Solution Structure of Sperm Lysin Yields Novel Insights Into Molecular Dynamics of Rapid Protein Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Solution Structure of Sperm Lysin Yields Novel Insights Into Molecular Dynamics of Rapid Protein Evolution Solution structure of sperm lysin yields novel insights into molecular dynamics of rapid protein evolution Damien B. Wilburna,1, Lisa M. Tuttleb, Rachel E. Klevitb, and Willie J. Swansona aDepartment of Genome Sciences, University of Washington, Seattle, WA 98195; and bDepartment of Biochemistry, University of Washington, Seattle, WA 98195 Edited by Andrew G. Clark, Cornell University, Ithaca, NY, and approved December 19, 2017 (received for review June 1, 2017) Protein evolution is driven by the sum of different physiochemical Fig. 1). The abalone VE is largely composed of a gigantic ∼1-MDa and genetic processes that usually results in strong purifying glycoprotein, termed the VE receptor for lysin (VERL) which selection to maintain biochemical functions. However, proteins contains 23 tandem repeats of a ZP-N polymerization domain. that are part of systems under arms race dynamics often evolve at These ZP-N repeats are thought to self-assemble through hydro- unparalleled rates that can produce atypical biochemical proper- gen bonding to form intermolecular β-sheets (9), and lysin dissolves ties. In the marine mollusk abalone, lysin and vitelline envelope the VE by competing for these hydrogen bonds (10). Molecular ∼ receptor for lysin (VERL) are a pair of rapidly coevolving proteins evolutionary analysis revealed that 25 of 134 residues in lysin are that are essential for species-specific interactions between sperm under positive selection (11), which may play a role in maintaining and egg. Despite extensive biochemical characterization of lysin— species boundaries. Off the North American Pacific coast, seven including crystal structures of multiple orthologs—it was unclear sympatric species of abalone are found with overlapping breeding how sites under positive selection may facilitate recognition of seasons; while viable hybrids can be produced in the laboratory, they are rarely observed in nature (4). Additionally, lysin- VERL. Using a combination of targeted mutagenesis and multidi- mediated VE dissolution is species-specific (10) and helps mensional NMR, we present a high-definition solution structure of Haliotis rufescens maintain species boundaries. Lysin is secreted as a dimer, sug- sperm lysin from red abalone ( ). Unapparent gesting an equivalent stoichiometry to bind dimerized VERL ZP-N from the crystallography data, multiple NMR-based analyses con- repeats; however, prior biochemical experiments suggested the ly- ducted in solution reveal clustering of the N and C termini to form sin monomer is the bioactive unit (12). The majority of the VERL a nexus of 13 positively selected sites that constitute a VERL bind- repeats are >98% identical at the nucleotide level within a species, ing interface. Evolutionary rate was found to be a significant pre- homogenized by concerted evolution (13). The two most N- dictor of backbone flexibility, which may be critical for lysin terminal ZP-N repeats are not subjected to the same homogeni- bioactivity and/or accelerated evolution. Flexible, rapidly evolving zation and are rapidly coevolving with lysin, suggestive of arms race segments that constitute the VERL binding interface were also the dynamics (5, 14, 15). The specific molecular interactions between most distorted regions of the crystal structure relative to what lysin and VERL that facilitate VE dissolution remain unknown. was observed in solution. While lysin has been the subject of ex- Consistent with protein structure generally being more highly tensive biochemical and evolutionary analyses for more than conserved than sequence (16), multiple structures determined by 30 years, this study highlights the enhanced insights gained from X-ray crystallography support that the lysin tertiary structure is applying NMR approaches to rapidly evolving proteins. generally conserved despite its extraordinarily rapid evolution. Nearly identical crystal structures were observed for lysin dimers fertilization | sexual selection | nuclear magnetic resonance Significance he innovation of elaborate male ornaments and female pref- Terences by sexual selection has been of interest to evolutionary The fertilization of eggs by sperm is a critical biological process for biologists since Darwin (1). Compared with