Hyperbaric Oxygen Therapy: Side Effects Defined and Quantified

Total Page:16

File Type:pdf, Size:1020Kb

Hyperbaric Oxygen Therapy: Side Effects Defined and Quantified CRITICAL REVIEW Hyperbaric Oxygen Therapy: Side Effects Defined and Quantified Marvin Heyboer III,* Deepali Sharma, William Santiago, and Norman McCulloch Division of Hyperbaric Medicine and Wound Care, Department of Emergency Medicine, SUNY Upstate Medical University, Syracuse, New York. Significance: Hyperbaric oxygen therapy (HBOT) is an important advanced therapy in the treatment of problem wounds, including diabetic foot ulcers and late effect radiation injury. HBOT remains among the safest therapies used today. Nonetheless, there are side effects associated with HBOT. It is impor- tant for providers to be able to identify, understand, and quantify these side effects for prevention, management, and informed consent. Recent Advances: The past two decades have seen significant advancements in our understanding of the underlying mechanisms of HBOT. This has led to Marvin Heyboer III, MD, FACEP, FUHM, FACCWS a better understanding of the underlying reason for clinical benefit. It has also Submitted for publication December 1, 2016. led to a better understanding of its side effects. Moreover, more recent liter- Accepted in revised form January 26, 2017. ature allows for better quantification of these side effects. This review will *Correspondence: Division of Hyperbaric Medicine and Wound Care, Department of highlight these side effects. Emergency Medicine, SUNY Upstate Medical Critical Issues: Wound healing in the case of problem nonhealing wounds re- University, 550 East Genesee Street, Suite 103, quires the use of various advanced treatment modalities, including HBOT. Syracuse, NY 13202 (e-mail: [email protected]). HBOT has been shown to significantly improve healing rates in certain problem wounds, including advanced diabetic foot ulcers and late effect radi- ation injury. It is provided in a variety of clinical settings by providers with varying levels of expertise. It is important for those providing this therapy to understand the potential side effects. Future Directions: Research in HBOT has led to significant advancements in the area of wound healing. At the same time, there remains a variety of treatment protocols used at different institutions. It is important to quantify risk and benefit at different treatment pressures and times to better stan- dardize treatment and improve patient care. Keywords: hyperbaric, oxygen, side, effects SCOPE AND SIGNIFICANCE usually adverse effect. This review will attempt to describe and quantify these Hyperbaric oxygen therapy (HBOT) side effects. This should lead to better has been identified as a useful advanced consideration of risk and benefit in dis- adjunctive therapy in the promotion of cussions with the patient when consid- healing in certain problem wounds in ering HBOT. addition to its application to a variety of other medical conditions. As with all medical treatments, HBOT has known TRANSLATIONAL RELEVANCE potential side effects as a result of HBOT works through both pri- treatment. A side effect here is consid- mary and secondary effects. Primary ered a known potential secondary and effects involve both increased pres- 210 ADVANCES IN WOUND CARE, VOLUME 6, NUMBER 6 j Copyright ª 2017 by Mary Ann Liebert, Inc. DOI: 10.1089/wound.2016.0718 HYPERBARIC OXYGEN SIDE EFFECTS 211 sure and hyperoxia. Secondary effects as a result of result of increased local growth factors and release a controlled oxidative stress include antimicrobial of autologous progenitor stem cells.7 effects, blunting of ischemia–reperfusion injury, It is these very same primary and secondary ef- and wound healing. Wound healing is the result fects that can cause the side effects associated with of both local and systemic effects. Local effects HBOT. These include various forms of barotrauma, include a steepened oxygen gradient, macrophage central nervous system (CNS) and pulmonary ox- recruitment, and release of multiple growth fac- ygen toxicity, and ocular side effects. There are tors. Systemic effects result in progenitor stem cell additionally issues of claustrophobia. It is impor- mobilization and release from bone marrow in ad- tant to understand and quantify these side effects. dition to improved homing to the site of injury by This assists with creating protocols to minimize these cells.1–4 The results of both local and systemic