Descriptive Stats Conediam 1162Records

Total Page:16

File Type:pdf, Size:1020Kb

Descriptive Stats Conediam 1162Records This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 130 -99 NP Volcano and eruption 355818 355818 Cerro Cariquima 164 -99 NP Volcano 355832 355832 Cerro del Leon 238 -99 NP Volcano 352021 352021 Atacazo 240 -99 NP Volcano 351090 351090 Azufral 247 -99 NP Volcano 358070 358070 Monte Burney 249 -99 NP Volcano 357042 357042 Calabozos 260 -99 NP Volcano 352022 352022 Chacana 263 -99 NP Volcano 354007 354007 Nevado Chachani 264 -99 NP Volcano 352002 352002 Chachimbiro 266 -99 NP Volcano 358041 358041 Chaiten 270 -99 NP Volcano 358050 358050 Corcovado 295 -99 NP Volcano 352003 352003 Cuicocha 298 -99 NP Volcano 355112 355112 Cerro Escorial 299 -99 NP Volcano 355868 355868 Cerro Galan 301 -99 NP Volcano 351080 351080 Galeras 306 -99 NP Volcano 352020 352020 Guagua Pichincha 307 -99 NP Volcano 354030 354030 Huaynaputina 310 -99 NP Volcano 358057 358057 Cerro Hudson 312 -99 NP Volcano 355870 355870 Incapillo complex 315 -99 NP Volcano 355832 355832 Cerro del Leon 316 -99 NP Volcano 357110 357110 Llaima 323 -99 NP Volcano 357061 357061 Laguna del Maule 328 -99 NP Volcano 358040 358040 Michinmahuida 343 -99 NP Volcano 357130 357130 Mocho-Choshuenco 345 -99 NP Volcano 352005 352005 Mojanda 348 -99 NP Volcano 357066 357066 Payun Matru 349 -99 NP Volcano 352011 352011 Pululagua 351 -99 NP Volcano 351060 351060 Purace 357 -99 NP Volcano 357150 357150 Puyehue-Cordon Caulle 359 -99 NP Volcano 352060 352060 Quilotoa 361 -99 NP Volcano 358063 358063 Reclus ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 362 -99 NP Volcano 352010 352010 El Reventador 363 -99 NP Volcano 355210 355210 Cerro Blanco 373 -99 NP Volcano 357111 357111 Sollipulli 375 -99 NP Volcano 354031 354031 Ticsani 381 -99 NP Volcano 351030 351030 Nevado del Tolima 386 -99 NP Volcano 355150 355150 Cerro Tuzgle 390 -99 NP Volcano 354020 354020 Ubinas 394 -99 NP Volcano 357120 357120 Villarrica 405 -99 NP Volcano 352826 352826 Chalupas 410 -99 NP Volcano 355100 355100 Lascar 416 -99 NP Volcano 357153 357153 Antillanca Group 476 -99 NP Volcano and eruption -99 -99 Colluma, Cerro 493 -99 NP Volcano and eruption -99 -99 Sajama, Nevado del 910 -99 NP Volcano 358057 358057 Cerro Hudson 1090 -99 NP Volcano 357061 357061 Laguna del Maule 1159 -99 NP Volcano 357066 357066 Payun Matru 1283 -99 NP Volcano 351020 351020 Nevado del Ruiz 1532 -99 NP Volcano 357120 357120 Villarrica 1705 -99 NP Volcano -99 -99 Aracar Volcano 1713 -99 NP Volcano -99 -99 Cerro Sierra Nevada 1717 -99 NP Volcano -99 -99 Cerrito Blanco 1718 -99 NP Volcano -99 -99 Cerro De Incahuasi 1720 -99 NP Volcano 355130 355130 Nevado Ojos del Salado 1723 -99 NP Volcano -99 -99 Cerro Tupungatito 1725 -99 NP Volcano -99 -99 Volcano San Jose 1727 -99 NP Volcano -99 -99 Cerro Risco Plateado 1734 -99 NP Volcano -99 -99 Volcano Domuyo 1735 -99 NP Volcano -99 -99 Cochiquito Volcanic Group 1736 -99 NP Volcano -99 -99 Volcano Tromen 1743 -99 NP Volcano -99 -99 Cerro Huanquihue 1746 -99 NP Volcano -99 -99 Nunatak Viedma ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1748 1 NP Volcano -99 -99 Cerro Santo