other coevolving traits, nearly all sexually reproducing organisms to propagate their ge- sexual ornaments and preferences often evolve via runaway selec- netic information, yet the molecules that mediate egg−sperm in- tion to produce exacerbated traits (2, 3). A similar phenomenon has teractions evolve at extraordinary rates, and their biochemical been observed in genes coding for reproductive proteins that evolve mechanisms are poorly understood. In the marine mollusk abalone, at extraordinary rates, and are usually among the fastest evolving sperm lysin interacts with egg vitelline envelope receptor for lysin genes in any genome (4). This pattern has been observed across (VERL) in a species-specific manner to facilitate fertilization. In this diverse taxa (microbes, plants, and animals) and different types of report, we characterized the solution structure and molecular reproductive proteins (sex pheromones, seminal fluid proteins, and evolution of sperm lysin from red abalone (Haliotis rufescens), and gamete recognition proteins) (5). The rapid molecular evolution of identified that the VERL binding interface has experienced in- reproductive genes is thought to be driven by the continual co- cessant sexual coevolution. Furthermore, increased dynamics in the evolution between interacting pairs of male and female proteins. lysin fold has facilitated this exacerbated evolution, and may re- However, there presently exist few systems where the interacting flect a common molecular basis for accelerated evolution in other proteins from both sexes have been identified, creating a barrier to rapidly evolving proteins, such as immune genes. understanding the structural and biochemical interactions of re- productive proteins within an evolutionary framework. Author contributions: D.B.W. and W.J.S. designed research; D.B.W. and L.M.T. performed A textbook example of such a rapidly evolving reproductive pro- research; D.B.W. and L.M.T. analyzed data; D.B.W., R.E.K., and W.J.S. wrote the paper; tein is abalone sperm lysin (6), a highly positively charged 16-kDa and R.E.K. and W.J.S. supervised the project. protein that is essential for dissolving the vitelline envelope (VE) of The authors declare no conflict of interest. abalone oocytes (7). The VE—termed the zona pellucida (ZP) in This article is a PNAS Direct Submission. mammals—is a glycoprotein envelope that serves as a barrier to Published under the PNAS license. the sperm and the external environment (8). In many taxa, sperm Data deposition: The NMR chemical shifts have been deposited in the BioMagResBank, secrete proteins that nonenzymatically dissociate the VE, creating www.bmrb.wisc.edu (accession no. 30246) and the Research Collaboratory for Structural a hole through which sperm can pass to access the plasma mem- Bioinformatics Protein Data Bank, www.wwpdb.org (RCSB PDB ID code 5UTG). brane and fuse to complete fertilization (4). While the molecular 1To whom correspondence should be addressed. Email: [email protected]. mechanisms and essential sperm proteins are unknown in mam- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. mals, the process is well characterized in abalone (illustrated in 1073/pnas.1709061115/-/DCSupplemental. 1310–1315 | PNAS | February 6, 2018 | vol. 115 | no. 6 www.pnas.org/cgi/doi/10.1073/pnas.1709061115 Downloaded by guest on September 24, 2021 VERL repeat 1 produced similar levels of binding relative to controls (Fig. 2D), suggesting minimal difference in VERL af- finity between dimeric and monomeric lysin. Therefore, while the lysin monomer can bind and recognize VERL repeats, the lysin dimer is required for efficient VE dissolution. The VERL Binding Interface Comprises Several Clustered Positively Selected Sites. To understand how the N terminus may be involved in interactions with individual VERL repeats—despite being “extended” in the available crystal structures—we determined the solution structure of F104A lysin using a suite of multidimensional heteronuclear NMR and restrained molecular dynamics simula- Fig. 1. Proposed model of lysin-mediated VE dissolution. VERL is a gigantic tion (Fig. 3). An ensemble of the 20 lowest energy models was well molecule (∼1 MDa) that includes 23 repeats of a ZP-N polymerization defined by the NMR restraints (backbone rmsd = 1.6 Å; Table module. The VE supramolecular structure is supported by intermolecular S1), with regions of backbone flexibility at the N terminus (resi- hydrogen bonds between VERL ZP-N repeats. The two most