Forensic Failure Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Forensic Failure Analysis © 2005 ASM International. All Rights Reserved. www.asminternational.org Failure Analysis of Engineering Structures: Methodology and Case Histories (#05127G) CHAPTER 7 Forensic Failure Analysis FORENSIC SCIENCE refers to that part of science that is used is a written warranty or contract about its performance. The second in courts of law for administration of justice. Service failures of aspect of the contract that is implied is that the product should be machines and accidents to engineering structures result in serious, reasonably safe. Failure to perform its intended function satisfac- expensive, and prolonged litigations, affecting the credibility of torily and safely constitutes a breach of warranty and, hence, lia- the manufacturer and the reliability of its products. When defective bility. In courts of law, product liability is extended not only to the consumer products fail to perform their intended functions and manufacturer of the whole product but also to the designer, the thereby cause injuries to personnel or damage to property, the user maker of component parts, the assembler, the person who installs resorts to product liability litigations. Litigations also follow when it, the repairer, and also the distributor and the retail seller. The damages to structures, life, and property are caused by deliberate absence of privity of contract, i.e., direct connection between the acts of sabotage by antisocial elements. plaintiff and the defendant, does not preclude liability in tort. Thus, Investigations of such mishaps are of two kinds, preventive and in a product liability litigation, liability is imposed also on people punitive, i.e., inquisitorial and accusatorial. In the former, attempts behind the scenes. are made to find out the cause of the malfunction or failure of a In order to provide for an orderly and logical flow of evidence, component with a view to making technical and procedural im- some product liability advocates prefer what is called a seriated provements to prevent its recurrence. Various techniques available trial. According to this proposal, the trial is conducted in three for such inquisitorial investigations are described in earlier chap- stages: ters. In the accusatorial type, the investigation is legal in character and requires generation of data of sufficiently high standard to 1. The first segment of the trial involves evidence pertinent only provide proof for the judiciary to justify penal and censure action to the product and ultimately whether it was defective and un- for the violation of established laws and codes. Such high stan- reasonably dangerous, considered apart from the actual injury- dards are necessary even in departmental inquiries, without the producing event. involvement of the judiciary, for fixing responsibilities. Most of 2. If a positive decision is reached, the trial continues. Evidence the failures of machinery and accidents to engineering structures relative to the injury-producing event is presented on the basis involve a combination of component malfunction and misman- of which the jury/court must determine whether the defective agement. In many such situations, both types of inquiry are nec- product caused the accident. essary. 3. If a positive decision is reached, the trial then turns to the final Industrial machinery and structures are made of materials, question of the extent of liability of the manufacturer. This mostly metallic. As seen in earlier chapters, when these structures methodology ensures that the jury/court will be properly in- fail, they leave certain distinct tell-tale marks. These marks, when formed of the design and use of the product and, consequently, properly documented, can provide the exacting evidence the ju- will be able to make knowledgeable decisions. diciary is looking for in litigations following such failures. The courts are now depending more and more on the metallurgical Product liability litigations, each requiring technical skills of profession for making correct decisions in such litigations. A few varying degrees of complexity, have become more common in case histories, including product liability litigations, are presented many cases, and product liability insurance premiums have be- in this chapter to illustrate the importance of metallurgical juris- come a major cost in some industries. One or two product liability prudence or how the judiciary can take advantage of the metallur- litigations can potentially wipe out a small company by way of gical profession and expertise in administering justice. legal expenses and compensation paid to the victims. It is not uncommon that product liability cases are settled between the par- ties out of court. A few product liability cases are described next. 7.1 Product Liability Litigations Collapse of Domestic Ladders. Several litigations following the collapse of aluminum ladders have been reported. In one case, Product liability litigations pose many challenges to manufac- when a woman, standing on a ladder, was trying to remove dry