Tomas 1749 2 NP Volcano -99 -99 NP 1750 3 NP Volcano -99 -99 Cerro Llehuecclla 1751 4 NP Volcano -99 -99 NP 1752 5 NP Volcano -99 -99 NP 1753 6 NP Volcano -99 -99 Cerro Ajochupa 1754 7 NP Volcano -99 -99 Cerro Cristalniyocc 1755 8 NP Volcano -99 -99 NP 1756 9 NP Volcano -99 -99 NP 1757 10 NP Volcano -99 -99 Cerro Huarajuyo 1758 11 NP Volcano -99 -99 NP 1759 12 NP Volcano -99 -99 Cerro Huaracco 1760 13 NP Volcano -99 -99 Cerro Antapuccro 1761 14 NP Volcano -99 -99 Cerro Quichcasora 1762 15 NP Volcano -99 -99 Nevado Carahuaraso 1763 16 NP Volcano -99 -99 Nevado Unknown 1764 17 NP Volcano -99 -99 Nevado Unknown 1765 18 NP Volcano -99 -99 Nevado P. de Pesjapuquio 1766 19 NP Volcano -99 -99 Nevado Unknown 1767 20 NP Volcano -99 -99 Nevado Unknown 1768 21 NP Volcano -99 -99 Nevado Unknown 1769 22 NP Volcano -99 -99 Cerro Balcon 1770 23 NP Volcano -99 -99 NP 1771 24 NP Volcano -99 -99 Cerro Alco Loma 1772 25 NP Volcano -99 -99 NP 1773 26 NP Volcano -99 -99 NP 1774 27 NP Volcano -99 -99 Pampa Galeras Caldera 1775 28 NP Volcano -99 -99 Pampa Parccalsuyog 1776 29 NP Volcano -99 -99 Pampa Guiapampa 1777 30 NP Volcano -99 -99 Pampa 1778 31 NP Volcano -99 -99 Pampa ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1779 32 NP Volcano -99 -99 Cerro Pumahuiri 1780 33 NP Volcano -99 -99 NP 1781 34 NP Volcano -99 -99 NP 1782 35 NP Volcano -99 -99 NP 1783 36 NP Volcano -99 -99 NP 1784 37 NP Volcano -99 -99 NP 1785 38 NP Volcano -99 -99 NP 1786 39 NP Volcano -99 -99 Cerro Condor Sayana 1787 40 NP Volcano -99 -99 Cerro Huallaja 1788 41 NP Volcano -99 -99 Cerro Ticllaccahua 1789 42 NP Volcano -99 -99 Cerro Huagra 1790 43 NP Volcano -99 -99 Cerro Antapuna 1791 44 NP Volcano -99 -99 NP 1792 45 NP Volcano -99 -99 NP 1793 46 NP Volcano -99 -99 Nevado Firura 1794 47 NP Volcano -99 -99 Cerro Soncco Orcco 1795 48 NP Volcano -99 -99 Cerro Cosana 1796 49 NP Volcano -99 -99 Cerro Jahsaya 1797 50 NP Volcano -99 -99 Cerro Huaychahuaque 1798 51 NP Volcano -99 -99 NP 1799 52 NP Volcano -99 -99 Cerro Chuquihua 1800 53 NP Volcano -99 -99 NP 1801 54 NP Volcano -99 -99 Cerro Lomas Jochane 1802 55 NP Volcano -99 -99 Nevado Sara Sara 1803 56 NP Volcano -99 -99 Cerro Tirane 1804 57 NP Volcano -99 -99 Cerro Antapuna 1805 58 NP Volcano -99 -99 Cerro Sani 1806 59 NP Volcano -99 -99 NP 1807 60 NP Volcano -99 -99 Nevado Solimana 1808 61 NP Volcano -99 -99 Nevado Unknown 1809 62 NP Volcano -99 -99 Cerro Puca Majuras ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1810 63 NP Volcano -99 -99 Cerro Quello Apacheta 1811 64 NP Volcano -99 -99 NP 1812 65 NP Volcano -99 -99 NP 1813 66 NP Volcano -99 -99 NP 1814 67 NP Volcano -99 -99 NP 1815 68 NP Volcano -99 -99 Cerro Pumaranra 1816 69 NP Volcano -99 -99 NP 1817 70 NP Volcano -99 -99 Nevado Coropuna (1) 1818 71 NP Volcano -99 -99 Nevado Unknown 1819 72 NP Volcano -99 -99 Nevado Unknown 1820 73 NP Volcano -99 -99 Nevado Hualca Hualca 1821 74 NP Volcano -99 -99 Nevado Unknown 1822 75 NP Volcano -99 -99 Volcano Sabancaya (2) 1823 76 NP Volcano -99 -99 Nevado Ananita 1824 77 NP Volcano -99 -99 Nevado Unknown 1825 78 NP Volcano -99 -99 Nevado Ampato 1826 79 NP Volcano -99 -99 Nevado Unknown 1827 80 NP Volcano -99 -99 Nevado Unknown 