Mouse Timmdc1 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Timmdc1 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Timmdc1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Timmdc1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Timmdc1 gene (NCBI Reference Sequence: NM_024273 ; Ensembl: ENSMUSG00000002846 ) is located on Mouse chromosome 16. 7 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 7 (Transcript: ENSMUST00000002925). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Timmdc1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-206M14 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a gene trap allele exhibit lethality. Heterozygous mice show an increased mean percentage of CD4 cells in the peripheral blood compared with controls, but no other notable heterozygous phenotype was detected. Exon 2 starts from about 22.81% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 3808 bp, and the size of intron 2 for 3'-loxP site insertion: 7559 bp. The size of effective cKO region: ~666 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 7 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Timmdc1 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7166bp) | A(26.26% 1882) | C(19.89% 1425) | T(33.84% 2425) | G(20.01% 1434) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN -------------------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr16 - 38518783 38521782 3000 browser details YourSeq 149 799 1836 3000 93.6% chr1 + 116189400 116466611 277212 browser details YourSeq 141 791 995 3000 89.2% chr4 + 43462561 43462746 186 browser details YourSeq 130 793 948 3000 95.0% chrX - 21698533 21698687 155 browser details YourSeq 127 791 946 3000 91.3% chr18 + 35691662 35691816 155 browser details YourSeq 125 778 1231 3000 81.7% chr1 - 164914113 164914330 218 browser details YourSeq 125 789 936 3000 95.7% chr15 + 58680200 58680356 157 browser details YourSeq 124 797 944 3000 93.5% chr2 + 121970341 121970487 147 browser details YourSeq 123 791 936 3000 95.6% chr10 - 40846214 40846359 146 browser details YourSeq 123 791 945 3000 89.7% chr3 + 83952283 83952437 155 browser details YourSeq 122 797 1244 3000 79.6% chr8 + 27788386 27788541 156 browser details YourSeq 122 791 945 3000 92.5% chr1 + 171468529 171468683 155 browser details YourSeq 121 791 944 3000 89.8% chr3 - 58331254 58331406 153 browser details YourSeq 121 793 936 3000 95.6% chr19 - 14462846 14462989 144 browser details YourSeq 121 797 945 3000 92.1% chr17 - 81293396 81293543 148 browser details YourSeq 121 793 945 3000 93.6% chr11 + 29227969 29228121 153 browser details YourSeq 120 791 939 3000 94.3% chr15 - 58131790 58131944 155 browser details YourSeq 120 798 940 3000 95.5% chr4 + 126993202 126993816 615 browser details YourSeq 120 797 940 3000 94.8% chr18 + 38986568 38986713 146 browser details YourSeq 119 791 947 3000 88.4% chr9 - 59738018 59738172 155 Note: The 3000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr16 - 38515117 38518116 3000 browser details YourSeq 261 822 2427 3000 92.6% chr4 - 106355255 106612227 256973 browser details YourSeq 213 820 2436 3000 93.5% chr11 - 68988877 69240265 251389 browser details YourSeq 171 2707 3000 3000 88.4% chrX + 121333946 121334167 222 browser details YourSeq 166 1989 2436 3000 91.5% chrX - 151636309 151636900 592 browser details YourSeq 156 1976 2435 3000 81.2% chr15 - 90111595 90111900 306 browser details YourSeq 154 2244 2448 3000 88.9% chr5 + 23747044 23747251 208 browser details YourSeq 153 2243 2436 3000 89.7% chr5 - 92420912 92421110 199 browser details YourSeq 153 2185 2436 3000 89.6% chr17 - 70769063 70769680 618 browser details YourSeq 152 2243 2453 3000 85.1% chrX + 77415570 77415762 193 browser details YourSeq 152 2253 2437 3000 91.4% chr14 + 66032414 66032599 186 browser details YourSeq 150 2245 2437 3000 87.9% chr7 + 6898824 6899014 191 browser details YourSeq 148 2253 2437 3000 90.3% chr9 + 40701499 40701683 185 browser details YourSeq 147 2253 2435 3000 90.2% chr16 + 30953095 30953277 183 browser details YourSeq 146 2244 2434 3000 88.5% chr1 - 136012598 136012788 191 browser details YourSeq 146 2254 2436 3000 90.7% chr9 + 21534037 21534612 576 browser details YourSeq 146 2245 2435 3000 87.0% chr6 + 30086201 30086388 188 browser details YourSeq 145 2244 2436 3000 88.1% chr16 - 4505308 4505503 196 browser details YourSeq 144 1987 2437 3000 