turers. If a consumer product is defective and during its usage leaves from the roof of her house with a rake, the ladder collapsed. causes injuries to the user, the manufacturer of that product be- She sustained hip injuries and sued the company that manufactured comes liable and is sued in courts. When a product is sold, there the ladder. In another case, when a man was trying to paint his © 2005 ASM International. All Rights Reserved. www.asminternational.org Failure Analysis of Engineering Structures: Methodology and Case Histories (#05127G) 54 / Failure Analysis of Engineering Structures: Methodology house, his ladder collapsed, causing him injuries. He sued the lad- was not switched on and hence the motorcyclist was at fault. The der manufacturer and also the retail store that sold him the ladder. report of the consulting firm in this case contained only photo- Collapse of ladders has been attributed to improper riveting of graphs of the motorcycle and the scene of the accident and no the cross supports to the side rails of the ladder; excessive projec- technical evidence to support its opinion. It was further observed tion of the legs below the first rung of the ladder; and improper (Ref 2) that many consulting firms depended on established rela- heat treatment of the ladder material resulting in the precipitation tionships with insurance companies for their financial survival and, of brittle intermetallics along the grain boundaries, reducing the hence, rendering unbiased opinions in such circumstances would toughness of the alloy. In several cases, even though the correct be difficult. grade of alloy had been used for making the ladder, stress analysis, The lamp had two sets of metal posts with attached tungsten taking into account the lateral forces generated during operations filaments. Macroscopic examination of the damaged headlamp such as painting, proved that the ladder had mechanical instability. gave very clear evidence (Fig. 7.1) that particles of melted and Manufacturer’s Liability. If a product is proved to be defective, solidified glass were sticking to one of the filaments. This filament replacement of the defective part is the liability of the manufac- must have been on at the time of the accident. The other filament turer. Anticipating malfunctions, failures, accidents, and litigations was off as shown by the shiny appearance of its two ends, but its to follow, some of the manufacturers have wisely taken corrective central portion was oxidized. The impact of the accident had actions to avoid mishaps and litigations. The following are some caused this filament to contact the other filament that was on. This of the examples. had resulted in heating of the central portion and oxidation when A company had developed a compost thresher machine and in- the lamp shattered and exposed the hot filament to atmosphere. troduced it in the market. Soon, the company realized that the Having established the exacting evidence that the lamp was on, speed of the intake mechanism was very great and might exceed the case was settled in favor of the plaintiff, the motorcyclist. the human reaction time. The operator’s hands could be sucked A Machine Shop Accident. When seeking exacting evidence into the machine. Realizing this design flaw, the company stopped in litigations following accidents, one should go to the correct production to avoid liability litigations (Ref 1). expert. In a machine shop, during a grinding operation, a fragment In the 1100 kVA marine engine, described in Chapter 2, “Com- of metal entered the operator’s eye and he lost his eye. The metal mon Causes of Failures,” the piston head failure was due to mis- fragment was recovered and given to a scientist who dissolved it alignment. Following the failure investigation, a campaign was ordered by the manufacturer to check the alignment and balancing of the pistons in all the engines sold by them. A batch of aluminum alloy extrusions was procured for use in the fabrication of aircraft wings. During inspection for acceptance, blisters were noticed on their surface. When the extrusions were solution treated, the blisters were found to increase in size and number. Sectional metallography revealed the presence of cavities below the blisters, and these could open up easily during service. These blisters are formed due to hydrogen pickup during melting and remain in the metal due to inadequate degassing. Use of blis- tered extrusions would endanger the aircraft because these blis- tered areas are vulnerable for crack initiation. The manufacturer, realizing the liability, replaced the entire batch of extrusions with acceptable grades. In the automobile industry, cases have been reported regarding withdrawal of entire lots of cars from the market for repair and replacement, after realizing that the cars had serious defects that made them unsafe. 7.2 Litigations Following Accidents A Traffic Accident. It is amazing that complex legal issues have been solved by the thorough visual examination of the failed com- ponent and its surroundings by an experienced metallurgist. One such case has been reported (Ref 2).