risk in addition to better weighing risk and benefit effects include neovasculogenesis and collagen of treatment for the patient. It is important to note formation, which promote wound healing.1–4 These that HBOT remains among the safest therapies same mechanisms that result in HBOT beneficial used today.8 The following is an exhaustive list of effects can also cause the known side effects in potential side effects, some of which are more com- some patients. mon (middle ear barotraumas [MEB], claustropho- bia) and others that are theoretical risks unlikely to CLINICAL RELEVANCE occur clinically with appropriate screening precau- tions (pulmonary barotrauma [PBT]). The use of HBOT has grown significantly in the past 2 decades. Its application has a variety of recognized indications as outlined by the Undersea DISCUSSION and Hyperbaric Medicine Society,5 although a Effects of pressure majority of patients are receiving treatment for HBOT by definition means treatment with 100% late effect radiation injury and problem wounds oxygen at higher than atmospheric pressure where (primarily advanced diabetic foot ulcers). Treat- increased pressures depend on treatment guide- ment is provided in a variety of clinical settings by lines and indications. Hence, the side effects of providers and staff with differing levels of exper- HBOT are based on the physiologic response to this tise. Having an understanding of the potential side high pressure–high oxygen environment and the effects of HBOT is critical to providing safe medical psychological response that patients experience care with complete patient informed consent. from the closed confines of the treatment chamber— monoplace or multiplace. Boyle’s Law states that BACKGROUND AND OVERVIEW the volume of a gas at a fixed temperature is in- HBOT is the treatment of patients with 100% versely proportional to the ambient pressure. Low- 1 ering the ambient pressure causes increased gas oxygen at higher than atmospheric pressure. This is provided in either a monoplace (single person) volume; the converse is also true (Fig. 1). These chamber typically compressed with oxygen or a effects of pressure are experienced within physio- logic and pathologic air cavities, including the mid- multiplace chamber (multiple persons) compressed with air where oxygen is delivered by either a hood dle ear, paranasal sinuses, pathologic dental spaces, or mask. The benefits of treatment are the result of and emphysematous bulla. both primary and secondary effects. Primary ef- fects are the result of increased pressure and hy- peroxia. Indeed, PaO2 can increase from less than 200 mmHg at 1 atmospheres absolute (ATA) room air to more than 2,000 mmHg at 3 ATA. This also translates into significant increases in tissue oxy- gen partial pressure.6 Meanwhile, secondary ef- fects are the result of a controlled oxidative stress. HBOT produces reactive oxygen species (ROS) and reactive nitrogen species, which function as sig- naling molecules in multiple pathways, including those involved in wound healing.1 The result is an array of secondary effects that include improved leukocyte function, amelioration of ischemia– Figure 1. Gas volume change with pressure. reperfusion injury, and neovascularization as a 212 HEYBOER ET AL. Middle ear barotrauma. MEB is one of the most Causes of ET dysfunction may be inherent cra- common side effects of HBOT. Patients may report niofacial features such as palatal muscle anomalies difficulty with ear equalization, a feeling of pres- or a result of infectious or allergic reactions. These sure, ear pain, and discomfort during compression, include upper respiratory infections, environmen- which is the initial phase of HBOT.9 tal allergies, or enlarged adenoids, to name a few.14 If not attended to, this can lead to edema in the The reported incidence of MEB in patients un- middle ear, retraction, and in rare cases, rupture of dergoing HBOT varies significantly from *2% to the tympanic membrane with conductive hearing 84% in nonintubated and upward of 94% in in- deficit. In rare cases, MEB can be transmitted to tubated patients, making MEB one of the most the inner ear, with risk of rupture of the round or common side effects of HBOT.8,15 The wide range oval window membranes and impairment of inner of incidence is due to varying criteria used to de- ear function, causing vertigo and sensorineural fine MEB, variations in patient population, and hearing loss.10 MEB is most commonly classified