78.3% chr10 - 79924501 79924694 194 browser details YourSeq 144 2244 2436 3000 86.4% chr14 + 100449515 100449703 189 Note: The 3000 bp section downstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Timmdc1 translocase of inner mitochondrial membrane domain containing 1 [ Mus musculus (house mouse) ] Gene ID: 76916, updated on 10-Oct-2019 Gene summary Official Symbol Timmdc1 provided by MGI Official Full Name translocase of inner mitochondrial membrane domain containing 1 provided by MGI Primary source MGI:MGI:1922139 See related Ensembl:ENSMUSG00000002846 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as AV135763; 2810021C21Rik; 4930455C21Rik Expression Ubiquitous expression in adrenal adult (RPKM 20.5), duodenum adult (RPKM 8.8) and 28 other tissues See more Orthologs human all Genomic context Location: 16; 16 B4 See Timmdc1 in Genome Data Viewer Exon count: 9 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 16 NC_000082.6 (38497843..38522778, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 16 NC_000082.5 (38497925..38522747, complement) Chromosome 16 - NC_000082.6 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 2 transcripts Gene: Timmdc1 ENSMUSG00000002846 Description translocase of inner mitochondrial membrane domain containing 1 [Source:MGI Symbol;Acc:MGI:1922139] Gene Synonyms 2810021C21Rik, 4930455C21Rik Location Chromosome 16: 38,498,347-38,522,663 reverse strand. GRCm38:CM001009.2 About this gene This gene has 2 transcripts (splice variants), 189 orthologues, is a member of 1 Ensembl protein family and is associated with 3 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Timmdc1-201 ENSMUST00000002925.5 1573 285aa ENSMUSP00000002925.5 Protein coding CCDS28169 Q8BUY5 TSL:1 GENCODE basic APPRIS P1 Timmdc1-202 ENSMUST00000147543.1 678 No protein - lncRNA - - TSL:1 44.32 kb Forward strand 38.49Mb 38.50Mb 38.51Mb 38.52Mb 38.53Mb Genes Cd80-202 >protein coding Gm15953-201 >processed pseudogene (Comprehensive set... Contigs < AC209577.2 Genes < Timmdc1-201protein coding < Poglut1-201protein coding (Comprehensive set... < Timmdc1-202lncRNA < Poglut1-205retained intron < Poglut1-204retained intron Regulatory Build 38.49Mb 38.50Mb 38.51Mb 38.52Mb 38.53Mb Reverse strand 44.32 kb Regulation Legend CTCF Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding pseudogene RNA gene processed transcript Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000002925 < Timmdc1-201protein coding Reverse strand 24.32 kb ENSMUSP00000002... Transmembrane heli... MobiDB lite Pfam PF02466 PANTHER PTHR13002 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant splice region variant synonymous variant Scale bar 0 40 80 120 160 200 240 285 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • Molecular Mechanism of ACAD9 in Mitochondrial Respiratory Complex 1 Assembly
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.07.425795; this version posted January 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Molecular mechanism of ACAD9 in mitochondrial respiratory complex 1 assembly Chuanwu Xia1, Baoying Lou1, Zhuji Fu1, Al-Walid Mohsen2, Jerry Vockley2, and Jung-Ja P. Kim1 1Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA 2Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA Abstract ACAD9 belongs to the acyl-CoA dehydrogenase family, which catalyzes the α-β dehydrogenation of fatty acyl-CoA thioesters. Thus, it is involved in fatty acid β-oxidation (FAO). However, it is now known that the primary function of ACAD9 is as an essential chaperone for mitochondrial respiratory complex 1 assembly. ACAD9 interacts with ECSIT and NDUFAF1, forming the mitochondrial complex 1 assembly (MCIA) complex. Although the role of MCIA in the complex 1 assembly pathway is well studied, little is known about the molecular mechanism of the interactions among these three assembly factors. Our current studies reveal that when ECSIT interacts with ACAD9, the flavoenzyme loses the FAD cofactor and consequently loses its FAO activity, demonstrating that the two roles of ACAD9 are not compatible. ACAD9 binds to the carboxy-terminal half (C-ECSIT), and NDUFAF1 binds to the amino-terminal half of ECSIT. Although the binary complex of ACAD9 with ECSIT or with C-ECSIT is unstable and aggregates easily, the ternary complex of ACAD9-ECSIT-NDUFAF1 (i.e., the MCIA complex) is soluble and extremely stable.
