Micropropagation of Araucaria Columnaris Hook L

Total Page:16

File Type:pdf, Size:1020Kb

Micropropagation of Araucaria Columnaris Hook L Micropropagation of Araucaria columnaris Hook L. Sehgal, O.P. Sehgal, P.K. Khosla To cite this version: L. Sehgal, O.P. Sehgal, P.K. Khosla. Micropropagation of Araucaria columnaris Hook. Annales des sciences forestières, INRA/EDP Sciences, 1989, 46 (Suppl), pp.158s-160s. hal-00882526 HAL Id: hal-00882526 https://hal.archives-ouvertes.fr/hal-00882526 Submitted on 1 Jan 1989 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Micropropagation of Araucaria columnaris Hook. L. Sehgal* O.P. Sehgal P.K. Khosla DYSP University of Horticulture and Forestry, Solan 173 230, India Introduction regulators and/or other chemicals. The cultures were kept at 25°C under cool white fluorescent light (1.5 klux), from 40 W tubes, for 16 h each The genus Araucaria comprises several day. At least 20 replications were used for each treatment. magnificent evergreen forest tree species, including Araucaria columnaris Hook., which has a high ornamental value as well. Conventional seeds propagation by Results is slow and inadequate for producing large uniform progenies. Cuttings are difficult to root and they produce plagiotropic plants The explants, initially cultured on MS except when taken from apical shoots. medium supplemented with kinetin (5-12 Successful micropropagation of this spe- pM) and naphthalene acetic acid (1-3 cies has not been reported. The aim of NM), were est:ablished on the medium this study was to use explants from nor- containing only kinetin (10 pM). The esta- mally growing mature trees for in vitro blishment of cultures was maximum propagation of A. columnaris. (40-50%) when the explants were col- lected in April and November, whereas it was low (10-30%) during other months of the year. The development of axillary buds Materials and Methods was obtained by subculturing on a medium containing 6-benzylaminopurine Tips (3-5 mm) of secondary and tertiary lateral (BAP, 12.5 pM), indole butyric acid (IBA, 1 branches, taken from 14 yr old trees, were steri- !M) and 3% sucrose. lized in mercuric chloride for 1 min and (0.05%) taken in for cultured on Murashige and Skoog’s (MS) Explants January, prechilled medium (Murashige and Skoog, 1962), contain- 1 mo at 5°C and cultured on MS medium ing different concentrations of various growth (containing 10 uM kinetin and 1 !M IBA) * Permanent address: Gargi College, Delhi University, N. Delhi 110049, India. produced almost twice the shoot growth Subculturing or direct planting on a rate as compared to the ones not chilled, medium containing kinetin (10 pM) and giving a shoot length of 1.5 cm in 6 wk thiourea (1.3 ,uM) enhanced the shoot (Table I). length and production of axillary branches (Fig. 1 The latter were separated and Araucaria is a hard-to-root material in used for multiplication. Addition of 0.3% culture, and limited success in rooting has activated charcoal to the medium also been reported only for one species viz., indicated a faster rate of growth (Table I). A. cunningharnii (Haines and de Fossard, 1977; Burrows, 1983). Nevertheless, the production of shoot growth and axillary branches obtained in culture in the pres- Discussion and Conclusion ent study is an important step in micro- propagation. Attempts to induce in vitro are in Micropropagation of most of the conifers rooting progress. has not been successful. Out of 6 or so reports on in vitro culture of about 12 spe- cies of Araucaria (Haines and de Fossard, 1977; Maene & Debergh, 1987), only Bur- References rows (1983) used coppice shoots from mature trees. Others have utilized ortho- Bonga J.M. (1981) Organogenesis in vitro of tis- tropic shoots from juvenile plants. Recent- sues from mature conifers. In vitro 17, 511-5188 ly, Handro (1986) reported the develop- Boulay M. (1979) Multiplication et clonage ra- ment of shoot in from axillary vitro, starting pide du Sequoia sempervirens par la culture in branches of a 20 yr old tree of A. angusti- vitro. In: Etudes et Recherches, AFOCEL, folia. The only report on A. columnaris is a Domaine-de-I’Etanson, 77270 Nangis, France, preliminary study using seedling stem 12, pp. 49-55 segments (Burrows, 1983). In our study, Burrows G.E. (1983) Organ culture of some of Araucariaceae. Anatomical tips of very small branchlets appearing species aspects of bud development. Proc. 2nd Aust. Plant Tis- on branches of 14 naturally plagiotropic yr sue Cult. Conf. S’ydney. pp. 188 old trees were used. In nature, these P.K. Advances in of branchlets show In cul- Gupta (1987) biotechnology hardly any growth. conifers. Curr. Sci. 57, 629-637 ture, however, these shoots appeared to Haines R.J. & de Fossard R.A. show normal In (1977) Propaga- orthotropic growth. tion of hoop pine (Araucaria cunninghamii Ait). Sequoia, Boulay (1979) also obtained Acta Hortic. 78, 297-302 behavior of in vitro shoots orthotropic Handro W. (198E;) Araucaria. In: Biotechnology derived from stump sprouts of mature in Agriculture & f=orestry (Bajaj P.S., ed.), Vol 1, trees. Explants from mature trees of some Trees, Springer-Verlag, Berlin, pp. 310-3155 other conifers have also been used Maene L. & Debergh P. (1987) Araucaria. In: (Bonga, 1981; Gupta, 1987). Cell and Tissue Culture in Forestry. (Bonga J.M. & Durzan Vol. 3, Cell The studies also show that sea- D.J., eds.), present Histories, Gymnosperms, Angiosperms and son and of effect sub- prechilling explants Palms. Martinus Nijhoff, Dordrecht, pp. 176-184 sequent in culture. Thiourea response Murashige T. & Skoog F. (1962) A revised seems to promote axillary branches and medium for rapid growth and bioassays with shoot growth, as observed by Maene and tobacco tissue cultures. Physiol. Plant. 15, 473- Debergh (1987). 497.