variation in patient instruction of how to equalize using the modified TEED score (Table 1). More pressure in the middle ear.8 A recent publication recently, the O’Neill grading system was proposed of a large number of patient treatments demon- as a newer and more practical grading system.11 strated an overall incidence of 43%. The vast ma- For effective air equalization in the middle ear jority of cases were minor—84% were TEED 1 (TM to occur, the Eustachian tube (ET), which connects injection/retraction) or TEED 2 (TM slight hemor- the middle ear to the nasopharynx, positioned su- rhage) with no episodes of TM rupture.8 perior, posterior, and lateral to the nasopharynx, Rate of compression does play a role in risk of needs to be open and functioning (Fig. 2).12 The
Recommended publications
  • Lung Function Studies in Diagnostics and Follow-Up of Pulmonary Sarcoidosis
    Lung Function Studies in Diagnostics and Follow-up of Pulmonary Sarcoidosis By INGELA BRÅDVIK Lund 1994 From the Department of Lung Medicine and the Department of Clinical Physiology University of Lund, Sweden Lung Function Studies in Diagnostics and Follow-up of Pulmonary Sarcoidosis Ingela Brådvik Lund 1994 Organization Document name LUND UNIVERSITY DOCTORAL DISSERTATION Department of Lung Medicine Date of issue University Hospital 94 06 09 S-22I 85 Lund CODEN: ISRN LUMEDW/MELL- - 1007- - SE Authorfj) Sponsoring organization Ingela Brådvik The Swedish Heart Lung Foundation Title and subtitle Lung function studies in diagnostics and follow-up of pulmonary sarcoidosis Abstract In 66 patients the relationship between lung volumes and lung mechanics in pulmonary sarcoidosis was investigated Lung volumes, static lung mechanics, lung resistance, dynamic lung mechanics and arterial blood gases at rest and during exercise were obtained. Fifteen functionally compromised patients received steroids during one year. They were re-investigated during the treatment and at a follow-up after an average of 7 years. In another 41 patients with newly diagnosed sarcoidosis, the kinetics of the lung clearance of ^9mTc-DTPA measured over 180 minutes was explored, and compared to kinetics in healthy smokers. The relationship between lung clearance and lung volumes, lung mechanics, arterial blood gases and disease activity assessed with serum angiotensin-converting enzyme and "'Ga scintigraphy was studied. Reduced lung volumes and compliance, increased resistance and decreased arterial oxygen tension were common. Vital i capacity (VC), and changes of VC at follow-up, corresponded to the slope of the static elastic pressure/volume curve, . and to the variation of it.
    [Show full text]
  • What Chamber Operators Should Know About Ear Barotrauma (And How to Prevent It) Robert Sheffield, CHT and Kevin “Kip” Posey, CHT / June 2018
    LEARN.HYPERBARICMEDICINE.COM International ATMO Education What Chamber Operators Should Know About Ear Barotrauma (and How to Prevent It) Robert Sheffield, CHT and Kevin “Kip” Posey, CHT / June 2018 INTRODUCTION Ear barotrauma (i.e. “ear block”, “ear squeeze”) is the most common complication of hyperbaric treatment. It occurs when the pressure in the hyperbaric chamber is greater than the pressure in the middle ear. It is prevented by patient assessment, patient education, and the appropriate actions of the chamber operator. The chamber operator has an important role in preventing ear barotrauma in hyperbaric patients. OBJECTIVES At the conclusion of this article, the reader will be able to: Describe the anatomy of the middle ear Explain the mechanism of ear barotrauma Describe 3 techniques to equalize middle ear pressure ANATOMY OF THE MIDDLE EAR The middle ear is an air space that separates the external ear canal from the inner ear. The eardrum, called the tympanic membrane (TM), vibrates when sound enters the ear canal. The vibration is transmitted to a series of bones in the middle ear. These bones transmit vibration to another membrane (the oval window) that separates the air‐filled middle ear from the fluid‐filled inner ear, where sound is sensed in the cochlea. The nasopharynx is the area behind the nose and above the palate. The Eustachian tubes open into this area. Because of the location of the Eustachian tube openings, the same things that cause nasal congestion (e.g. allergies, upper respiratory infection) can cause swelling around the opening of the Eustachian tubes, making it more difficult to equalize pressure in the middle ear.
