12 Prime Ideals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prime Ideals in Polynomial Rings in Several Indeterminates
PROCEEDINGS OF THE AMIERICAN MIATHEMIIATICAL SOCIETY Volume 125, Number 1, January 1997, Pages 67 -74 S 0002-9939(97)03663-0 PRIME IDEALS IN POLYNOMIAL RINGS IN SEVERAL INDETERMINATES MIGUEL FERRERO (Communicated by Ken Goodearl) ABsTrRAcr. If P is a prime ideal of a polynomial ring K[xJ, where K is a field, then P is determined by an irreducible polynomial in K[x]. The purpose of this paper is to show that any prime ideal of a polynomial ring in n-indeterminates over a not necessarily commutative ring R is determined by its intersection with R plus n polynomials. INTRODUCTION Let K be a field and K[x] the polynomial ring over K in an indeterminate x. If P is a prime ideal of K[x], then there exists an irreducible polynomial f in K[x] such that P = K[x]f. This result is quite old and basic; however no corresponding result seems to be known for a polynomial ring in n indeterminates x1, ..., xn over K. Actually, it seems to be very difficult to find some system of generators for a prime ideal of K[xl,...,Xn]. Now, K [x1, ..., xn] is a Noetherian ring and by a converse of the principal ideal theorem for every prime ideal P of K[x1, ..., xn] there exist n polynomials fi, f..n such that P is minimal over (fi, ..., fn), the ideal generated by { fl, ..., f}n ([4], Theorem 153). Also, as a consequence of ([1], Theorem 1) it follows that any prime ideal of K[xl, X.., Xn] is determined by n polynomials. -
Methodology and Metaphysics in the Development of Dedekind's Theory
Methodology and metaphysics in the development of Dedekind’s theory of ideals Jeremy Avigad 1 Introduction Philosophical concerns rarely force their way into the average mathematician’s workday. But, in extreme circumstances, fundamental questions can arise as to the legitimacy of a certain manner of proceeding, say, as to whether a particular object should be granted ontological status, or whether a certain conclusion is epistemologically warranted. There are then two distinct views as to the role that philosophy should play in such a situation. On the first view, the mathematician is called upon to turn to the counsel of philosophers, in much the same way as a nation considering an action of dubious international legality is called upon to turn to the United Nations for guidance. After due consideration of appropriate regulations and guidelines (and, possibly, debate between representatives of different philosophical fac- tions), the philosophers render a decision, by which the dutiful mathematician abides. Quine was famously critical of such dreams of a ‘first philosophy.’ At the oppos- ite extreme, our hypothetical mathematician answers only to the subject’s internal concerns, blithely or brashly indifferent to philosophical approval. What is at stake to our mathematician friend is whether the questionable practice provides a proper mathematical solution to the problem at hand, or an appropriate mathematical understanding; or, in pragmatic terms, whether it will make it past a journal referee. In short, mathematics is as mathematics does, and the philosopher’s task is simply to make sense of the subject as it evolves and certify practices that are already in place. -
Algebra 557: Weeks 3 and 4
Algebra 557: Weeks 3 and 4 1 Expansion and Contraction of Ideals, Primary ideals. Suppose f : A B is a ring homomorphism and I A,J B are ideals. Then A can be thought→ of as a subring of B. We denote by⊂ Ie ( expansion⊂ of I) the ideal IB = f( I) B of B, and by J c ( contraction of J) the ideal J A = f − 1 ( J) A. The following are easy to verify: ∩ ⊂ I Iec, ⊂ J ce J , ⊂ Iece = Ie , J cec = J c. Since a subring of an integral domain is also an integral domain, and for any prime ideal p B, A/pc can be seen as a subring of B/p we have that ⊂ Theorem 1. The contraction of a prime ideal is a prime ideal. Remark 2. The expansion of a prime ideal need not be prime. For example, con- sider the extension Z Z[ √ 1 ] . Then, the expansion of the prime ideal (5) is − not prime in Z[ √ 1 ] , since 5 factors as (2 + i)(2 i) in Z[ √ 1 ] . − − − Definition 3. An ideal P A is called primary if its satisfies the property that for all x, y A, xy P , x P⊂, implies that yn P, for some n 0. ∈ ∈ ∈ ∈ ≥ Remark 4. An ideal P A is primary if and only if all zero divisors of the ring A/P are nilpotent. Since⊂ thsi propert is stable under passing to sub-rings we have as before that the contraction of a primary ideal remains primary. Moreover, it is immediate that Theorem 5. -