Recommended publications
  • Visual Examination and Light Microscopy
    ASM Handbook, Volume 12: Fractography Copyright © 1987 ASM International® ASM Handbook Committee, p 91-165 All rights reserved. DOI: 10.1361/asmhba0001834 www.asminternational.org Visual Examination and Light Microscopy George F. Vander Voort, Carpenter Technology Corporation THE VISUAL EXAMINATION of fractures by light microscopy. Interesting features can be sections, to determine the origin of the failure, is deeply rooted in the history of metals pro- marked with a scribe, microhardness indents, and to separate the fractures according to the duction and usage, as discussed in the article or a felt-tip pen and then examined by SEM time sequence of failure, that is, which frac- "History of Fractography" in this Volume. and other procedures, such as energy- tures existed before the event versus which ones This important subject, referred to as macro- dispersive x-ray analysis, as required. occurred during the event. This article will fractography, or the examination of fracture The techniques and procedures for the visual assume that such work has already been accom- surfaces with the unaided human eye or at low and light microscopic examination of fracture plished and will concentrate on fracture exam- magnifications (--<50), is the cornerstone of surfaces will be described and illustrated in this ination and interpretation. Other related topics failure analysis. In addition, a number of qual- article. Results will also be compared and specific to failure analyses are discussed in ity control procedures rely on visual fracture contrasted with those produced by electron Volume 11 of the 9th Edition of Metals Hand- examinations. For failure analysis, visual in- metallographic methods, primarily SEM.
    [Show full text]
  • Metallography – a Powerful Instrument for Material Characterisation, Material Development and Failure Analysis
    771 Microsc. Microanal. 21 (Suppl 3), 2015 doi:10.1017/S1431927615004651 Paper No. 0386 © Microscopy Society of America 2015 Metallography – A Powerful Instrument for Material Characterisation, Material Development and Failure Analysis Michael Panzenböck1, Francisca Mendez-Martin1, Boryana Rashkova1, Patric Schütz1 1. Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Austria A. Widmanstätten (1754-1849) was one of the first scientists who developed techniques for studying the microstructure of meteorites by grinding and etching them with nitric acid. Also H.C. Sorby (1826- 1908) used such methods for microstructural investigations of minerals and rocks to identify their origin, as well as to examine steels and meteorites. Other famous and nowadays well known researchers such as R. Hadfield (1858—1940), A. Martens (1850-1914), E.C. Bains (1891-1971), K.H. Ledebur (1837- 1906), and H. Brearley (1871-1948) further developed these basic methods to get more information about the microstructure, especially in case of steels. Many microstructural parts or phases of the Fe- Fe3C phase diagram are called in honour of these scientists, e.g., “Widmanstätten ferrite”, “Sorbite”, “Bainite”, “Martensite”, or in case of cast iron “Ledeburite”. Without doubt, a material’s microstructure is decisive, because it is the arrangement, size and distribution of different phases which is responsible for the mechanical properties such as strength, ductility and toughness. In order to develop high-performance materials for existing and new applications it is necessary to establish a basic understanding of the material behaviour or its response under service loads. In addition to the standard methods such as light microscopy (LM), scanning electron microscopy (SEM), focused ion beam (FIB), also high-resolution methods (transmission electron microscopy (TEM), atom probe tomography (APT)) have been developed over the last three decades.