    [Show full text]
  • Bronchodilators Accelerate the Dynamics of Muscle O2 Delivery
    Chronic obstructive pulmonary disease Bronchodilators accelerate the dynamics of muscle Thorax: first published as 10.1136/thx.2009.120857 on 13 July 2010. Downloaded from O2 delivery and utilisation during exercise in COPD Danilo C Berton,1 Priscila B Barbosa,1 Luciana S Takara,1 Gaspar R Chiappa,1 Ana Cristina B Siqueira,1 Daniela M Bravo,1 Leonardo F Ferreira,2 J Alberto Neder1 See Editorial, p 573 ABSTRACT (QT), suggesting an important role for the central Background Expiratory flow limitation and lung cardiovascular adjustments in setting the limits of < Supplementary methods are hyperinflation promote cardiocirculatory perturbations increase in peripheral QO at the onset of exercise. published online only. To view 2 these files please visit the that might impair O2 delivery to locomotor muscles in Further experimental evidence for this contention journal online (http://thorax.bmj. patients with chronic obstructive pulmonary disease was obtained in a subsequent study in which com). (COPD). The hypothesis that decreases in lung hyperinflation a strategy aimed to reduce the resistive work of 1Pulmonary Function and Clinical after the inhalation of bronchodilators would improve breathing and dynamic hyperinflation (heliox) Exercise Physiology Unit skeletal muscle oxygenation during exercise was tested. simultaneously accelerated the dynamics of QTand (SEFICE), Division of Respiratory 5 Methods Twelve non- or mildly hypoxaemic males QO2 in patients with moderate to severe COPD. Diseases, Department of (forced expiratory volume in 1 s (FEV1)¼38.5612.9%
    [Show full text]
  • Critical Care in the Monoplace Hyperbaric Chamber
    Critical Care in the Monoplace Hyperbaric Critical Care - Monoplace Chamber • 30 minutes, so only key points • Highly suggest critical care medicine is involved • Pitfalls Lindell K. Weaver, MD Intermountain Medical Center Murray, Utah, and • Ventilator and IV issues LDS Hospital Salt Lake City, Utah Key points Critical Care in the Monoplace Chamber • Weaver LK. Operational Use and Patient Care in the Monoplace Chamber. In: • Staff must be certified and experienced Resp Care Clinics of N Am-Hyperbaric Medicine, Part I. Moon R, McIntyre N, eds. Philadelphia, W.B. Saunders Company, March, 1999: 51-92 in CCM • Weaver LK. The treatment of critically ill patients with hyperbaric oxygen therapy. In: Brent J, Wallace KL, Burkhart KK, Phillips SD, and Donovan JW, • Proximity to CCM services (ed). Critical care toxicology: diagnosis and management of the critically poisoned patient. Philadelphia: Elsevier Mosby; 2005:181-187. • Must have study patient in chamber • Weaver, LK. Critical care of patients needing hyperbaric oxygen. In: Thom SR and Neuman T, (ed). The physiology and medicine of hyperbaric oxygen therapy. quickly Philadelphia: Saunders/Elsevier, 2008:117-129. • Weaver LK. Management of critically ill patients in the monoplace hyperbaric chamber. In: Whelan HT, Kindwall E., Hyperbaric Medicine Practice, 4th ed.. • CCM equipment North Palm Beach, Florida: Best, Inc. 2017; 65-95. • Without certain modifications, treating • Gossett WA, Rockswold GL, Rockswold SB, Adkinson CD, Bergman TA, Quickel RR. The safe treatment, monitoring and management
    [Show full text]
  • The Use of Heliox in Treating Decompression Illness
    The Diving Medical Advisory Committee DMAC, Eighth Floor, 52 Grosvenor Gardens, London SW1W 0AU, UK www.dmac-diving.org Tel: +44 (0) 20 7824 5520 [email protected] The Use of Heliox in Treating Decompression Illness DMAC 23 Rev. 1 – June 2014 Supersedes DMAC 23, which is now withdrawn There are many ways of treating decompression illness (DCI) at increased pressure. In the past 20 years, much has been published on the use of oxygen and helium/oxygen mixtures at different depths. There is, however, a paucity of carefully designed scientific studies. Most information is available from mathematical models, animal experiments and case reports. During a therapeutic compression, the use of a different inert gas from that breathed during the dive may facilitate bubble resolution. Gas diffusivity and solubility in blood and tissue is expected to play a complex role in bubble growth and shrinkage. Mathematical models, supported by some animal studies, suggest that breathing a heliox gas mixture during recompression could be beneficial for nitrogen elimination after air dives. In humans, diving to 50 msw, with air or nitrox, almost all cases of DCI can be adequately treated at 2.8 bar (18 msw), where 100% oxygen is both safe and effective. Serious neurological and vestibular DCI with only partial improvements during initial compression at 18 msw on oxygen may benefit from further recompression to 30 msw with heliox 50:50 (Comex therapeutic table 30 – CX30). There have been cases successfully treated on 50:50 heliox (CX30), on the US Navy recompression tables with 80:20 and 60:40 heliox (USN treatment table 6A) instead of air and in heliox saturation.