N-terminal re- dues 1 to 12) and in the turns that link α-helices (residues 39 to 43, peats are rapidly coevolving with lysin, while the remaining repeats are 77 to 81, and 95 to 97). However, comparison of the solution and homogenized through concerted evolution (15). Upon sperm contact with crystal structures revealed several discrepancies (Fig. 4 A and B). the VE, lysin will disrupt the hydrogen bonds of the first repeat, forming a Although extended and flexible in the crystal structure, the N ter- − pair of lysin VERL repeat heterodimers, and expose the next pair of repeats. minus forms a nexus with the C terminus and residues 60 to 65 that Lysin can then disrupt the second pair of hydrogen-bonded VERL repeats, appears to be driven largely
Recommended publications
  • Sperm Proteins SOF1, TMEM95, and SPACA6 Are Required for Sperm−Oocyte Fusion in Mice
    Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm−oocyte fusion in mice Taichi Nodaa,1, Yonggang Lua,1, Yoshitaka Fujiharaa,2, Seiya Ouraa,b, Takayuki Koyanoc, Sumire Kobayashia,b, Martin M. Matzukd,e,3, and Masahito Ikawaa,f,3 aResearch Institute for Microbial Diseases, Osaka University, 565-0871 Osaka, Japan; bGraduate School of Pharmaceutical Sciences, Osaka University, 565-0871 Osaka, Japan; cDivision of Molecular Genetics, Shigei Medical Research Institute, 701-0202 Okayama, Japan; dCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; eDepartment of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030; and fThe Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan Contributed by Martin M. Matzuk, March 19, 2020 (sent for review December 27, 2019; reviewed by Matteo Avella and Andrea Pauli) Sperm−oocyte membrane fusion is one of the most important protein, JUNO (also known as IZUMO1 receptor [IZUMO1R] events for fertilization. So far, IZUMO1 and Fertilization Influenc- and folate receptor 4 [FOLR4]) as an IZUMO1 receptor on the ing Membrane Protein (FIMP) on the sperm membrane and CD9 oocyte plasma membrane. IZUMO1 and JUNO form a 1:1 and JUNO (IZUMO1R/FOLR4) on the oocyte membrane have been complex (12), and critical residues to form this interaction were identified as fusion-required proteins. However, the molecular identified by X-ray crystal structure analysis (13–15). However, mechanisms for sperm−oocyte fusion are still unclear. Here, we in vitro studies implied that IZUMO1 may be responsible for show that testis-enriched genes, sperm−oocyte fusion required 1 sperm−oocyte membrane adhesion instead of fusion (16, 17).
    [Show full text]
  • TMEM95 Is a Sperm Membrane Protein Essential for Mammalian
    RESEARCH ARTICLE TMEM95 is a sperm membrane protein essential for mammalian fertilization Ismael Lamas-Toranzo1†, Julieta G Hamze2†, Enrica Bianchi3, Beatriz Ferna´ ndez-Fuertes4,5, Serafı´nPe´ rez-Cerezales1, Ricardo Laguna-Barraza1, Rau´l Ferna´ ndez-Gonza´ lez1, Pat Lonergan4, Alfonso Gutie´ rrez-Ada´ n1, Gavin J Wright3, Marı´aJime´ nez-Movilla2*, Pablo Bermejo-A´ lvarez1* 1Animal Reproduction Department, INIA, Madrid, Spain; 2Department of Cell Biology and Histology, Medical School, University of Murcia, IMIB-Arrixaca, Murcia, Spain; 3Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom; 4School of Agriculture and Food Science, University College Dublin, Dublin, Ireland; 5Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain Abstract The fusion of gamete membranes during fertilization is an essential process for sexual reproduction. Despite its importance, only three proteins are known to be indispensable for sperm- egg membrane fusion: the sperm proteins IZUMO1 and SPACA6, and the egg protein JUNO. Here we demonstrate that another sperm protein, TMEM95, is necessary for sperm-egg interaction. TMEM95 ablation in mice caused complete male-specific infertility. Sperm lacking this protein were morphologically normal exhibited normal motility, and could penetrate the zona pellucida and bind to the oolemma. However, once bound to the oolemma, TMEM95-deficient sperm were unable to fuse with the egg membrane or penetrate into the ooplasm, and fertilization could only be achieved by mechanical injection of one sperm into the ooplasm, thereby bypassing membrane *For correspondence: fusion. These data demonstrate that TMEM95 is essential for mammalian fertilization. [email protected] (Mı´Je´-M); [email protected] (PB-A´ ) †These authors contributed equally to this work Introduction In sexually reproducing species, life begins with the fusion of two gametes during fertilization.