    [Show full text]
  • TIMMDC1 CRISPR/Cas9 KO Plasmid (H): Sc-407424
    SANTA CRUZ BIOTECHNOLOGY, INC. TIMMDC1 CRISPR/Cas9 KO Plasmid (h): sc-407424 BACKGROUND APPLICATIONS The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and TIMMDC1 CRISPR/Cas9 KO Plasmid (h) is recommended for the disruption CRISPR-associated protein (Cas9) system is an adaptive immune response of gene expression in human cells. defense mechanism used by archea and bacteria for the degradation of for- eign genetic material (4,6). This mechanism can be repurposed for other 20 nt non-coding RNA sequence: guides Cas9 to a specific target location in the genomic DNA functions, including genomic engineering for mammalian systems, such as gene knockout (KO) (1,2,3,5). CRISPR/Cas9 KO Plasmid products enable the U6 promoter: drives gRNA scaffold: helps Cas9 expression of gRNA identification and cleavage of specific genes by utilizing guide RNA (gRNA) bind to target DNA sequences derived from the Genome-scale CRISPR Knock-Out (GeCKO) v2 Termination signal library developed in the Zhang Laboratory at the Broad Institute (3,5). Green Fluorescent Protein: to visually verify transfection CRISPR/Cas9 REFERENCES Knockout Plasmid CBh (chicken β-Actin hybrid) promoter: drives 1. Cong, L., et al. 2013. Multiplex genome engineering using CRISPR/Cas 2A peptide: expression of Cas9 systems. Science 339: 819-823. allows production of both Cas9 and GFP from the 2. Mali, P., et al. 2013. RNA-guided human genome engineering via Cas9. same CBh promoter Science 339: 823-826. Nuclear localization signal 3. Ran, F.A., et al. 2013. Genome engineering using the CRISPR-Cas9 system. Nuclear localization signal SpCas9 ribonuclease Nat. Protoc. 8: 2281-2308.
    [Show full text]
  • An Essential Role for ECSIT in Mitochondrial Complex I Assembly and Mitophagy in Macrophages
    Article An Essential Role for ECSIT in Mitochondrial Complex I Assembly and Mitophagy in Macrophages Graphical Abstract Authors Fla´ via R.G. Carneiro, Alice Lepelley, John J. Seeley, Matthew S. Hayden, Sankar Ghosh Correspondence [email protected] In Brief Macrophages rely on fine-tuning their metabolism to fulfill their anti-bacterial functions. Carneiro et al. show that the complex I assembly factor ECSIT is an essential regulator of the balance between mitochondrial respiration and glycolysis and the maintenance of a healthy mitochondrial pool through mitophagy. Highlights d Loss of ECSIT in macrophages leads to a striking glycolytic shift d ECSIT is essential for complex I assembly and stability in macrophages d Role of ECSIT in mROS production and removal of damaged mitochondria by mitophagy Carneiro et al., 2018, Cell Reports 22, 2654–2666 March 6, 2018 ª 2018 The Author(s). https://doi.org/10.1016/j.celrep.2018.02.051 Cell Reports Article An Essential Role for ECSIT in Mitochondrial Complex I Assembly and Mitophagy in Macrophages Fla´ via R.G. Carneiro,1,3,4 Alice Lepelley,1,4 John J. Seeley,1 Matthew S. Hayden,1,2 and Sankar Ghosh1,5,* 1Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA 2Section of Dermatology, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA 3FIOCRUZ, Center for Technological Development in Health (CDTS), Rio de Janeiro, Brazil 4These authors contributed equally 5Lead Contact *Correspondence: [email protected] https://doi.org/10.1016/j.celrep.2018.02.051 SUMMARY 2015). There, ECSIT-dependent mROS production promotes activation of the phagosomal nicotinamide adenine dinucleotide ECSIT is a mitochondrial complex I (CI)-associated phosphate (NADPH) oxidase system and ROS-dependent protein that has been shown to regulate the pro- killing of engulfed microbes (West et al., 2011).