    [Show full text]
  • Heat Stroke Heat Exhaustion
    Environmental Injuries Co lin G. Ka ide, MD , FACEP, FAAEM, UHM Associate Professor of Emergency Medicine Board-Certified Specialist in Hyperbaric Medicine Specialist in Wound Care The Ohio State University Wexner Medical Center The Most Dangerous Drug Combination… Accidental Testosterone Hypothermia and Alcohol! The most likely victims… Photo: Ralf Roletschek 1 Definition of Blizzard Hypothermia of Subnormal T° when the body is unable to generate sufficient heat to sustain normal functions Core Temperature < 95°F 1979 (35°C) Most Important Temperatures Thermoregulation 95°F (35° C) Hyper/Goofy The body uses a Poikilothermic shell to maintain a Homeothermic core 90°F (32°C) Shivering Stops Maintains core T° w/in 1.8°F(1°C) 80°F (26. 5°C) Vfib, Coma Hypothalamus Skin 65°F (18°C) Asystole Constant T° 96.896.8-- 100.4° F 2 Thermoregulation The 2 most important factors Only 3 Causes! Shivering (10x increase) Decreased Heat Production Initiated by low skin temperature Increased Heat Loss Warming the skin can abolish Impaired Thermoregulation shivering! Peripheral vasoconstriction Sequesters heat Predisposing Predisposing Factors Factors Decreased Production Increased Loss –Endocrine problems Radiation Evaporation • Thyroid Conduction* • Adrenal Axis Convection** –Malnutrition *Depends on conducting material **Depends on wind velocity –Neuromuscular disease 3 Predisposing Systemic Responses CNS Factors T°< 90°F (34°C) Impaired Regulation Hyperactivity, excitability, recklessness CNS injury T°< 80°F (27°C) Hypothalamic injuries Loss of voluntary
    [Show full text]
  • The Pulmonary Manifestations of Left Heart Failure*
    The Pulmonary Manifestations of Left Heart Failure* Brian K. Gehlbach, MD; and Eugene Geppert, MD Determining whether a patient’s symptoms are the result of heart or lung disease requires an understanding of the influence of pulmonary venous hypertension on lung function. Herein, we describe the effects of acute and chronic elevations of pulmonary venous pressure on the mechanical and gas-exchanging properties of the lung. The mechanisms responsible for various symptoms of congestive heart failure are described, and the significance of sleep-disordered breathing in patients with heart disease is considered. While the initial clinical evaluation of patients with dyspnea is imprecise, measurement of B-type natriuretic peptide levels may prove useful in this setting. (CHEST 2004; 125:669–682) Key words: Cheyne-Stokes respiration; congestive heart failure; differential diagnosis; dyspnea; pulmonary edema; respiratory function tests; sleep apnea syndromes Abbreviations: CHF ϭ congestive heart failure; CSR-CSA ϭ Cheyne-Stokes respiration with central sleep apnea; CPAP ϭ continuous positive airway pressure; Dlco ϭ diffusing capacity of the lung for carbon monoxide; DM ϭ membrane conductance; FRC ϭ functional residual capacity; OSA ϭ obstructive sleep apnea; TLC ϭ total lung ϭ ˙ ˙ ϭ capacity; VC capillary volume; Ve/Vco2 ventilatory equivalent for carbon dioxide early 5 million Americans have congestive heart For a detailed review of the pathophysiology of N failure (CHF), with 400,000 new cases diag- high-pressure pulmonary edema, the reader is re- nosed each year.1 Unfortunately, despite the consid- ferred to several excellent recent reviews.2–4 erable progress that has been made in understanding the pathophysiology of pulmonary edema, the pul- monary complications of this condition continue to The Pathophysiology of Pulmonary challenge the bedside clinician.