6. Localization
52 Andreas Gathmann 6. Localization Localization is a very powerful technique in commutative algebra that often allows to reduce ques- tions on rings and modules to a union of smaller “local” problems. It can easily be motivated both from an algebraic and a geometric point of view, so let us start by explaining the idea behind it in these two settings. Remark 6.1 (Motivation for localization). (a) Algebraic motivation: Let R be a ring which is not a field, i. e. in which not all non-zero elements are units. The algebraic idea of localization is then to make more (or even all) non-zero elements invertible by introducing fractions, in the same way as one passes from the integers Z to the rational numbers Q. Let us have a more precise look at this particular example: in order to construct the rational numbers from the integers we start with R = Z, and let S = Znf0g be the subset of the elements of R that we would like to become invertible. On the set R×S we then consider the equivalence relation (a;s) ∼ (a0;s0) , as0 − a0s = 0 a and denote the equivalence class of a pair (a;s) by s . The set of these “fractions” is then obviously Q, and we can define addition and multiplication on it in the expected way by a a0 as0+a0s a a0 aa0 s + s0 := ss0 and s · s0 := ss0 . (b) Geometric motivation: Now let R = A(X) be the ring of polynomial functions on a variety X. In the same way as in (a) we can ask if it makes sense to consider fractions of such polynomials, i. -
Prime Ideals in B-Algebras 1 Introduction
International Journal of Algebra, Vol. 11, 2017, no. 7, 301 - 309 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2017.7838 Prime Ideals in B-Algebras Elsi Fitria1, Sri Gemawati, and Kartini Department of Mathematics University of Riau, Pekanbaru 28293, Indonesia 1Corresponding author Copyright c 2017 Elsi Fitria, Sri Gemawati, and Kartini. This article is distributed un- der the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we introduce the definition of ideal in B-algebra and some relate properties. Also, we introduce the definition of prime ideal in B-algebra and we obtain some of its properties. Keywords: B-algebras, B-subalgebras, ideal, prime ideal 1 Introduction In 1996, Y. Imai and K. Iseki introduced a new algebraic structure called BCK-algebra. In the same year, K. Iseki introduced the new idea be called BCI-algebra, which is generalization from BCK-algebra. In 2002, J. Neggers and H. S. Kim [9] constructed a new algebraic structure, they took some properties from BCI and BCK-algebra be called B-algebra. A non-empty set X with a binary operation ∗ and a constant 0 satisfying some axioms will construct an algebraic structure be called B-algebra. The concepts of B-algebra have been disscussed, e.g., a note on normal subalgebras in B-algebras by A. Walendziak in 2005, Direct Product of B-algebras by Lingcong and Endam in 2016, and Lagrange's Theorem for B-algebras by JS. Bantug in 2017. -
Arxiv:Math/0412262V2 [Math.NT] 8 Aug 2012 Etrgae Tgte Ihm)O Atnscnetr and Conjecture fie ‘Artin’S Number on of Cojoc Me) Domains’
ARTIN’S PRIMITIVE ROOT CONJECTURE - a survey - PIETER MOREE (with contributions by A.C. Cojocaru, W. Gajda and H. Graves) To the memory of John L. Selfridge (1927-2010) Abstract. One of the first concepts one meets in elementary number theory is that of the multiplicative order. We give a survey of the lit- erature on this topic emphasizing the Artin primitive root conjecture (1927). The first part of the survey is intended for a rather general audience and rather colloquial, whereas the second part is intended for number theorists and ends with several open problems. The contribu- tions in the survey on ‘elliptic Artin’ are due to Alina Cojocaru. Woj- ciec Gajda wrote a section on ‘Artin for K-theory of number fields’, and Hester Graves (together with me) on ‘Artin’s conjecture and Euclidean domains’. Contents 1. Introduction 2 2. Naive heuristic approach 5 3. Algebraic number theory 5 3.1. Analytic algebraic number theory 6 4. Artin’s heuristic approach 8 5. Modified heuristic approach (`ala Artin) 9 6. Hooley’s work 10 6.1. Unconditional results 12 7. Probabilistic model 13 8. The indicator function 17 arXiv:math/0412262v2 [math.NT] 8 Aug 2012 8.1. The indicator function and probabilistic models 17 8.2. The indicator function in the function field setting 18 9. Some variations of Artin’s problem 20 9.1. Elliptic Artin (by A.C. Cojocaru) 20 9.2. Even order 22 9.3. Order in a prescribed arithmetic progression 24 9.4. Divisors of second order recurrences 25 9.5. Lenstra’s work 29 9.6. -