    [Show full text]
  • Experiment: Latent Fingerprinting
    EXPERIMENT: DUSTED! Operating Guide Dusted! Visitors press their fingertips onto a clean Plexiglas sheet. Their fingerprints are then revealed as visitors dust over the print with fingerprint powder. OBJECTIVES: Visitors will learn that every person has a unique set of fingerprints. Visitors will understand how fingerprints are revealed on surfaces. SCIENCE TOPICS PROCESS SKILLS VOCABULARY Properties of Matter Observing Fingerprint Properties of Electrons Comparing/Contrasting Latent UNIT 7 CRIME SCENE CHEMISTRY U7.1 EXPERIENCING CHEMISTRY ©2006 OMSI EXPERIMENT: DUSTED!! Operating Guide Dusted! Procedure: 1. Always wear safety goggles. 2. Use the towel to clean and dry the plastic Plexiglas. 3. Firmly press one of your fingertips, fingerprint side down, anywhere on the Plexiglas. Try not to smudge your print. Can you see your print? 4. Take the same finger and dab it gently onto the oil sponge, then press firmly onto the Plexiglas near your other print. Can you see your print? 5. Pull the brush out of the powder container. 6. Carefully brush over where you left your fingerprints until you see clear prints. What do you see? Is one print more visible than the other? 7. Push the brush back into the powder container. 8. Take a piece of tape and press it down onto one of your prints and rub firmly. 9. Lift the tape off and place it onto a square of the black paper. U7.2 UNIT 7 CRIME SCENE CHEMISTRY EXPERIENCING CHEMISTRY ©2006 OMSI EXPERIMENT: DUSTED! Operating Guide Does all the powder lift with the tape? How does your lifted print compare to the original? Why do we leave fingerprints behind? How can we collect them? A Closer Look: In this experiment, you left your fingerprint on a Plexiglas surface.
    [Show full text]
  • Met-Manual-2B.Pdf
    1 2 METALLOGRAPHIC HANDBOOK Donald C. Zipperian, Ph.D. Chief Technical Officier PACE Technologies Tucson, Arizona USA Copyright 2011 by PACE Technologies, USA No part of this manual may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner. First printing, 2011 3 Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by PACE Technologies, PACE Technologies cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of PACE Technologies control, PACE Technologies assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OR BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY.
    [Show full text]
  • Metallographic Preparation 2009
    Inc. DRP Ventures Division METALLOGRAPHIC PREPARATION 2009 y Copyright DRP Ventures Inc. 2007 2008 Division DRP Ventures Inc. # We would like to welcome the opportunity to introduce our latest catalogue. It provides an increasing range of quality products in abrasive cutting, mounting, grinding and polishing. ANAMET Sales and Technical Services are supported by competent and motivated personnel who continue to make every effort to earn and maintain your trust. They are committed to serving their customers by providing sample preparation supplies and offering assistance in improving their metallographic procedures. Over the years, ANAMET has been meeting the requirements of many industries such as aerospace, automotive, ceramics, composites disk drives, electro-optical materials, electronics, geological services, metal converters, metal powders, foundries, mineralogy, optics, plastics, primary and secondary metals, printed circuits, pulp industry, semiconductor substrates, tolls, mold and die finishing, educational institutions and nanotechnology. We thank you for being at the heart of our commitment and look forward to a continued relationship. Our dedication for excellence begins with our commitment in providing you with only the very best. Sincerely, Diane R. Pilley , B.Sc. ANAMET Division DRP Ventures Inc. 655 Jean-Paul Vincent, Suite 9, Longueuil, Qc, Canada J4G 1R3 • Tel: 450.646.1290 • Fax: 450.646.4309 • E-mail: [email protected] • Website: www.anamet.com Î ORDERING INFORMATION ON THE NEXT PAGE Í SECTIONING Abrasive Cut-Off Wheels. 1 Small Abrasive Cut-Off Wheels. 8 Diamond Cut-Off Wheels. 9 Wafering Diamond Wheels. 10 Cubic Boron Nitride. 11 Sectioning Accessories. 12 MOUNTING Compression Mounting. 13 Ambient Mounting. 16 Castable Mounting Accessories.