1828 81 NP Volcano -99 -99 Cerro Colquerane 1829 82 NP Volcano -99 -99 Nevado Calcha 1830 83 NP Volcano -99 -99 Nevado Hualcullani 1831 84 NP Volcano -99 -99 Cerro Antasaya 1832 85 NP Volcano -99 -99 Cerro Bangarane 1833 86 NP Volcano -99 -99 NP 1834 87 NP Volcano -99 -99 NP 1835 88 NP Volcano -99 -99 Cerro Nocarane 1836 89 NP Volcano -99 -99 NP 1837 91 NP Volcano -99 -99 Cerro la Horqueta 1838 92 NP Volcano -99 -99 Cerro Condori 1839 93 NP Volcano -99 -99 Cerro Choquepata 1840 94 NP Volcano -99 -99 Cerro Pucara ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1841 95 NP Volcano -99 -99 Cerro Pampa de Palacio 1842 96 NP Volcano -99 -99 NP 1843 97 NP Volcano -99 -99 NP 1844 98 NP Volcano -99 -99 Cerro Cana Canari 1845 99 NP Volcano -99 -99 Cerro Tacune 1846 101 NP Volcano -99 -99 Cerro Ccapia 1847 102 NP Volcano -99 -99 Cerro Camata 1848 104 NP Volcano -99 -99 Volcano 1849 105 NP Volcano -99 -99 Volcano 1850 106 NP Volcano -99 -99 Cerro Horquetilla 1851 107 NP Volcano -99 -99 Cerro Bencasa 1852 108 NP Volcano -99 -99 Cerro Huertasora 1853 109 NP Volcano -99 -99 NP 1854 110 NP Volcano -99 -99 NP 1855 111 NP Volcano -99 -99 Cerro Larelare 1856 112 NP Volcano -99 -99 Cerro Creston Gr.
Recommended publications
  • Hydrothermal Alteration, Fumarolic Deposits and Fluids from Lastarria Volcanic Complex: a Multidisciplinary Study
    Andean Geology 42 (3): 166-196. May, 2016 Andean Geology doi: 10.5027/andgeoV43n2-a02 www.andeangeology.cl Hydrothermal alteration, fumarolic deposits and fluids from Lastarria Volcanic Complex: A multidisciplinary study *Felipe Aguilera1, Susana Layana2, Augusto Rodríguez-Díaz3, Cristóbal González2, Julio Cortés4, Manuel Inostroza2 1 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 2 Programa de Doctorado en Ciencias mención Geología, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected]; [email protected]; [email protected] 3 Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, 04150 México D.F., México. [email protected] 4 Consultor Independiente, Las Docas 4420, La Serena, Chile. [email protected] * Corresponding Author: [email protected] ABSTRACT. A multidisciplinary study that includes processing of Landsat ETM+ satellite images, chemistry of gas condensed, mineralogy and chemistry of fumarolic deposits, and fluid inclusion data from native sulphur deposits, has been carried out in the Lastarria Volcanic Complex (LVC) with the objective to determine the distribution and charac- teristics of hydrothermal alteration zones and to establish the relations between gas chemistry and fumarolic deposits. Satellite image processing shows the presence of four hydrothermal alteration zones, characterized by a mineral
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • ABSTRACTS ACTAS IAGOD 2019 31Ene.Pmd