    [Show full text]
  • Aerospace Physiology
    AEROSPACE PHYSIOLOGY ALTITUDE CHAMBER Human Factors in Flight Introductory Course Manual Revised: March 30, 2009 TABLE OF CONTENTS INTRODUCTION ............................................................................................................ v SYMBOLS USED ............................................................................................................ vi CHAPTER I PHYSICS OF THE ATMOSPHERE ............................................................... 1 Objectives ................................................................................................. 1 Functions of the Atmosphere .................................................................... 1 Main Component Gases and Percentages ................................................. 1 Atmospheric Pressure ............................................................................... 2 Measurement of Altitude .......................................................................... 2 Physical Divisions of the Atmosphere ...................................................... 3 Physiological Divisions of the Atmosphere .............................................. 4 The Gas Laws ........................................................................................... 5 II RESPIRATION/CIRCULATION .................................................................... 7 Objectives ................................................................................................. 7 Definition .................................................................................................
    [Show full text]
  • Effect of Heliox Breathing on Flow Limitation in Chronic Heart Failure Patients
    Eur Respir J 2009; 33: 1367–1373 DOI: 10.1183/09031936.00117508 CopyrightßERS Journals Ltd 2009 Effect of heliox breathing on flow limitation in chronic heart failure patients M. Pecchiari*, T. Anagnostakos#, E. D’Angelo*, C. Roussos#, S. Nanas# and A. Koutsoukou# ABSTRACT: Patients with chronic heart failure (CHF) exhibit orthopnoea and tidal expiratory flow AFFILIATIONS limitation in the supine position. It is not known whether the flow-limiting segment occurs in the *Istituto di Fisiologia Umana I, Universita` degli Studi di Milano, peripheral or central part of the tracheobronchial tree. The location of the flow-limiting segment Milan, Italy, and can be inferred from the effects of heliox (80% helium/20% oxygen) administration. If maximal #Dept of Critical Care and Pulmonary expiratory flow increases with this low-density mixture, the choke point should be located in the Services, Evangelismos General central airways, where the wave-speed mechanism dominates. If the choke point were located in Hospital, Medical School, University of Athens, Athens, Greece. the peripheral airways, where maximal flow is limited by a viscous mechanism, heliox should have no effect on flow limitation and dynamic hyperinflation. CORRESPONDENCE Tidal expiratory flow limitation, dynamic hyperinflation and breathing pattern were assessed in M. Pecchiari 14 stable CHF patients during air and heliox breathing at rest in the sitting and supine position. Istituto di Fisiologia Umana I via L. Mangiagalli 32 No patient was flow-limited in the sitting position. In the supine posture, eight patients exhibited 20133 Milan tidal expiratory flow limitation on air. Heliox had no effect on flow limitation and dynamic Italy hyperinflation and only minor effects on the breathing pattern.
    [Show full text]
  • Consensus Conference, the ECHM
    24 Diving and Hyperbaric Medicine Volume 47 No. 1 March 2017 Consensus Conference Tenth European Consensus Conference on Hyperbaric Medicine: recommendations for accepted and non-accepted clinical indications and practice of hyperbaric oxygen treatment Daniel Mathieu, Alessandro Marroni and Jacek Kot Abstract (Mathieu D, Marroni A, Kot J. Tenth European Consensus Conference on Hyperbaric Medicine: recommendations for accepted and non-accepted clinical indications and practice of hyperbaric oxygen treatment. Diving and Hyperbaric Medicine. 2017 March;47(1):24-32.) The tenth European Consensus Conference on Hyperbaric Medicine took place in April 2016, attended by a large delegation of experts from Europe and elsewhere. The focus of the meeting was the revision of the European Committee on Hyperbaric Medicine (ECHM) list of accepted indications for hyperbaric oxygen treatment (HBOT), based on a thorough review of the best available research and evidence-based medicine (EBM). For this scope, the modified GRADE system for evidence analysis, together with the DELPHI system for consensus evaluation, were adopted. The indications for HBOT, including those promulgated by the ECHM previously, were analysed by selected experts, based on an extensive review of the literature and of the available EBM studies. The indications were divided as follows: Type 1, where HBOT is strongly indicated as a primary treatment method, as it is supported by sufficiently strong evidence; Type 2, where HBOT is suggested as it is supported by acceptable levels of evidence; Type 3, where HBOT can be considered as a possible/optional measure, but it is not yet supported by sufficiently strong evidence. For each type, three levels of evidence were considered: A, when the number of randomised controlled trials (RCTs) is considered sufficient; B, when there are some RCTs in favour of the indication and there is ample expert consensus; C, when the conditions do not allow for proper RCTs but there is ample and international expert consensus.