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • TIMMDC1 Knockdown Inhibits Growth and Metastasis of Gastric Cancer
    Int. J. Biol. Sci. 2018, Vol. 14 1256 Ivyspring International Publisher International Journal of Biological Sciences 2018; 14(10): 1256-1267. doi: 10.7150/ijbs.27100 Research Paper TIMMDC1 Knockdown Inhibits Growth and Metastasis of Gastric Cancer Cells through Metabolic Inhibition and AKT/GSK3β/β-Catenin Signaling Pathway Yuan Liu1, Yuyan Huang1, Jingjing Zhang1, Cao Pei1, Jiahui Hu1, Jianxin Lyu1,2, Yao Shen1 1. Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035 2. Laboratory Medicine College, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P. R. China Corresponding authors: Jianxin Luy, Ph.D, Tel.: +86-577-8668 9805; E-mail: [email protected] and Yao Shen, Ph.D, Tel.: +86-577-86699651; E-mail: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.05.05; Accepted: 2018.06.21; Published: 2018.07.27 Abstract TIMMDC1 (C3orf1), a predicted 4-pass membrane protein, which locates in the mitochondrial inner membrane, has been demonstrated to have association with multiple member of mitochondrial complex I assembly factors and core mitochondrial complex I subunits. The expression level of TIMMDC1 in highly-metastatic tumor cells is higher than that in lowly- metastatic tumor cells. However, the role of TIMMDC1 in human gastric cancer progression is unclear. In this study, human gastric cancer cells SGC-7901 and BGC-823 cells were used, and TIMMDC1 was knockdown with small interfering RNA.
    [Show full text]
  • Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases
    REVIEW published: 22 August 2016 doi: 10.3389/fmolb.2016.00043 Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases Gabriele Giachin, Romain Bouverot, Samira Acajjaoui, Serena Pantalone and Montserrat Soler-López * Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are Edited by: not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS Luca Mollica, disorder in humans and defects in the CI assembly process are often observed. However, Italian Institute of Technology, Italy the dynamics of the events leading to CI biogenesis remain elusive, which precludes our Reviewed by: understanding of how ETC malfunctioning affects neuronal integrity. Here, we review Revati Wani, Pfizer, USA the current knowledge of the structural features of CI and its assembly factors and the Trevor P. Creamer, potential role of CI misassembly in human disorders such as Complex I Deficiencies or University of Kentucky, USA Alzheimer’s and Parkinson’s diseases.
    [Show full text]
  • Engineered Type 1 Regulatory T Cells Designed for Clinical Use Kill Primary
    ARTICLE Acute Myeloid Leukemia Engineered type 1 regulatory T cells designed Ferrata Storti Foundation for clinical use kill primary pediatric acute myeloid leukemia cells Brandon Cieniewicz,1* Molly Javier Uyeda,1,2* Ping (Pauline) Chen,1 Ece Canan Sayitoglu,1 Jeffrey Mao-Hwa Liu,1 Grazia Andolfi,3 Katharine Greenthal,1 Alice Bertaina,1,4 Silvia Gregori,3 Rosa Bacchetta,1,4 Norman James Lacayo,1 Alma-Martina Cepika1,4# and Maria Grazia Roncarolo1,2,4# Haematologica 2021 Volume 106(10):2588-2597 1Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 2Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 3San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and 4Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, CA, USA *BC and MJU contributed equally as co-first authors #AMC and MGR contributed equally as co-senior authors ABSTRACT ype 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for Tchemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature.