    [Show full text]
  • Binding of Sperm Protein Izumo1 and Its Egg Receptor Juno Drives Cd9
    © 2014. Published by The Company of Biologists Ltd | Development (2014) 141, 3732-3739 doi:10.1242/dev.111534 RESEARCH ARTICLE Binding of sperm protein Izumo1 and its egg receptor Juno drives Cd9 accumulation in the intercellular contact area prior to fusion during mammalian fertilization Myriam Chalbi1, Virginie Barraud-Lange2, Benjamin Ravaux1, Kevin Howan1, Nicolas Rodriguez3, Pierre Soule3, Arnaud Ndzoudi2, Claude Boucheix4,5, Eric Rubinstein4,5, Jean Philippe Wolf2, Ahmed Ziyyat2, Eric Perez1, Frédéric Pincet1 and Christine Gourier1,* ABSTRACT 2006), have so far been shown to be essential. These three Little is known about the molecular mechanisms that induce gamete molecules are also present on human egg and sperm cells. Izumo1 fusion during mammalian fertilization. After initial contact, adhesion is a testis immunoglobulin superfamily type 1 (IgSF) protein, between gametes only leads to fusion in the presence of three expressed at the plasma membrane of acrosome-reacted sperm (Satouh et al., 2012), and is highly conserved in mammals (Grayson membrane proteins that are necessary, but insufficient, for fusion: Izumo1 Izumo1 on sperm, its receptor Juno on egg and Cd9 on egg. What and Civetta, 2012). Female mice deleted for the gene have happens during this adhesion phase is a crucial issue. Here, we normal fertility, but males are completely sterile despite normal mating behavior and normal sperm production (Inoue et al., 2005). demonstrate that the intercellular adhesion that Izumo1 creates with Cd9−/− Juno is conserved in mouse and human eggs. We show that, along Similar features are observed for Cd9 on egg cells. female are healthy but severely subfertile because of defective sperm-egg with Izumo1, egg Cd9 concomitantly accumulates in the adhesion in vivo area.
    [Show full text]
  • Mutation Analysis of the JUNO Gene in Female Infertility of Unknown Etiology
    Fujita Medical Journal 2016 Volume 2 Issue 3 Short Report Open Access Mutation analysis of the JUNO gene in female infertility of unknown etiology Nobue Takaiso, MSc1,2, Haruki Nishizawa, MD, PhD3, Sachie Nishiyama, MD, PhD4, Tomio Sawada, MD, PhD5, Eriko Hosoba6, Tamae Ohye, PhD1,7, Tsutomu Sato, PhD8, Hidehito Inagaki, PhD6, and Hiroki Kurahashi, MD, PhD6 1Division of Genetic Counseling, Department of Clinical Laboratory Medicine, Graduate School of Health Sciences, Fujita Health University, Aichi, Japan, 2Present address: Department of Breast Oncology Aichi Cancer Center Hospital, Aichi, Japan, 3Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Aichi, Japan, 4Nishiyama Clinic, Mie, Japan, 5Sawada Womenʼs Clinic, Aichi, Japan, 6Division of Molecular Genetics, Institute for Comprehensive Medical Sciences, Fujita Health University, Aichi, Japan, 7Molecular Laboratory Medicine, Faculty of Medical Technology, School of Health Sciences, Fujita Health University, Aichi, Japan, 8Department of Ethics, Fujita Health University School of Medicine, Aichi, Japan Abstract The genetic etiology of female infertility is almost completely unknown. Recently, the egg membrane protein JUNO was identified as a receptor of the sperm-specific protein IZUMO1 and their interaction functions in sperm-egg fusion in fertilization. In the present study, we examined 103 women with infertility of unknown etiology. We analyzed the JUNO gene in these cases by PCR and Sanger sequencing. We identified seven variants in total: four common, two synonymous, and a previously unidentified intronic mutation. However, it is not clear from these variants that JUNO has a major role, if any, in infertility. Many factors affect sterility and a larger cohort of patients will need to be screened in the future because the cause of female infertility is highly heterogeneous.