    [Show full text]
  • Clinical Management of Severe Acute Respiratory Infections When Novel Coronavirus Is Suspected: What to Do and What Not to Do
    INTERIM GUIDANCE DOCUMENT Clinical management of severe acute respiratory infections when novel coronavirus is suspected: What to do and what not to do Introduction 2 Section 1. Early recognition and management 3 Section 2. Management of severe respiratory distress, hypoxemia and ARDS 6 Section 3. Management of septic shock 8 Section 4. Prevention of complications 9 References 10 Acknowledgements 12 Introduction The emergence of novel coronavirus in 2012 (see http://www.who.int/csr/disease/coronavirus_infections/en/index. html for the latest updates) has presented challenges for clinical management. Pneumonia has been the most common clinical presentation; five patients developed Acute Respira- tory Distress Syndrome (ARDS). Renal failure, pericarditis and disseminated intravascular coagulation (DIC) have also occurred. Our knowledge of the clinical features of coronavirus infection is limited and no virus-specific preven- tion or treatment (e.g. vaccine or antiviral drugs) is available. Thus, this interim guidance document aims to help clinicians with supportive management of patients who have acute respiratory failure and septic shock as a consequence of severe infection. Because other complications have been seen (renal failure, pericarditis, DIC, as above) clinicians should monitor for the development of these and other complications of severe infection and treat them according to local management guidelines. As all confirmed cases reported to date have occurred in adults, this document focuses on the care of adolescents and adults. Paediatric considerations will be added later. This document will be updated as more information becomes available and after the revised Surviving Sepsis Campaign Guidelines are published later this year (1). This document is for clinicians taking care of critically ill patients with severe acute respiratory infec- tion (SARI).
    [Show full text]
  • The Measurement of Pulmonary Diffusing Capacity for Carbon Monoxide by a Rebreathing Method
    THE MEASUREMENT OF PULMONARY DIFFUSING CAPACITY FOR CARBON MONOXIDE BY A REBREATHING METHOD Benjamin M. Lewis, … , Ernest J. Hayford-Welsing, Erma Flaherty J Clin Invest. 1959;38(11):2073-2086. https://doi.org/10.1172/JCI103985. Research Article Find the latest version: https://jci.me/103985/pdf THE MEASUREMENT OF PULMONARY DIFFUSING CAPACITY FOR CARBON MONOXIDE BY A REBREATHING METHOD*t By BENJAMIN M. LEWIS, TAI-HON LIN, FRANCES E. NOET AND ERNEST J. HAYFORD-WELSING§ WITH THE TECHNICAL ASSISTANCE OF ERMA FLAHERTY (From the Pulmonary Function Laboratories, Departments of Medicine, Wayne State University College of Medicine, and City of Detroit Receiving Hospital, Detroit, Mich.) (Submitted for publication February 18, 1959; accepted June 19, 1959) The pulmonary diffusing capacity for oxygen capacity and one second vital capacity are first determined. is of great physiological and clinical sig- The analyzer circuit of the apparatus is then flushed with (DLo,) tank oxygen. A sealed bag containing a volume of 0.3 nificance (1). Its measurement, however, is rela- per cent CO and 10 per cent He in air (or in oxygen)2 tively complex (2). Pulmonary diffusing capac- equal to the subject's one second vital capacity is attached ity for carbon monoxide (DLco) which, it is to the three-way tap, the clamps on the bag are removed usually assumed,' can be converted to DL02 from and the bag and analyzer circuit mixed by the pump.3 the known solubilities and molecular weights of A bag-in-box device attached to a spirometer has been found convenient for filling the bag.
    [Show full text]