Fermafs Last Theorem, a Genetic Introduction to Algebraic Number Theory, by Harold M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methodology and Metaphysics in the Development of Dedekind's Theory
Methodology and metaphysics in the development of Dedekind’s theory of ideals Jeremy Avigad 1 Introduction Philosophical concerns rarely force their way into the average mathematician’s workday. But, in extreme circumstances, fundamental questions can arise as to the legitimacy of a certain manner of proceeding, say, as to whether a particular object should be granted ontological status, or whether a certain conclusion is epistemologically warranted. There are then two distinct views as to the role that philosophy should play in such a situation. On the first view, the mathematician is called upon to turn to the counsel of philosophers, in much the same way as a nation considering an action of dubious international legality is called upon to turn to the United Nations for guidance. After due consideration of appropriate regulations and guidelines (and, possibly, debate between representatives of different philosophical fac- tions), the philosophers render a decision, by which the dutiful mathematician abides. Quine was famously critical of such dreams of a ‘first philosophy.’ At the oppos- ite extreme, our hypothetical mathematician answers only to the subject’s internal concerns, blithely or brashly indifferent to philosophical approval. What is at stake to our mathematician friend is whether the questionable practice provides a proper mathematical solution to the problem at hand, or an appropriate mathematical understanding; or, in pragmatic terms, whether it will make it past a journal referee. In short, mathematics is as mathematics does, and the philosopher’s task is simply to make sense of the subject as it evolves and certify practices that are already in place. -
Open Problems: CM-Types Acting on Class Groups
Open problems: CM-types acting on class groups Gabor Wiese∗ October 29, 2003 These are (modified) notes and slides of a talk given in the Leiden number theory seminar, whose general topic are Shimura varieties. The aim of the talk is to formulate a purely number theoretic question (of Brauer-Siegel type), whose (partial) answer might lead to progress on the so-called André-Oort conjecture on special subvarieties of Shimura varieties (thus the link to the seminar). The question ought to be considered as a special case of problem 14 in [EMO], which was proposed by Bas Edixhoven and which we recall now. Let g be a positive integer and let Ag be the moduli space of principally polarized abelian varieties of dimension g. Do there exist C; δ > 0 such that for every CM-point x of Ag (i.e. the corresponding abelian variety has CM) one has G :x C discr(R ) δ; j Q j ≥ j x j where Rx is the centre of the endomorphism ring of the abelian variety correspond- ing to x??? What we will call the Siegel question in the sequel, is obtained by restricting to simple abelian varieties. In the talk I will prove everything that seems to be known on the question up to this moment, namely the case of dimension 2. This was worked out by Bas Edixhoven in [E]. The arguments used are quite “ad hoc” and I will try to point out, where obstacles to gener- alisations seem to lie. The boxes correspond more or less to the slides I used. -
Background on Local Fields and Kummer Theory
MATH 776 BACKGROUND ON LOCAL FIELDS AND KUMMER THEORY ANDREW SNOWDEN Our goal at the moment is to prove the Kronecker{Weber theorem. Before getting to this, we review some of the basic theory of local fields and Kummer theory, both of which will be used constantly throughout this course. 1. Structure of local fields Let K=Qp be a finite extension. We denote the ring of integers by OK . It is a DVR. There is a unique maximal ideal m, which is principal; any generator is called a uniformizer. We often write π for a uniformizer. The quotient OK =m is a finite field, called the residue field; it is often denoted k and its cardinality is often denoted q. Fix a uniformizer π. Every non-zero element x of K can be written uniquely in the form n uπ where u is a unit of OK and n 2 Z; we call n the valuation of x, and often denote it S −n v(x). We thus have K = n≥0 π OK . This shows that K is a direct union of the fractional −n ideals π OK , each of which is a free OK -module of rank one. The additive group OK is d isomorphic to Zp, where d = [K : Qp]. n × ∼ × The decomposition x = uπ shows that K = Z × U, where U = OK is the unit group. This decomposition is non-canonical, as it depends on the choice of π. The exact sequence 0 ! U ! K× !v Z ! 0 is canonical. Choosing a uniformizer is equivalent to choosing a splitting of this exact sequence. -