    [Show full text]
  • Evolution of the Tim17 Protein Family Vojtěch Žárský and Pavel Doležal*
    Žárský and Doležal Biology Direct (2016) 11:54 DOI 10.1186/s13062-016-0157-y RESEARCH Open Access Evolution of the Tim17 protein family Vojtěch Žárský and Pavel Doležal* Abstract Background: The Tim17 family of proteins plays a fundamental role in the biogenesis of mitochondria. Three Tim17 family proteins, Tim17, Tim22, and Tim23, are the central components of the widely conserved multi-subunit protein translocases, TIM23 and TIM22, which mediate protein transport across and into the inner mitochondrial membrane, respectively. In addition, several Tim17 family proteins occupy the inner and outer membranes of plastids. Results: We have performed comprehensive sequence analyses on 5631 proteomes from all domains of life deposited in the Uniprot database. The analyses showed that the Tim17 family of proteins is much more diverse than previously thought and involves at least ten functionally and phylogenetically distinct groups of proteins. As previously shown, mitochondrial inner membrane accommodates prototypical Tim17, Tim22 and Tim23 and two Tim17 proteins, TIMMDC1 and NDUFA11, which participate in the assembly of complex I of the respiratory chain. In addition, we have identified Romo1/Mgr2 as Tim17 family member. The protein has been shown to control lateral release of substrates fromTIM23 complex in yeast and to participate in the production of reactive oxygen species in mammalian cells. Two peroxisomal proteins, Pmp24 and Tmem135, of so far unknown function also belong to Tim17 protein family. Additionally, a new group of Tim17 family proteins carrying a C-terminal coiled-coil domain has been identified predominantly in fungi. Conclusions: We have mapped the distribution of Tim17 family members in the eukaryotic supergroups and found that the mitochondrial Tim17, Tim22 and Tim23 proteins, as well as the peroxisomal Tim17 family proteins, were all likely to be present in the last eukaryotic common ancestor (LECA).
    [Show full text]
  • POGLUT1, the Putative Effector Gene Driven by Rs2293370 in Primary
    www.nature.com/scientificreports OPEN POGLUT1, the putative efector gene driven by rs2293370 in primary biliary cholangitis susceptibility Received: 6 June 2018 Accepted: 13 November 2018 locus chromosome 3q13.33 Published: xx xx xxxx Yuki Hitomi 1, Kazuko Ueno2,3, Yosuke Kawai1, Nao Nishida4, Kaname Kojima2,3, Minae Kawashima5, Yoshihiro Aiba6, Hitomi Nakamura6, Hiroshi Kouno7, Hirotaka Kouno7, Hajime Ohta7, Kazuhiro Sugi7, Toshiki Nikami7, Tsutomu Yamashita7, Shinji Katsushima 7, Toshiki Komeda7, Keisuke Ario7, Atsushi Naganuma7, Masaaki Shimada7, Noboru Hirashima7, Kaname Yoshizawa7, Fujio Makita7, Kiyoshi Furuta7, Masahiro Kikuchi7, Noriaki Naeshiro7, Hironao Takahashi7, Yutaka Mano7, Haruhiro Yamashita7, Kouki Matsushita7, Seiji Tsunematsu7, Iwao Yabuuchi7, Hideo Nishimura7, Yusuke Shimada7, Kazuhiko Yamauchi7, Tatsuji Komatsu7, Rie Sugimoto7, Hironori Sakai7, Eiji Mita7, Masaharu Koda7, Yoko Nakamura7, Hiroshi Kamitsukasa7, Takeaki Sato7, Makoto Nakamuta7, Naohiko Masaki 7, Hajime Takikawa8, Atsushi Tanaka 8, Hiromasa Ohira9, Mikio Zeniya10, Masanori Abe11, Shuichi Kaneko12, Masao Honda12, Kuniaki Arai12, Teruko Arinaga-Hino13, Etsuko Hashimoto14, Makiko Taniai14, Takeji Umemura 15, Satoru Joshita 15, Kazuhiko Nakao16, Tatsuki Ichikawa16, Hidetaka Shibata16, Akinobu Takaki17, Satoshi Yamagiwa18, Masataka Seike19, Shotaro Sakisaka20, Yasuaki Takeyama 20, Masaru Harada21, Michio Senju21, Osamu Yokosuka22, Tatsuo Kanda 22, Yoshiyuki Ueno 23, Hirotoshi Ebinuma24, Takashi Himoto25, Kazumoto Murata4, Shinji Shimoda26, Shinya Nagaoka6, Seigo Abiru6, Atsumasa Komori6,27, Kiyoshi Migita6,27, Masahiro Ito6,27, Hiroshi Yatsuhashi6,27, Yoshihiko Maehara28, Shinji Uemoto29, Norihiro Kokudo30, Masao Nagasaki2,3,31, Katsushi Tokunaga1 & Minoru Nakamura6,7,27,32 Primary biliary cholangitis (PBC) is a chronic and cholestatic autoimmune liver disease caused by the destruction of intrahepatic small bile ducts. Our previous genome-wide association study (GWAS) identifed six susceptibility loci for PBC.