    [Show full text]
  • Nature Flaunts Her Glory
    Volume 34, Number 1 ■ January, 2019 Center for the Study of the First Americans Department of Anthropology Texas A&M University 4352 TAMU College Station, TX 77843-4352 www.centerfirstamericans.com - Nature flaunts her glory Near Vik, Iceland, a geologic formation known as a columnar basalt rose spectacularly showcases University of Oregon anthropologist Jon Erlandson, who takes time off from his research on the California Channel Islands to explore Viking-age sites (and engage his Nordic roots). His principal goal is to marshal convincing evidence for the coastal-entry route, one of several competing hypotheses that explain how the First Americans entered North America. See part 1 of our series on how the First Americans got here on page 13. To learn more about Erlandson’s work and career, see his profile on page 17. Photo by Erik Erlandson he Center for the Study of the First Americans fosters research and public T interest in the Peopling of the Americas. The Center, an integral part of the Department of Anthropology at Texas A&M University, pro motes inter disciplinary scholarly dialogue among physical, geological, biological and social scientists. The Mammoth Trumpet, news magazine of the Center, seeks to involve you in the peopling of the Americas by report- ing on developments in all pertinent areas of knowledge. JoinJoin inin thethe SearchSearch for the First Americans! Become a member of the Center for the Study of the First Americans on Center publications plus additional benefits according to the level of and explore the origin, lifeways, artifacts, and other aspects of the membership support you choose.
    [Show full text]
  • Metallographic Sample Preparation Techniques
    Materials Characterization 1ecliniques-Principle s and Applications Eds : G. Sridliar; S. Ghosh Chowdhurv & N. G. Goswanri NML. Janislredpur-83100711999) pp. 163-176 Metallographic Sample Preparation Techniques SAMAR DAS National Metallurgical Laboratory, Jamshedpur-831007 E-mail : [email protected] ABS'T'RACT Microstructure plays an important role in controlling the properties in metals and allcrvs. Hence i nicrostructu•al study called metallographv has been extensively used for materials selection, failure investigation and materials development. The microstructure of metals are com- monly observed under optical and/or electron microscopes, though other types of microscopes have been developed for specific uses. For any microscopic observation, the preparation of proper sample, which reveals the true microstructure is of prima ti, importance. Numerous and diverse techniques have been developed not only to suit the ma- terial but also for the type of microscope to be used. The techniques also vary with the details to be observed. It is difficult to prepare a comprehensive survey of the techniques developed and practised to- day. An attempt has been made here, to briefly discuss the most corn- monly used specimen preparation techniques for optical, scanning electron and transmission electron microscopy together with their merits and demerits. Any specimen preparation method involves several steps. Proper care in each step is essential to avoid difficulty in the subse- quent steps and to reveal the true microstructure. The choice of a technique depends mainly on the materials, the detail required to be observed and the type of microscope to be used. INTRODUCTION The study of microstructural details of metals and alloys is termed as metal- lography.z The microstructure of steel was first observed by H.C.