20 the Kronecker-Weber Theorem
18.785 Number theory I Fall 2016 Lecture #20 11/17/2016 20 The Kronecker-Weber theorem In the previous lecture we established a relationship between finite groups of Dirichlet characters and subfields of cyclotomic fields. Specifically, we showed that there is a one-to- one-correspondence between finite groups H of primitive Dirichlet characters of conductor dividing m and subfields K of Q(ζm)=Q under which H can be viewed as the character group of the finite abelian group Gal(K=Q) and the Dedekind zeta function of K factors as Y ζK (x) = L(s; χ): χ2H Now suppose we are given an arbitrary finite abelian extension K=Q. Does the character group of Gal(K=Q) correspond to a group of Dirichlet characters, and can we then factor the Dedekind zeta function ζK (S) as a product of Dirichlet L-functions? The answer is yes! This is a consequence of the Kronecker-Weber theorem, which states that every finite abelian extension of Q lies in a cyclotomic field. This theorem was first stated in 1853 by Kronecker [2] and provided a partial proof for extensions of odd degree. Weber [6] published a proof 1886 that was believed to address the remaining cases; in fact Weber's proof contains some gaps (as noted in [4]), but in any case an alternative proof was given a few years later by Hilbert [1]. The proof we present here is adapted from [5, Ch. 14] 20.1 Local and global Kronecker-Weber theorems We now state the (global) Kronecker-Weber theorem. -
Algebraic Number Theory II
Algebraic number theory II Uwe Jannsen Contents 1 Infinite Galois theory2 2 Projective and inductive limits9 3 Cohomology of groups and pro-finite groups 15 4 Basics about modules and homological Algebra 21 5 Applications to group cohomology 31 6 Hilbert 90 and Kummer theory 41 7 Properties of group cohomology 48 8 Tate cohomology for finite groups 53 9 Cohomology of cyclic groups 56 10 The cup product 63 11 The corestriction 70 12 Local class field theory I 75 13 Three Theorems of Tate 80 14 Abstract class field theory 83 15 Local class field theory II 91 16 Local class field theory III 94 17 Global class field theory I 97 0 18 Global class field theory II 101 19 Global class field theory III 107 20 Global class field theory IV 112 1 Infinite Galois theory An algebraic field extension L/K is called Galois, if it is normal and separable. For this, L/K does not need to have finite degree. For example, for a finite field Fp with p elements (p a prime number), the algebraic closure Fp is Galois over Fp, and has infinite degree. We define in this general situation Definition 1.1 Let L/K be a Galois extension. Then the Galois group of L over K is defined as Gal(L/K) := AutK (L) = {σ : L → L | σ field automorphisms, σ(x) = x for all x ∈ K}. But the main theorem of Galois theory (correspondence between all subgroups of Gal(L/K) and all intermediate fields of L/K) only holds for finite extensions! To obtain the correct answer, one needs a topology on Gal(L/K): Definition 1.2 Let L/K be a Galois extension. -
Arxiv:Math/0412262V2 [Math.NT] 8 Aug 2012 Etrgae Tgte Ihm)O Atnscnetr and Conjecture fie ‘Artin’S Number on of Cojoc Me) Domains’
ARTIN’S PRIMITIVE ROOT CONJECTURE - a survey - PIETER MOREE (with contributions by A.C. Cojocaru, W. Gajda and H. Graves) To the memory of John L. Selfridge (1927-2010) Abstract. One of the first concepts one meets in elementary number theory is that of the multiplicative order. We give a survey of the lit- erature on this topic emphasizing the Artin primitive root conjecture (1927). The first part of the survey is intended for a rather general audience and rather colloquial, whereas the second part is intended for number theorists and ends with several open problems. The contribu- tions in the survey on ‘elliptic Artin’ are due to Alina Cojocaru. Woj- ciec Gajda wrote a section on ‘Artin for K-theory of number fields’, and Hester Graves (together with me) on ‘Artin’s conjecture and Euclidean domains’. Contents 1. Introduction 2 2. Naive heuristic approach 5 3. Algebraic number theory 5 3.1. Analytic algebraic number theory 6 4. Artin’s heuristic approach 8 5. Modified heuristic approach (`ala Artin) 9 6. Hooley’s work 10 6.1. Unconditional results 12 7. Probabilistic model 13 8. The indicator function 17 arXiv:math/0412262v2 [math.NT] 8 Aug 2012 8.1. The indicator function and probabilistic models 17 8.2. The indicator function in the function field setting 18 9. Some variations of Artin’s problem 20 9.1. Elliptic Artin (by A.C. Cojocaru) 20 9.2. Even order 22 9.3. Order in a prescribed arithmetic progression 24 9.4. Divisors of second order recurrences 25 9.5. Lenstra’s work 29 9.6. -
A Brief History of Ring Theory