    SALTA, ARGENTINA 28-31 AUGUST 2018 15th Quadrennial International Association on the Genesis of Ore Deposits Symposium SPONSORS PLATINUM SPONSORS GOLD SPONSORS SILVER SPONSORS BRONZE SPONSORS COPPER SPONSORS Co-sponsored by SALTA, ARGENTINA 28-31 AUGUST 2018 15th Quadrennial International Association on the Genesis of Ore Deposits Symposium SYMPOSIUM PROCEEDINGS SCIENTIFIC COMMITTEE CHAIR Lira Raúl – (University of Córdoba – CONICET, Argentina) MEMBERS Bineli-Betsi Thierry – (Botswana International University of Science and Technology) Chang Zhaoshan – (Colorado School of Mines, USA) Cherkasov Sergey – (Vernadsky State Geological Museum of Russian Academy of Sciences) Cook Nigel – (University of Adelaide, Australia) Gozalvez Martín – (Geological and Mining Survey of Argentina) Guido Diego – (CONICET/Austral Gold S.A, Argentina) Lentz David – (University of New Brunswick, Economic Geology Chair) López Luis – (National Atomic Energy Commission, Argentina) Mao Jingwen – (Chinese Academy of Geological Sciences/Hebei GEO University, China) Meinert Larry – (Consultant) Pons Josefina – (IIPG – University of Río Negro – University of Comahue – CONICET, Argentina) Rubinstein Nora – (IGEBa–University of Buenos Aires – CONICET) Sanematsu Kenzo – (Geological Survey of Japan, AIST) Schutesky Della Giustina Maria Emilia – (University of Brasília, Brasil) Tornos Fernando – (Spanish National Research Council – CSIC) Watanabe Yasushi – (Faculty of International Resource Sciences, Akita University, Japan) EDITED BY Daniel Rastelli, Dolores Álvarez, Noelia
    [Show full text]
  • Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the He Isotope Signatures of Geothermal Systems in Chile
    PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 EFFECTS OF VOLCANISM, CRUSTAL THICKNESS, AND LARGE SCALE FAULTING ON THE HE ISOTOPE SIGNATURES OF GEOTHERMAL SYSTEMS IN CHILE Patrick F. DOBSON1, B. Mack KENNEDY1, Martin REICH2, Pablo SANCHEZ2, and Diego MORATA2 1Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA 2Departamento de Geología y Centro de Excelencia en Geotermia de los Andes, Universidad de Chile, Santiago, CHILE [email protected] agree with previously published results for the ABSTRACT Chilean Andes. The Chilean cordillera provides a unique geologic INTRODUCTION setting to evaluate the influence of volcanism, crustal thickness, and large scale faulting on fluid Measurement of 3He/4He in geothermal water and gas geochemistry in geothermal systems. In the Central samples has been used to guide geothermal Volcanic Zone (CVZ) of the Andes in the northern exploration efforts (e.g., Torgersen and Jenkins, part of Chile, the continental crust is quite thick (50- 1982; Welhan et al., 1988) Elevated 3He/4He ratios 70 km) and old (Mesozoic to Paleozoic), whereas the (R/Ra values greater than ~0.1) have been interpreted Southern Volcanic Zone (SVZ) in central Chile has to indicate a mantle influence on the He isotopic thinner (60-40 km) and younger (Cenozoic to composition, and may indicate that igneous intrusions Mesozoic) crust. In the SVZ, the Liquiñe-Ofqui Fault provide the primary heat source for the associated System, a major intra-arc transpressional dextral geothermal fluids. Studies of helium isotope strike-slip fault system which controls the magmatic compositions of geothermal fluids collected from activity from 38°S to 47°S, provides the opportunity wells, hot springs and fumaroles within the Basin and to evaluate the effects of regional faulting on Range province of the western US (Kennedy and van geothermal fluid chemistry.