    [Show full text]
  • Forensic Biology 205 Administration Building • 419-372-2015
    Fall 2020 Bachelor of Science in Forensic Science Specialization in Forensic Biology 205 Administration Building • 419-372-2015 BG Perspective (BGP) Requirements FSCI Major Core Requirements (38 Hrs.) Must complete at least 1 course in each of the following: Hrs Grade English Composition and Oral Communication 4 BIOL 2040 Concepts in Biology I Course Credits 4 BIOL 2050 Concepts in Biology II 4 BIOL 3310 Human Anatomy & Physiology Quantitative Literacy 4 BIOL 3320 Human Anatomy & Physiology II _____________________________ ________ 3 CHEM 1770 Intro to Forensic Science 3 CRJU 4400 Law, Evidence, & Procedures in Must Complete at least 2 courses in each of the following: Forensic Science Humanities and the Arts 3 CRJU 4510 Criminal Justice Ethics 3 MATH 2470 Fund. of Statistics 5 PHYS 2010 or 2110 University Physics I 5 PHYS 2020 or 2120 University Physics II Natural Sciences - at least one Lab Science required FSCI Forensic Biology Specialization Requirements (16 hrs.) Social and Behavioral Sciences 4 BIOL 3500 Genetics 3 BIOL 4080 Molecular Biology 3 BIOL 4230 OR FSCI 4230 Forensic Biology Complete total required BGP credit hours by selecting courses from any 3 BIOL 4240 OR FSCI 4240 Forensic DNA Analysis of the above categories: 3 FSCI 4890 Internship OR FSCI 4990 Capstone Additional Requirements (25-26 Hrs.) These courses also fulfill the requirements for a minor in chemistry. Consult with an advisor about declaring the minor. University Requirements Designated courses in Humanities and the Arts and the Social and Behavorial Sciences
    [Show full text]
  • Fingerprint Capture Challenges and Opportunities
    Fingerprint Capture Challenges and Opportunities Dr. Rama Krishnan IDENT - Biometrics Quality Lead Presentation Overview □ Importance of Fingerprint Quality • Impacts on identification system □ Fingerprint Capture Challenges • Factors that will affect/impact fingerprint capture process □ Fingerprint Capture Opportunities • Possible approaches/solutions to enhance fingerprint capture quality Importance of Fingerprint Quality in an AFIS System □ Fingerprint Quality Impact on AFIS •NIST studies have shown that image quality has a direct impact on identification match accuracy □ Poor Fingerprint Image Quality Can Have the Following Negative Impacts in an AFIS System such as US-VISIT •Potential missed identification/verification of a subject •Additional secondary workload process •Additional fingerprint examiner workload Factors of Poor Fingerprint Quality Physiological • Dry fingers due to natural aging process • Worn ridge structure due to occupation • Finer ridge structure specific to a demographic group Behavioral • Uncooperative subject • Nervous Subject Environmental • Humidity / Temperature • Seasonal Change • Ambient Light Operational • High Throughput/ Reduced Capture Time • Unclean Scanner Platen Technological • Application Graphical User Interface (GUI) • Ease of Scanner Use / Interaction Poor Quality Image Illustrations Dry Finger Moist Finger Light Print Dark Print Poor Finger Worn Ridge Placement Structure Image Quality – User Demographics □ Male – Female • Female subjects have worse image quality □ Right Hand – Left Hand 41,000 Subjects • Left hand fingerprint quality is worse than right 24,000 Males hand 17,000 Females □ By Age of Subject • Image Quality worsens as subject age increases Image Quality Assurance Monitoring/Reporting 1 Application Identifies if there is an application-specific image quality issue - scanner, fingerprint capture GUI etc. 2 Site/Terminal Identifies if there is a site/terminal/operator-specific image quality issue within the application.
    [Show full text]
  • Cognitive Human Factors and Forensic Document Examiner Methods and Procedures Author(S): Mara L
    The author(s) shown below used Federal funding provided by the U.S. Department of Justice to prepare the following resource: Document Title: Cognitive Human Factors and Forensic Document Examiner Methods and Procedures Author(s): Mara L. Merlino, Chandler Al Namer, Taleb Al Namer, La’Quida Smith, Veronica Blas Dahir, Charles Edwards, Derek L. Hammond Document Number: 254581 Date Received: March 2020 Award Number: 2015-DN-BX-K069 This resource has not been published by the U.S. Department of Justice. This resource is being made publically available through the Office of Justice Programs’ National Criminal Justice Reference Service. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Cognitive Human Factors and Forensic Document Examination Methods and Procedures 1 Cognitive Human Factors and Forensic Document Examiner Methods and Procedures Final Summary Overview NIJ Award Number 2015-DN-BX-K069 Principal Investigator: Mara L. Merlino Research Assistants: Chandler Al Namer, Taleb Al Namer, La’Quida Smith Kentucky State University Frankfort, Kentucky 40601 Subaward Principal Investigator: Veronica Blas Dahir Research Assistants: Charles Edwards University of Nevada, Reno Reno, Nevada 89557 Expert Consultant: Derek L. Hammond U.S. Army Criminal Investigation Laboratory Forest Park, Georgia Acknowledgements: Bryan J. Found, Victoria Police Forensic Services Department Adrian Dyer, Royal Melbourne Institute of Technology Kentucky State University: Piarre Easley, Robert Olson University of Nevada, Reno: Mauricio Alvarez, J. Guillermo Villalobos, Denise Schaar Buis, Emily Wood, Chris Swinger, Chris Sanchez, Katherine Caufield Submitted to the U.S.