    [Show full text]
  • Deep Learning Based Tumor Type Classification Using Gene Expression Data
    bioRxiv preprint doi: https://doi.org/10.1101/364323; this version posted July 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Deep Learning Based Tumor Type Classification Using Gene Expression Data Boyu Lyu Anamul Haque Virginia Tech Virginia Tech Blacksburg, Virginia Blacksburg, Virginia [email protected] [email protected] ABSTRACT Pan-Cancer Atlas. Where, as to each tumor sample, we could ac- Differential analysis occupies the most significant portion ofthe cess its RNA-Seq expression data. These data are beneficial when standard practices of RNA-Seq analysis. However, the conventional trying to identify potential biomarkers for each tumor. method is matching the tumor samples to the normal samples, which As to biomarkers, most analyses tried to find the differentially are both from the same tumor type. The output using such method expressed genes. However, they didnt consider expressions of other would fail in differentiating tumor types because it lacks the knowl- tumors. Also, during the study, models are constructed to mimic edge from other tumor types. Pan-Cancer Atlas provides us with the expression data. However, such models are very data specific, abundant information on 33 prevalent tumor types which could which would fail in dealing with data from other samples or other be used as prior knowledge to generate tumor-specific biomarkers. tumor types. So, it is highly needed to build a method which can In this paper, we embedded the high dimensional RNA-Seq data include knowledge from multiple tumor types into the analysis.
    [Show full text]
  • Insights Into the Mechanism of Bovine Spermiogenesis Based on Comparative Transcriptomic Studies
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.25.313908; this version posted September 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Insights into the mechanism of bovine spermiogenesis based on comparative transcriptomic studies Xin Li 1, Chenying Duan 2, Ruyi Li 2, Dong Wang 1,* 1 Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China 2 College of Animal Science and Technology, Jilin Agricultural University, 130118 Changchun, China * Corresponding author: Dong Wang E-mail: [email protected] Keywords: Spermiogenesis, Differentially expressed genes, Homology trends analysis, Protein-regulating network, ADP-ribosyltransferase 3 (ART3) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.25.313908; this version posted September 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. (2), resulting in a tremendous waste. At the same Abstract time, about 15% of the couples of childbearing age worldwide are affected by infertility, of To reduce the reproductive loss caused by which 50% are due to male factors (3), and even semen quality and provide theoretical guidance sperm with normal morphology can cause
    [Show full text]
  • Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cell Function Against Multiple Myeloma Is Enhanced in the Presence of Lenalidomide
    Author Manuscript Published OnlineFirst on August 8, 2019; DOI: 10.1158/1535-7163.MCT-18-1146 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Title: Anti–B-cell maturation antigen chimeric antigen receptor T cell function against 2 multiple myeloma is enhanced in the presence of lenalidomide 3 Authors: 4 Melissa Works, Neha Soni, Collin Hauskins, Catherine Sierra, Alex Baturevych, Jon C. 5 Jones, Wendy Curtis, Patrick Carlson, Timothy G. Johnstone, David Kugler, Ronald J. 6 Hause, Yue Jiang, Lindsey Wimberly, Christopher R. Clouser, Heidi K. Jessup, Blythe 7 Sather, Ruth A. Salmon, and Michael O. Ports 8 9 Affiliations: 10 Juno Therapeutics, A Celgene Company, Seattle, Washington. 11 12 Running title: 13 Lenalidomide enhances anti-BCMA CAR T function 14 Keywords: multiple myeloma; lenalidomide; CAR T; BCMA; Immunology 15 Financial support: This study was funded by Juno Therapeutics, A Celgene Company. 16 17 Corresponding author: Melissa Works 18 400 Dexter Ave N Suite 1200 19 Seattle, WA 98109 20 [email protected] 21 Phone: 206-566-5731 22 23 Disclosure of conflicts of interest: All authors are employed by and have equity interest 24 in Juno Therapeutics, Inc, A Celgene Company. 25 Abstract: 246/250 words 26 Manuscript: 4540/5000 27 Figures: 6/7 1 Downloaded from mct.aacrjournals.org on September 23, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 8, 2019; DOI: 10.1158/1535-7163.MCT-18-1146 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • The Hamster Egg Receptor, Juno, Binds the Human Sperm Ligand, Izumo1
    Cross-species fertilization: the hamster egg receptor, Juno, binds the human rstb.royalsocietypublishing.org sperm ligand, Izumo1 Enrica Bianchi and Gavin J. Wright Research Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK Cite this article: Bianchi E, Wright GJ. 2015 Fertilization is the culminating event in sexual reproduction and requires the recognition and fusion of the haploid sperm and egg to form a new diploid Cross-species fertilization: the hamster egg organism. Specificity in these recognition events is one reason why sperm receptor, Juno, binds the human sperm ligand, and eggs from different species are not normally compatible. One notable Izumo1. Phil. Trans. R. Soc. B 370: 20140101. exception is the unusual ability of zona-free eggs from the Syrian golden http://dx.doi.org/10.1098/rstb.2014.0101 hamster (Mesocricetus auratus) to recognize and fuse with human sperm, a phenomenon that has been exploited to assess sperm quality in assisted fertil- ity treatments. Following our recent finding that the interaction between the One contribution of 19 to a discussion meeting sperm and egg recognition receptors Izumo1 and Juno is essential for fertil- issue ‘Cell adhesion century: culture ization, we now demonstrate concordance between the ability of Izumo1 breakthrough’. and Juno from different species to interact, and the ability of their isolated gametes to cross-fertilize each other in vitro. In particular, we show that Subject Areas: Juno from the golden hamster can directly interact with human Izumo1. These data suggest that the interaction between Izumo1 and Juno plays an molecular biology, cellular biology important role in cross-species gamete recognition, and may inform the devel- opment of improved prognostic tests that do not require the use of animals to Keywords: guide the most appropriate fertility treatment for infertile couples.