    [Show full text]
  • Seasonal Patterns of Atmospheric Mercury in Tropical South America As Inferred by a Continuous Total Gaseous Mercury Record at Chacaltaya Station (5240 M) in Bolivia
    Atmos. Chem. Phys., 21, 3447–3472, 2021 https://doi.org/10.5194/acp-21-3447-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia Alkuin Maximilian Koenig1, Olivier Magand1, Paolo Laj1, Marcos Andrade2,7, Isabel Moreno2, Fernando Velarde2, Grover Salvatierra2, René Gutierrez2, Luis Blacutt2, Diego Aliaga3, Thomas Reichler4, Karine Sellegri5, Olivier Laurent6, Michel Ramonet6, and Aurélien Dommergue1 1Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France 2Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia 3Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland 4Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA 5Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, Clermont-Ferrand, France 6Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France 7Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD 20742, USA Correspondence: Alkuin Maximilian Koenig ([email protected]) Received: 22 September 2020 – Discussion started: 28 October 2020 Revised: 20 January 2021 – Accepted: 21 January 2021 – Published: 5 March 2021 Abstract. High-quality atmospheric mercury (Hg) data are concentrations were linked to either westerly Altiplanic air rare for South America, especially for its tropical region. As a masses or those originating from the lowlands to the south- consequence, mercury dynamics are still highly uncertain in east of CHC.
    [Show full text]
  • Report on Cartography in the Republic of Chile 2011 - 2015
    REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 ARMY OF CHILE MILITARY GEOGRAPHIC INSTITUTE OF CHILE REPORT ON CARTOGRAPHY IN THE REPUBLIC OF CHILE 2011 - 2015 PRESENTED BY THE CHILEAN NATIONAL COMMITTEE OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AT THE SIXTEENTH GENERAL ASSEMBLY OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AUGUST 2015 1 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 CONTENTS Page Contents 2 1: CHILEAN NATIONAL COMMITTEE OF THE ICA 3 1.1. Introduction 3 1.2. Chilean ICA National Committee during 2011 - 2015 5 1.3. Chile and the International Cartographic Conferences of the ICA 6 2: MULTI-INSTITUTIONAL ACTIVITIES 6 2.1 National Spatial Data Infrastructure of Chile 6 2.2. Pan-American Institute for Geography and History – PAIGH 8 2.3. SSOT: Chilean Satellite 9 3: STATE AND PUBLIC INSTITUTIONS 10 3.1. Military Geographic Institute - IGM 10 3.2. Hydrographic and Oceanographic Service of the Chilean Navy – SHOA 12 3.3. Aero-Photogrammetric Service of the Air Force – SAF 14 3.4. Agriculture Ministry and Dependent Agencies 15 3.5. National Geological and Mining Service – SERNAGEOMIN 18 3.6. Other Government Ministries and Specialized Agencies 19 3.7. Regional and Local Government Bodies 21 4: ACADEMIC, EDUCATIONAL AND TRAINING SECTOR 21 4.1 Metropolitan Technological University – UTEM 21 4.2 Universities with Geosciences Courses 23 4.3 Military Polytechnic Academy 25 5: THE PRIVATE SECTOR 26 6: ACKNOWLEDGEMENTS AND ACRONYMS 28 ANNEX 1. List of SERNAGEOMIN Maps 29 ANNEX 2. Report from CENGEO (University of Talca) 37 2 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 PART ONE: CHILEAN NATIONAL COMMITTEE OF THE ICA 1.1: Introduction 1.1.1.
    [Show full text]
  • Scale Deformation of Volcanic Centres in the Central Andes
    letters to nature 14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides of 1–1.5 cm yr21 (Fig. 2). An area in southern Peru about 2.5 km and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). east of the volcano Hualca Hualca and 7 km north of the active 15. Hansen, M. (ed.) Constitution of Binary Alloys (McGraw-Hill, New York, 1958). 21 16. Emsley, J. (ed.) The Elements (Clarendon, Oxford, 1994). volcano Sabancaya is inflating with U LOS of about 2 cm yr . A third 21 17. Tanaka, H., Takahashi, I., Kimura, M. & Sobukawa, H. in Science and Technology in Catalysts 1994 (eds inflationary source (with ULOS ¼ 1cmyr ) is not associated with Izumi, Y., Arai, H. & Iwamoto, M.) 457–460 (Kodansya-Elsevier, Tokyo, 1994). a volcanic edifice. This third source is located 11.5 km south of 18. Tanaka, H., Tan, I., Uenishi, M., Kimura, M. & Dohmae, K. in Topics in Catalysts (eds Kruse, N., Frennet, A. & Bastin, J.-M.) Vols 16/17, 63–70 (Kluwer Academic, New York, 2001). Lastarria and 6.8 km north of Cordon del Azufre on the border between Chile and Argentina, and is hereafter called ‘Lazufre’. Supplementary Information accompanies the paper on Nature’s website Robledo caldera, in northwest Argentina, is subsiding with U (http://www.nature.com/nature). LOS of 2–2.5 cm yr21. Because the inferred sources are more than a few kilometres deep, any complexities in the source region are damped Acknowledgements such that the observed surface deformation pattern is smooth.