    [Show full text]
  • Government Institute of Forensic Science, Aurangabad M.Sc
    DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD SYLLABUS Of M.Sc. II (Semester III and IV) (Forensic Science) Effective from Academic Year 2013-2014 onwards 1 Government Institute Of Forensic Science, Aurangabad M.Sc. II Year (Finger print and Questioned Document) Preamble M.Sc.-II (Sem-III & IV) (Forensic Science) Ordinance ------------:- Title of the Program: - M.Sc.-II (Sem-III & IV) (Forensic Science) Ordinance ------------:-- Eligibility: - M.Sc.-I (Forensic Science) Regulation no. ----------- : Specializations :- Four Specializations viz. Finger print and Questioned Document, Forensic Chemistry and Toxicology, Forensic Biology, Serology and DNA Finger Printing, Cyber Space, IT Security and Cyber Forensic may be offered subject to the availability of students as mentioned in the preceding Para/ regulation. Regulation no. -----------:- Minimum intake capacity for each specialization: - There shall be minimum 25% of the intake capacity of the students for each specialization. Regulation no. ----------- :-Allotment of specialization :- The specialization to the students will be allotted on the basis of choice and merit (M.Sc.-I) of the students. However, if the criterion of minimum intake capacity for a particular specialization as mentioned above is not full filled, in such case the students will be diverted to other specialization strictly based on the marks obtained by him/her at M.Sc.-I examination. In such situation the decision of the Head of the concerned Institution shall be final. Regulation no.-------------- :- Course structure Each semester will have four theory papers and two theory based practical papers. In the fourth semester students will carry out Dissertation instead of one practical paper. Each paper shall be of 75 marks.
    [Show full text]
  • Fractographic Characterization of Polycarbonate Failure Modes
    FRACTOGRAPHIC CHARACTERIZATION OF POLYCARBONATE FAILURE MODES Jeffrey A. Jansen, Stork Technimet Now with The Madison Group Abstract subsequently conducted in order to understand and Polycarbonate is an important plastic molding resin used to document the resulting fracture surface features. This study fabricate many engineered components. Because of its was conducted to further the understanding of the failure widespread usage, many different types of failures can mechanisms routinely observed with polycarbonate parts. result from various service conditions. Evaluating these failures through a systematic analysis program allows an Experimental assessment of how and why the parts failed. An essential A commercially available medium-viscosity polycarbonate portion of the failure analysis process is the fractographic resin was selected for the investigation. The resin was examination, which provides information about the crack molded into plaques by a custom injection molder and origin location, and the crack initiation and extension subsequently machined to form the required test specimens. modes. The focus of this investigation was to characterize The prepared fracture surfaces were examined using a the surfaces of intentionally cracked laboratory samples in Hitachi S-3500N scanning electron microscope (SEM). order to gain a more thorough understanding of The specimens were blown off and cleaned ultrasonically in polycarbonate fracture mechanisms. This paper will a mixture of isopropanol and deionized water. Prior to the document some of the key fracture features associated with inspection, the samples were gold sputter coated to enhance various polycarbonate failure modes. the imaging. Background Tests and Results Polycarbonate is a key molding resin used to produce Uniaxial Tensile Loading engineered components in numerous applications, including A uniaxial fracture was created through tensile testing using the medical, appliance, and automotive industries.
    [Show full text]