    [Show full text]
  • Supreme Court of the United States
    No. 19-1392 IN THE Supreme Court of the United States THOMAS E. DOBBS, STATE HEALTH OFFICER OF THE MISSISSIPPI DEPARTMENT OF HEALTH, et al., Petitioners, v. JACKSON WOMEN’S HEALTH ORGANIZATION, et al., Respondents. ON WRIT OF CERTIORARI TO THE UNITED STATES CouRT OF APPEALS FOR THE FIFTH CIRcuIT BRIEF OF BIOLOGISTS AS AMICI CURIAE IN SUPPORT OF NEITHER PARTY LYNN D. DOWD Counsel of Record LAW OFFICES OF LYNN D. DOWD 29 West Benton Avenue Naperville, IL 60540 (630) 665-7851 [email protected] Counsel for Amici Curiae 306214 A (800) 274-3321 • (800) 359-6859 i TABLE OF CONTENTS Page TABLE OF CONTENTS..........................i TABLE OF CITED AUTHORITIES ..............iv STATEMENT OF INTEREST OF AMICI CURIAE .....................................1 SUMMARY OF ARGUMENT .....................2 ARGUMENT....................................6 I. “WHEN DOES A HUMAN’S LIFE BEGIN?” IS WIDELY RECOGNIZED AS A BIOLOGICAL QUESTION................6 II. ANALYZING VIEWS ON WHEN A HUMAN’S LIFE BEGINS REVEALS THAT FERTILIZATION IS THE LEADING BIOLOGICAL VIEW ............8 A. Some biologists believe that a human’s life begins at some point during the human life cycle ........................8 1. Some support the view that a human’s life begins at birth or first breath ......................8 2. Some support the view that a human’s life begins at fetal viability ...........9 ii Table of Contents Page 3. Some support the view that a human’s life begins at the first heartbeat, brainwave, or moment of pain capability ..................11 B. Most biologists affirm that a human’s life begins at the start of the human life cycle .............................12 C. The fertilization view on when a human’s life begins is the leading biological view ........................15 III.
    [Show full text]
  • Spermatozoa Lacking Fertilization Influencing Membrane Protein (FIMP) Fail to Fuse with Oocytes in Mice
    Spermatozoa lacking Fertilization Influencing Membrane Protein (FIMP) fail to fuse with oocytes in mice Yoshitaka Fujiharaa,b,c, Yonggang Lua, Taichi Nodaa, Asami Ojia,d, Tamara Larasatia,e, Kanako Kojima-Kitaa,e, Zhifeng Yub, Ryan M. Matzukb, Martin M. Matzukb,1, and Masahito Ikawaa,e,f,1 aResearch Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Osaka, Japan; bCenter for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030; cDepartment of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, 564-8565 Osaka, Japan; dLaboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047 Hyogo, Japan; eGraduate School of Medicine, Osaka University, Suita, 565-0871 Osaka, Japan; and fThe Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan Contributed by Martin M. Matzuk, February 18, 2020 (sent for review October 1, 2019; reviewed by Jean-Ju L. Chung and Janice Evans) Sperm–oocyte fusion is a critical event in mammalian fertilization, (officially named IZUMO1R) was identified as the oocyte re- categorized by three indispensable proteins. Sperm membrane ceptor of IZUMO1, and Juno KO female mice were also infertile protein IZUMO1 and its counterpart oocyte membrane protein due to impaired sperm–oocyte fusion (15). Further structural JUNO make a protein complex allowing sperm to interact with analyses found that several amino acid residues of each protein the oocyte, and subsequent sperm–oocyte fusion. Oocyte tetra- are critical for the direct binding of JUNO and IZUMO1 in mice spanin protein CD9 also contributes to sperm–oocyte fusion. How- and humans (16–20).