    [Show full text]
  • Area Changes of Glaciers on Active Volcanoes in Latin America Between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery
    Journal of Glaciology (2019), 65(252) 542–556 doi: 10.1017/jog.2019.30 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery JOHANNES REINTHALER,1,2 FRANK PAUL,1 HUGO DELGADO GRANADOS,3 ANDRÉS RIVERA,2,4 CHRISTIAN HUGGEL1 1Department of Geography, University of Zurich, Zurich, Switzerland 2Centro de Estudios Científicos, Valdivia, Chile 3Instituto de Geofisica, Universidad Nacional Autónoma de México, Mexico City, Mexico 4Departamento de Geografía, Universidad de Chile, Chile Correspondence: Johannes Reinthaler <[email protected]> ABSTRACT. Glaciers on active volcanoes are subject to changes in both climate fluctuations and vol- canic activity. Whereas many studies analysed changes on individual volcanoes, this study presents for the first time a comparison of glacier changes on active volcanoes on a continental scale. Glacier areas were mapped for 59 volcanoes across Latin America around 1986, 1999 and 2015 using a semi- automated band ratio method combined with manual editing using satellite images from Landsat 4/5/ 7/8 and Sentinel-2. Area changes were compared with the Smithsonian volcano database to analyse pos- sible glacier–volcano interactions. Over the full period, the mapped area changed from 1399.3 ± 80 km2 − to 1016.1 ± 34 km2 (−383.2 km2)or−27.4% (−0.92% a 1) in relative terms.
    [Show full text]
  • Patagonia Luxury Hiking Excursion
    Patagonia Luxury Hiking Excursion Please note that all of the itineraries listed in our web site are actual private tour itineraries we have prepared for clients over the past 12-18 months. By the very nature of what we do, each private tour itinerary is custom, exclusive and unique unto itself. Our over-riding goal is to create lifelong memories that you and your family will forever carry deep within your hearts. Overview Though our past hikes on the Milford Track (New Zealand), Inca Trail (Machu Picchu), Glacier (U.S.), and various areas of Switzerland and Austria were particularly memorable, we must confess that the hiking, horseback riding, and spectacular setting of, relatively inaccessible, Patagonia is unparalleled. The critical contrast is Patagonia’s pristine remoteness: no mass tourism or crowded hiking trails here! When hiking the wide range of areas in Patagonia, it is easy to see how this vast landscape still has hundreds of unnamed mountains, with many points inaccessible and unexplored. Located at the tip of the South American continent, the outstanding national parks (Torres del Paine!) and private reserves stretch across Chile and Argentina, divided by the Andes Mountains. The features of Patagonia are remarkable: wild rivers, muddy rainforests, glaciated peaks, granted monoliths, and vast steppes. This is a place for reflection, deep solitude, and unforgettable outdoor activities. Best Travel Time: Fall Winter Spring CHILE ARGENTINA Day 1 Temperature Range Temperature Range Fly to Santiago Highs: Mid 80’s Highs: Low 80’s Through our sister company, premium air provider Lows: Mid 50’s Lows: High 60’s TRAVNET, we may assist with your international airfare, as Area Area well as with mileage points conversion.