A Brief History of Ring Theory by Kristen Pollock Abstract Algebra II, Math 442 Loyola College, Spring 2005 A Brief History of Ring Theory Kristen Pollock 2 1. Introduction In order to fully define and examine an abstract ring, this essay will follow a procedure that is unlike a typical algebra textbook. That is, rather than initially offering just definitions, relevant examples will first be supplied so that the origins of a ring and its components can be better understood. Of course, this is the path that history has taken so what better way to proceed? First, it is important to understand that the abstract ring concept emerged from not one, but two theories: commutative ring theory and noncommutative ring the- ory. These two theories originated in different problems, were developed by different people and flourished in different directions. Still, these theories have much in com- mon and together form the foundation of today's ring theory. Specifically, modern commutative ring theory has its roots in problems of algebraic number theory and algebraic geometry. On the other hand, noncommutative ring theory originated from an attempt to expand the complex numbers to a variety of hypercomplex number systems. 2. Noncommutative Rings We will begin with noncommutative ring theory and its main originating ex- ample: the quaternions. According to Israel Kleiner's article \The Genesis of the Abstract Ring Concept," [2]. these numbers, created by Hamilton in 1843, are of the form a + bi + cj + dk (a; b; c; d 2 R) where addition is through its components 2 2 2 and multiplication is subject to the relations i =pj = k = ijk = −1. -
Appendix a Solutions and Hints to Exercises
Appendix A Solutions and Hints to Exercises Chapter 1 1.1 1. Suppose that there are only finitely many prime p ≡ 3 (mod 4), and label them p1,...,pn. Then consider N = 4p1 ...pn − 1. This number is clearly odd, and has remainder 3 after dividing by 4. So its prime divisors are all odd, and they can’t all be 1 (mod 4), as the product of numbers which are 1 (mod 4) is again 1 (mod 4). So N has a prime divisor p ≡ 3(mod4).But p must be different from all the pi , since p|N but pi N for all i = 1,...,n. So there must be infinitely many primes p ≡ 3(mod4). 2. Suppose that there are only finitely many prime p ≡ 5 (mod 6), and label them p1,...,pn. Then consider N = 6p1 ...pn − 1. This number is clearly odd, and has remainder 5 after dividing by 6. So (6, N) = 1, and the prime divisors of N can’t all be 1 (mod 6), as the product of numbers which are 1 (mod 6) is again 1 (mod 6). So N has a prime divisor p ≡ 5(mod6).But p must be different from all the pi , since p|N but pi N for all i = 1,...,n. So there must be infinitely many primes p ≡ 5(mod6). 1.2 1. Suppose that p|x2 +1. If x is even, clearly p is odd. Then x2 ≡−1(modp) (and as p = 2, we have x2 ≡ 1(modp)), and so x4 ≡ 1(modp). -
Number Crunching Vs. Number Theory: Computers and FLT, from Kummer to SWAC (1850–1960), and Beyond
Arch. Hist. Exact Sci. (2008) 62:393–455 DOI 10.1007/s00407-007-0018-2 Number crunching vs. number theory: computers and FLT, from Kummer to SWAC (1850–1960), and beyond Leo Corry Received: 24 February 2007 / Published online: 16 November 2007 © Springer-Verlag 2007 Abstract The present article discusses the computational tools (both conceptual and material) used in various attempts to deal with individual cases of FLT, as well as the changing historical contexts in which these tools were developed and used, and affected research. It also explores the changing conceptions about the role of computations within the overall disciplinary picture of number theory, how they influenced research on the theorem, and the kinds of general insights thus achieved. After an overview of Kummer’s contributions and its immediate influence, I present work that favored intensive computations of particular cases of FLT as a legitimate, fruitful, and worth- pursuing number-theoretical endeavor, and that were part of a coherent and active, but essentially low-profile tradition within nineteenth century number theory. This work was related to table making activity that was encouraged by institutions and individuals whose motivations came mainly from applied mathematics, astronomy, and engineering, and seldom from number theory proper. A main section of the article is devoted to the fruitful collaboration between Harry S. Vandiver and Emma and Dick Lehmer. I show how their early work led to the hesitant introduction of electronic computers for research related with FLT. Their joint work became a milestone for computer-assisted activity in number theory at large. Communicated by J.J. -
Kummer Theory
