, as a consequence of their widespread use, OPs are now among the most common synthetic chemicals detected in the environment as well as in animal and human tissues. This is an increasing environmental concern because many OPs are highly toxic and both accidental and intentional exposures to OPs resulting in deleterious health effects have been documented for decades. Some of these deleterious health effects include a variety of long-term neurological and psychiatric disturbances including impairments in attention, memory, and other domains of cognition. Moreover, some chronic illnesses that manifest these symptoms such as Gulf War Illness and Aerotoxic Syndrome have (at least in part) been attributed to OP exposure. In addition to acute acetylcholinesterase inhibition, OPs may affect a number of additional targets that lead to oxidative stress, axonal transport deficits, neuroinflammation, and autoimmunity. Some of these targets could be exploited for therapeutic purposes. The purpose of this review is thus to: 1) describe the important uses of organophosphate (OP)-based compounds worldwide, 2) provide an overview of the various risks and toxicology associated with OP exposure, particularly long-term neurologic and psychiatric symptoms, 3) discuss mechanisms of OP toxicity beyond cholinesterase inhibition, 4) review potential therapeutic strategies to reverse the acute toxicity and long term deleterious effects of OPs.