    [Show full text]
  • Mesozoic to Tertiary Evolution of the Southwestern Proto-Pacific Gondwana Margin
    University of Sydney, PhD Thesis, Kayla T. Maloney, 2012. The University of Sydney School of Geosciences Mesozoic to Tertiary evolution of the southwestern proto-Pacific Gondwana margin Kayla T. Maloney 2012 Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sydney School of Geosciences Division of Geology and Geophysics Madsen Building (F09) Sydney, NSW, 2006 Australia University of Sydney, PhD Thesis, Kayla T. Maloney, 2012. i DECLARATION I declare that this thesis is less than 100,000 words in length, and that the work contained in this thesis has not been submitted for a higher degree at any other university or institution. Kayla T. Maloney August, 2012 PREFACE This PhD thesis consists of a collection of papers that are published or prepared for submission with international peer-reviewed journals appropriate to the discipline of geology. The publications form part of an integrated project and are presented in an order that represents the related elements of a connected thesis. The thesis contains an introductory section that provides an outline of the thesis, a summary of the contribution of the work to the field of geology, and a critical evaluation of the role of the thesis in informing further research in the field. Common themes in the papers are tied together and a discussion and conclusion of the whole thesis is presented at the end. No animal or ethical approvals were needed during the completion of this study. Data and interpretations in the thesis are the work of the author except where stated in the text.
    [Show full text]
  • Catalog of the Types of Curculionoidea (Insecta, Coleoptera) Deposited at the Museo Argentino De Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires
    Rev. Mus. Argentino Cienc. Nat., n.s. 15(2): 209-280, 2013 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Catalog of the types of Curculionoidea (Insecta, Coleoptera) deposited at the Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires Axel O. BACHMANN 1 & Analía A. LANTERI 2 1Museo Argentino de Ciencias Naturales, División Entomología, Buenos Aires C1405DJR. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EHA, e-mail: [email protected]. uba.ar. 2 Museo de La Plata, División Entomología, Paseo del Bosque s/n, La Plata, B1900FWA, Argentina, e-mail: [email protected] Abstract: The type specimens of Curculionoidea (Apionidae, Brentidae, Anhribidae, Curculionidae, Platypodidae, and Scolytidae) from the Museo Argentino de Ciencias Naturales (MACN), corresponding to all current categories, are herein catalogued. A total of 344 specific and subspecific names are alphabetically recorded, for their original binomina or trinomina, and spellings. Later combinations and synonyms are mentioned, as well as the informa- tion of all the labels associated to the specimens. In order to assist future research, three further lists are added: 1. specimens deemed to be deposited at MACN but not found in the collection; 2. specimens labeled as types of species which descriptions have probably never been published (non available names); and 3. specimens of dubi- ous type status, because the information on the labels does not agree with that of the original publication. Key words: Type specimens, Curculionoidea, Coleoptera, Insecta. Resumen: Catálogo de los tipos de Curculionoidea (Insecta, Coleoptera) depositados en el Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires.
    [Show full text]
  • Challenges in Ascertaining the Late Quaternary Tephrostratigraphy of Southernmost Chile and Argentina Stefan M
    Challenges in ascertaining the late Quaternary tephrostratigraphy of southernmost Chile and Argentina 1 1 2 1 1 3 Stefan M. Lachowycz , Karen Fontijn , Victoria C. Smith , David M. Pyle , Tamsin A. Mather , José A. Naranjo [1] Department of Earth Sciences, University of Oxford, UK [2] Research Laboratory for Archaeology and the History of Art, University of Oxford, UK [3] Servicio Nacional de Geología y Minería, Santiago, Chile [email protected] # ## ! Overview Palaeoenvironmental archives 76°W 74°W 72°W 70°W 68°W 80°W 60°W 40°W Tephra preservation in palaeoenvironmental records Cha1 ! # 10°N ! Cha2 ! ! - The explosive eruption history and tephrostratigraphy in southernmost Chile/Argentina Minchinmávida Mic1 Issues with using tephra in palaeoenvironmental archives in this region to correlate records and constrain eruption parameters: and explosive eruption history ! # 0° ! Chaitén# Cor3 is significant for volcanic hazard assessment and as a tool to correlate and date reliably Corcovado# ! - 19 volcanic centres are thought to have been Cha2008 10°S Environment Physical preservation Chemical preservation Dating and record bias issues the many palaeoenvironmental archives here, but is currently poorly constrained. Yanteles# active in post-glacial times in southernmost # Yan1 Peat - Spatially and temporally variable - Al, Fe, alkali and alkali earth metals - Tephra layers are dispersed by root growth, 20°S 14 6 - We have reviewed the existing late Quaternary tephrostratigraphic record, and here # accumulation rates (F6, F7) ca use depth
    [Show full text]