    [Show full text]
  • Supplementary Material Genetic Diversity in the IZUMO1-JUNO
    1 Supplementary Material 2 Genetic Diversity in the IZUMO1-JUNO Protein-Receptor Pair Involved in 3 Human Reproduction 4 Jessica Allingham and Wely B. Floriano* 5 Department of Chemistry, Lakehead University, Thunder Bay Ontario, Canada. E-mail: 6 [email protected], [email protected] 7 *corresponding author 8 9 Table S1: Comprehensive breakdown of the variants in the IZUMO1 gene sequence when 10 unfiltered and filtered with a minor allele frequency (MAF) of 5% using SNPEff (1). 11 No maf filtering Maf 5% frequency Variants 192 31 Variant rates 307963 1907386 SNPs 189 31 Insertions 1 0 Deletions 2 0 Low Impact Effects 199 (29.4%) 23 (21.5%) Moderate Impact Effects 11 (1.6%) 1 (0.9%) Modifier Impact Effects 466 (68.9%) 83 (77.6%) Missense Mutations 12 (57.1%) 1 (33.3%) Silent Mutations 9 (42.9%) 2 (66.7%) Downstream Effects 143 (21.2%) 29 (27.1%) Intergenic Effects 20 (3.0%) 6 (5.6%) Intragenic Effects 1 (0.1%) 0 Intron Effects 132 (19.5%) 18 (16.8%) Next Protein Effects 182 (26.9%) 21 (19.6%) Non-synonymous Coding 11 (1.6%) 1 (0.9%) Effects Non-synonymous Start 1 (0.1%) 0 Effects Splice Site Region and Intron 5 (0.7%) 0 Effect Start Gained Effect 2 (0.3%) 0 Synonymous Coding Effect 9 (1.3%) 2 (1.9%) Upstream Effects 157 (23.3%) 26 (24.3%) UTR 5 Prime Effect 13 (1.9%) 4 (3.7%) 12 Table S2: Comprehensive breakdown of the variants in the JUNO gene sequence when unfiltered 13 and filtered with a MAF of 5% using SNPEff (1).
    [Show full text]
  • Sperm Proteins SOF1, TMEM95, and SPACA6 Are Required for Sperm−Oocyte Fusion in Mice
    Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm−oocyte fusion in mice Taichi Nodaa,1, Yonggang Lua,1, Yoshitaka Fujiharaa,2, Seiya Ouraa,b, Takayuki Koyanoc, Sumire Kobayashia,b, Martin M. Matzukd,e,3, and Masahito Ikawaa,f,3 aResearch Institute for Microbial Diseases, Osaka University, 565-0871 Osaka, Japan; bGraduate School of Pharmaceutical Sciences, Osaka University, 565-0871 Osaka, Japan; cDivision of Molecular Genetics, Shigei Medical Research Institute, 701-0202 Okayama, Japan; dCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; eDepartment of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030; and fThe Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan Contributed by Martin M. Matzuk, March 19, 2020 (sent for review December 27, 2019; reviewed by Matteo Avella and Andrea Pauli) Sperm−oocyte membrane fusion is one of the most important protein, JUNO (also known as IZUMO1 receptor [IZUMO1R] events for fertilization. So far, IZUMO1 and Fertilization Influenc- and folate receptor 4 [FOLR4]) as an IZUMO1 receptor on the ing Membrane Protein (FIMP) on the sperm membrane and CD9 oocyte plasma membrane. IZUMO1 and JUNO form a 1:1 and JUNO (IZUMO1R/FOLR4) on the oocyte membrane have been complex (12), and critical residues to form this interaction were identified as fusion-required proteins. However, the molecular identified by X-ray crystal structure analysis (13–15). However, mechanisms for sperm−oocyte fusion are still unclear. Here, we in vitro studies implied that IZUMO1 may be responsible for show that testis-enriched genes, sperm−oocyte fusion required 1 sperm−oocyte membrane adhesion instead of fusion (16, 17).
    [Show full text]