Lecture 12: Kummer Theory William Stein Feb 8, 2010 1 Kummer Theory of Fields Kummer theory is concerned with classifying the abelian extensions of exponent n of a field K, assuming that K contains the nth roots of unity. It's a generalization of the correspondence between quadratic extensions of Q and non-square squarefree integers. Let n be a positive integer, and let K be a field of characteristic prime to n. Let L be a separable closure of K. Let µn(L) denote the set of elements of order dividing n in L. Lemma 1.1. µn(L) is a cyclic group of order n. n Proof. The elements of µn(L) are exactly the roots in L of the polynomial x −1. Since n n is coprime to the characteristic, all roots of x − 1 are in L, so µn(L) has order at n least n. But K is a field, so x − 1 can have at most n roots, so µn(L) has order n. Any finite subgroup of the multiplicative group of a field is cyclic, so µn(L) is cyclic. Consider the exact sequence n ∗ x 7! x ∗ 1 ! µn(L) ! L −−−−−! L ! 1 of GK = Gal(L=K)-modules. The associated long exact sequence of Galois cohomology yields ∗ ∗ n 1 1 ∗ 1 ! K =(K ) ! H (K; µn(L)) ! H (K; L ) !··· : We proved that H1(K; L∗) = 0, so we conclude that ∗ ∗ n ∼ 1 K =(K ) = H (K; µn(L)); where the isomorphism is via the δ connecting homomorphism. If α 2 L∗, we obtain the 1 ∗ n corresponding element δ(α) 2 H (K; µn(L)) by finding some β 2 L such that β = α; then the corresponding cocycle is σ 7! σ(β)/β 2 µn(L). -
Math 331-2 Lecture Notes
Math 331-2: Abstract Algebra Northwestern University, Lecture Notes Written by Santiago Ca~nez These are notes which provide a basic summary of each lecture for Math 331-2, the second quarter of \MENU: Abstract Algebra", taught by the author at Northwestern University. The book used as a reference is the 3rd edition of Abstract Algebra by Dummit and Foote. Watch out for typos! Comments and suggestions are welcome. Contents Lecture 1: Introduction to Rings 2 Lecture 2: Matrix and Polynomial Rings 6 Lecture 3: More Ring Constructions 8 Lecture 4: Quotient Rings 14 Lecture 5: More on Quotients and Ideals 18 Lecture 6: Maximal Ideals 21 Lecture 7: Prime Ideals 25 Lecture 8: Geometry via Algebra 28 Lecture 9: Rings of Fractions 32 Lecture 10: More on Fractions 37 Lecture 11: Chinese Remainder Theorem 43 Lecture 12: Euclidean Domains 47 Lecture 13: More on Euclidean 51 Lecture 14: Principal Ideal Domains 54 Lecture 15: Unique Factorization 57 Lecture 16: More on UFDs 60 Lecture 17: Polynomials Revisited 63 Lecture 18: Gauss's Lemma 66 Lecture 19: Eisenstein's Criterion 69 Lecture 20: Modules over Rings 72 Lecture 21: Module Homomorphisms 77 Lecture 22: Sums and Free Modules 80 Lecture 23: Modules over PIDs 85 Lecture 24: Structure Theorems 89 Lecture 25: More on Structure Theorems 92 Lecture 26: Jordan Normal Form 97 Lecture 27: More on Normal Forms 103 Lecture 1: Introduction to Rings We continue our study of abstract algebra, this quarter focusing on rings and (to a lesser extent) modules. Rings provide a general setting in which \arithmetic" and the notion of \number" makes sense, and indeed the development of ring theory was borne out of attempts to understand general properties analogous to those of integers. -
Dedekind's 1871 Version of the Theory of Ideals∗
Dedekind's 1871 version of the theory of ideals¤ Translated by Jeremy Avigad March 19, 2004 Translator's introduction By the middle of the nineteenth century, it had become clear to mathe- maticians that the study of ¯nite ¯eld extensions of the rational numbers is indispensable to number theory, even if one's ultimate goal is to understand properties of diophantine expressions and equations in the ordinary integers. It can happen, however, that the \integers" in such extensions fail to satisfy unique factorization, a property that is central to reasoning about the or- dinary integers. In 1844, Ernst Kummer observed that unique factorization fails for the cyclotomic integers with exponent 23, i.e. the ring Z[³] of inte- gers of the ¯eld Q(³), where ³ is a primitive twenty-third root of unity. In 1847, he published his theory of \ideal divisors" for cyclotomic integers with prime exponent. This was to remedy the situation by introducing, for each such ring of integers, an enlarged domain of divisors, and showing that each integer factors uniquely as a product of these. He did not actually construct these integers, but, rather, showed how one could characterize their behav- ior qua divisibility in terms of ordinary operations on the associated ring of integers. Richard Dedekind and Leopold Kronecker later took up the task of ex- tending the theory to the integers in arbitrary ¯nite extensions of the ratio- nals. Despite their common influences and goals, however, the theories they ¤Work on this translation has been supported by a New Directions fellowship from the Andrew W.