A Brief History of Ring Theory
A Brief History of Ring Theory by Kristen Pollock Abstract Algebra II, Math 442 Loyola College, Spring 2005 A Brief History of Ring Theory Kristen Pollock 2 1. Introduction In order to fully define and examine an abstract ring, this essay will follow a procedure that is unlike a typical algebra textbook. That is, rather than initially offering just definitions, relevant examples will first be supplied so that the origins of a ring and its components can be better understood. Of course, this is the path that history has taken so what better way to proceed? First, it is important to understand that the abstract ring concept emerged from not one, but two theories: commutative ring theory and noncommutative ring the- ory. These two theories originated in different problems, were developed by different people and flourished in different directions. Still, these theories have much in com- mon and together form the foundation of today's ring theory. Specifically, modern commutative ring theory has its roots in problems of algebraic number theory and algebraic geometry. On the other hand, noncommutative ring theory originated from an attempt to expand the complex numbers to a variety of hypercomplex number systems. 2. Noncommutative Rings We will begin with noncommutative ring theory and its main originating ex- ample: the quaternions. According to Israel Kleiner's article \The Genesis of the Abstract Ring Concept," [2]. these numbers, created by Hamilton in 1843, are of the form a + bi + cj + dk (a; b; c; d 2 R) where addition is through its components 2 2 2 and multiplication is subject to the relations i =pj = k = ijk = −1. -
Appendix a Solutions and Hints to Exercises
Appendix A Solutions and Hints to Exercises Chapter 1 1.1 1. Suppose that there are only finitely many prime p ≡ 3 (mod 4), and label them p1,...,pn. Then consider N = 4p1 ...pn − 1. This number is clearly odd, and has remainder 3 after dividing by 4. So its prime divisors are all odd, and they can’t all be 1 (mod 4), as the product of numbers which are 1 (mod 4) is again 1 (mod 4). So N has a prime divisor p ≡ 3(mod4).But p must be different from all the pi , since p|N but pi N for all i = 1,...,n. So there must be infinitely many primes p ≡ 3(mod4). 2. Suppose that there are only finitely many prime p ≡ 5 (mod 6), and label them p1,...,pn. Then consider N = 6p1 ...pn − 1. This number is clearly odd, and has remainder 5 after dividing by 6. So (6, N) = 1, and the prime divisors of N can’t all be 1 (mod 6), as the product of numbers which are 1 (mod 6) is again 1 (mod 6). So N has a prime divisor p ≡ 5(mod6).But p must be different from all the pi , since p|N but pi N for all i = 1,...,n. So there must be infinitely many primes p ≡ 5(mod6). 1.2 1. Suppose that p|x2 +1. If x is even, clearly p is odd. Then x2 ≡−1(modp) (and as p = 2, we have x2 ≡ 1(modp)), and so x4 ≡ 1(modp). -
18.726 Algebraic Geometry Spring 2009
MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) More properties of schemes (updated 9 Mar 09) I’ve now spent a fair bit of time discussing properties of morphisms of schemes. How ever, there are a few properties of individual schemes themselves that merit some discussion (especially for those of you interested in arithmetic applications); here are some of them. 1 Reduced schemes I already mentioned the notion of a reduced scheme. An affine scheme X = Spec(A) is reduced if A is a reduced ring (i.e., A has no nonzero nilpotent elements). This occurs if and only if each stalk Ap is reduced. We say X is reduced if it is covered by reduced affine schemes. Lemma. Let X be a scheme. The following are equivalent. (a) X is reduced. (b) For every open affine subsheme U = Spec(R) of X, R is reduced. (c) For each x 2 X, OX;x is reduced. Proof. A previous exercise. Recall that any closed subset Z of a scheme X supports a unique reduced closed sub- scheme, defined by the ideal sheaf I which on an open affine U = Spec(A) is defined by the intersection of the prime ideals p 2 Z \ U. See Hartshorne, Example 3.2.6. 2 Connected schemes A nonempty scheme is connected if its underlying topological space is connected, i.e., cannot be written as a disjoint union of two open sets. -
Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35
Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35 1. Let R be a commutative ring with 1 6= 0. (a) Prove that the nilradical of R is equal to the intersection of the prime ideals of R. Hint: it’s easy to show using the definition of prime that the nilradical is contained in every prime ideal. Conversely, suppose that f is not nilpotent and consider the set S of ideals I of R with the property that “n > 0 =⇒ f n 6∈ I.” Show that S has maximal elements and that any such maximal element must be a prime ideal. Solution: Suppose that f ∈ R is not nilpotent and let S be the set S of ideals I of R with the property that “n > 0 =⇒ f n 6∈ I.” Ordering S by inclusion, note that every chain is bounded above: if I1 ⊆ I2 ⊆ · · · is a chain, then I = ∪Ii is an upper bound which clearly lies in S. By Zorn’s lemma, S has a maximal element, say M, which we claim is prime. Indeed, suppose that uv ∈ M but that u 6∈ M and v 6∈ M. Then the ideals M + (u) and M + (v) strictly contain M so do not belong to S by maximality of M. Thus, there exist m and n such that f n ∈ M + (u) and f m ∈ M + (v). It follows that f m+n ∈ M + (uv) = M and hence that M is not in S, a contradiction. Thus, either u or v lies in M and M is prime. -
Unique Factorization of Ideals in OK
IDEAL FACTORIZATION KEITH CONRAD 1. Introduction We will prove here the fundamental theorem of ideal theory in number fields: every nonzero proper ideal in the integers of a number field admits unique factorization into a product of nonzero prime ideals. Then we will explore how far the techniques can be generalized to other domains. Definition 1.1. For ideals a and b in a commutative ring, write a j b if b = ac for an ideal c. Theorem 1.2. For elements α and β in a commutative ring, α j β as elements if and only if (α) j (β) as ideals. Proof. If α j β then β = αγ for some γ in the ring, so (β) = (αγ) = (α)(γ). Thus (α) j (β) as ideals. Conversely, if (α) j (β), write (β) = (α)c for an ideal c. Since (α)c = αc = fαc : c 2 cg and β 2 (β), β = αc for some c 2 c. Thus α j β in the ring. Theorem 1.2 says that passing from elements to the principal ideals they generate does not change divisibility relations. However, irreducibility can change. p Example 1.3. In Z[ −5],p 2 is irreduciblep as an element but the principal ideal (2) factors nontrivially: (2) = (2; 1 + −5)(2; 1 − −p5). p To see that neither of the idealsp (2; 1 + −5) and (2; 1 − −5) is the unit ideal, we give two arguments. Suppose (2; 1 + −5) = (1). Then we can write p p p 1 = 2(a + b −5) + (1 + −5)(c + d −5) for some integers a; b; c, and d. -
Math 331-2 Lecture Notes
Math 331-2: Abstract Algebra Northwestern University, Lecture Notes Written by Santiago Ca~nez These are notes which provide a basic summary of each lecture for Math 331-2, the second quarter of \MENU: Abstract Algebra", taught by the author at Northwestern University. The book used as a reference is the 3rd edition of Abstract Algebra by Dummit and Foote. Watch out for typos! Comments and suggestions are welcome. Contents Lecture 1: Introduction to Rings 2 Lecture 2: Matrix and Polynomial Rings 6 Lecture 3: More Ring Constructions 8 Lecture 4: Quotient Rings 14 Lecture 5: More on Quotients and Ideals 18 Lecture 6: Maximal Ideals 21 Lecture 7: Prime Ideals 25 Lecture 8: Geometry via Algebra 28 Lecture 9: Rings of Fractions 32 Lecture 10: More on Fractions 37 Lecture 11: Chinese Remainder Theorem 43 Lecture 12: Euclidean Domains 47 Lecture 13: More on Euclidean 51 Lecture 14: Principal Ideal Domains 54 Lecture 15: Unique Factorization 57 Lecture 16: More on UFDs 60 Lecture 17: Polynomials Revisited 63 Lecture 18: Gauss's Lemma 66 Lecture 19: Eisenstein's Criterion 69 Lecture 20: Modules over Rings 72 Lecture 21: Module Homomorphisms 77 Lecture 22: Sums and Free Modules 80 Lecture 23: Modules over PIDs 85 Lecture 24: Structure Theorems 89 Lecture 25: More on Structure Theorems 92 Lecture 26: Jordan Normal Form 97 Lecture 27: More on Normal Forms 103 Lecture 1: Introduction to Rings We continue our study of abstract algebra, this quarter focusing on rings and (to a lesser extent) modules. Rings provide a general setting in which \arithmetic" and the notion of \number" makes sense, and indeed the development of ring theory was borne out of attempts to understand general properties analogous to those of integers.