    [Show full text]
  • Identification of Genomic Targets of Krüppel-Like Factor 9 in Mouse Hippocampal
    Identification of Genomic Targets of Krüppel-like Factor 9 in Mouse Hippocampal Neurons: Evidence for a role in modulating peripheral circadian clocks by Joseph R. Knoedler A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Neuroscience) in the University of Michigan 2016 Doctoral Committee: Professor Robert J. Denver, Chair Professor Daniel Goldman Professor Diane Robins Professor Audrey Seasholtz Associate Professor Bing Ye ©Joseph R. Knoedler All Rights Reserved 2016 To my parents, who never once questioned my decision to become the other kind of doctor, And to Lucy, who has pushed me to be a better person from day one. ii Acknowledgements I have a huge number of people to thank for having made it to this point, so in no particular order: -I would like to thank my adviser, Dr. Robert J. Denver, for his guidance, encouragement, and patience over the last seven years; his mentorship has been indispensable for my growth as a scientist -I would also like to thank my committee members, Drs. Audrey Seasholtz, Dan Goldman, Diane Robins and Bing Ye, for their constructive feedback and their willingness to meet in a frequently cold, windowless room across campus from where they work -I am hugely indebted to Pia Bagamasbad and Yasuhiro Kyono for teaching me almost everything I know about molecular biology and bioinformatics, and to Arasakumar Subramani for his tireless work during the home stretch to my dissertation -I am grateful for the Neuroscience Program leadership and staff, in particular
    [Show full text]
  • PDF Datasheet
    Product Datasheet TIMMDC1 Overexpression Lysate NBL1-08432 Unit Size: 0.1 mg Store at -80C. Avoid freeze-thaw cycles. Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NBL1-08432 Updated 3/17/2020 v.20.1 Earn rewards for product reviews and publications. Submit a publication at www.novusbio.com/publications Submit a review at www.novusbio.com/reviews/destination/NBL1-08432 Page 1 of 2 v.20.1 Updated 3/17/2020 NBL1-08432 TIMMDC1 Overexpression Lysate Product Information Unit Size 0.1 mg Concentration The exact concentration of the protein of interest cannot be determined for overexpression lysates. Please contact technical support for more information. Storage Store at -80C. Avoid freeze-thaw cycles. Buffer RIPA buffer Target Molecular Weight 32 kDa Product Description Description Transient overexpression lysate of chromosome 3 open reading frame 1 (C3orf1) The lysate was created in HEK293T cells, using Plasmid ID RC204092 and based on accession number NM_016589. The protein contains a C-MYC/DDK Tag. Gene ID 51300 Gene Symbol TIMMDC1 Species Human Notes HEK293T cells in 10-cm dishes were transiently transfected with a non-lipid polymer transfection reagent specially designed and manufactured for large volume DNA transfection. Transfected cells were cultured for 48hrs before collection. The cells were lysed in modified RIPA buffer (25mM Tris-HCl pH7.6, 150mM NaCl, 1% NP-40, 1mM EDTA, 1xProteinase inhibitor cocktail mix, 1mM PMSF and 1mM Na3VO4, and then centrifuged to clarify the lysate. Protein concentration was measured by BCA protein assay kit.This product is manufactured by and sold under license from OriGene Technologies and its use is limited solely for research purposes.
    [Show full text]
  • Transcriptomic and Proteomic Landscape of Mitochondrial
    TOOLS AND RESOURCES Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals Inge Ku¨ hl1,2†*, Maria Miranda1†, Ilian Atanassov3, Irina Kuznetsova4,5, Yvonne Hinze3, Arnaud Mourier6, Aleksandra Filipovska4,5, Nils-Go¨ ran Larsson1,7* 1Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany; 2Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC) UMR9198, CEA, CNRS, Univ. Paris-Sud, Universite´ Paris-Saclay, Gif- sur-Yvette, France; 3Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany; 4Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia; 5School of Molecular Sciences, The University of Western Australia, Crawley, Australia; 6The Centre National de la Recherche Scientifique, Institut de Biochimie et Ge´ne´tique Cellulaires, Universite´ de Bordeaux, Bordeaux, France; 7Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden Abstract Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative *For correspondence: analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five [email protected] knockout mouse strains deficient in essential factors required for mitochondrial DNA gene (IKu¨ ); expression, leading to OXPHOS dysfunction. Moreover,
    [Show full text]