Recommended publications
  • Cook Pine) Aqueous Resin Extract Against Major Phytopathogens
    MAY 2014 – JULY 2014, Vol. 4, No. 3; 2108-2112. E- ISSN: 2249 –1929 Journal of Chemical, Biological and Physical Sciences An International Peer Review E-3 Journal of Sciences Avail able online at www.jcbsc.org Section B: Biological Sciences CODEN (USA): JCBPAT Research Article Bio-Fungicide Potential of Araucaria Columnaris (Cook Pine) Aqueous Resin Extract Against Major Phytopathogens Saranya Devi. K* 1, J. Rathinamala 1 and S. Jayashree 2 1Department of Microbiology, Nehru Arts and Science College, Coimbatore, 2Department of Biotechnology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India. Received: 05 March 2014 ; Revised: 25 April 2014 ; Accepted: 03 May 2014 Abstract: Use of chemical fungicide to control plant diseases causes several adverse effects such as, development of resistance in the pathogen, residual toxicity, pollution to the environment etc. So an alternative way to overcome the usage of dreadful chemicals is very important. The use of plant extracts as biofungicide is one of the popular and effective method. Araucaria columnaris is a commonly seen ornamental plant known as Christmas tree. It’s a South African species, under the family Araucariaceae. Hence, in the present study, the plant resin extract was tested in-vitro against major plant pathogensby preliminary bioassay. It was found that up to 95% reduction of mycelium growth was observed against major phytopathogens such as Fusarium oxysporyum , Rhizoctonia sp, Cylindrocladium sp, Alternaria sp, and Colletrotricum sp., causing tomato wilt, damping off, foliage blight, and leaf blight diseases in economically important plants. Up to our knowledge it is the first report showing the antifungal activity of Araucaria columnaris resin as antifungal agent.
    [Show full text]
  • The Following Tree Seedlings Are Available to Order from the State of Hawaii Division of Forestry and Wildlife, State Tree Nursery
    The following tree seedlings are available to order from the State of Hawaii Division of Forestry and Wildlife, State Tree Nursery: Scientific Name: Common Name: Dibble/ Pot size: Acacia koa……………………… Koa……………………………….. Small Acacia koaia……………………... Koai’a……………………………. Small Araucaria columnaris…………….. Norfolk-island Pine……………… Small Cryptomeria japonica……………. Sugi Pine………………………… Small Cupressus lusitanica……………... Mexican Cypress………………… Small Cupressus macrocarpa…………… Monterey Cypress……………….. Small Cupressus simpervirens………….. Italian Cypress…………………… Medium Eucalyptus deglupta……………… Rainbow Bark……………………. Small Eucalyptus robusta……………….. Swamp Mahogany……………….. Small Metrosideros polymorpha……….. Ohia……………………………… Medium or 3” pot Pinus elliotii……………………… Slash Pine………………………... Small Pinus radiata……………………... Monterey Pine…………………… Small Podocarpus sp……………………. Podocarpus………………………. 3” pot Santalum sp……………………… Sandalwood……………………… Medium or 3” pot Tristania conferta………………… Brush Box………………………... Small Acacia koa (Koa): This large hardwood tree is endemic to the Hawaiian Islands. The tree has exceeded 100 ft in height with basal diameter far beyond 50 inches in old growth stands. The wood is prized for furniture and canoe works. This legume has pods with black seeds for reproduction. The wood has similar properties to that of black walnut. The yellow flowers are borne in dense round heads about 2@ in diameter. Tree growth is best above 800 ft; seems to grow best in the ‘Koa belt’ which is situated at an elevation range between 3,500 - 6,000 ft. It is often found in areas where there is fog in the late afternoons. It should be planted in well- drained fertile soils. Grazing animals relish the Koa foliage, so young seedlings should be protected Acacia koaia (Koaia): Related to the Koa, Koaia is native to Hawaii. The leaves and flowers are much the same as Koa.
    [Show full text]
  • The Bulletin, 2019 Fall/Winter Issue
    Vol XXXV No. 3 FALL-WINTER 2019 the bulletinof the National Tropical Botanical Garden contents From all of us at NTBG, 3 MESSAGE FROM THE CEO/DIRECTOR ON THE COVER The green, red, and white in this American here's wishing you and your family the very best holly (Ilex opaca) illustration captures features the spirit of the season. This issue of The Bulletin features works by members of holiday season and a happy new year. 4 KEEP COOL, STAY DRY, AND YOU MAY NTBG’s Florilegium Society including LIVE LONG botanical artist and instructor Wendy Hollender (cover image). by Dustin Wolkis and Marian Chau The Bulletin is a publication for supporters of the National Tropical Botanical Garden, 8 SPLITTING HAIRS (EVEN WHEN THERE a not-for-profit institution dedicated to ARE NONE) tropical plant conservation, scientific by Dr. David H. Lorence research, and education. We encourage you to share this 18 INTERVIEW: DR. NINA RØNSTED, publication with your family and friends. NTBG’S NEW DIRECTOR OF SCIENCE If your household is receiving more than one copy and you wish to receive only AND CONSERVATION one, please inform our Development Office at our national headquarters at: [email protected]. in every issue National Tropical Botanical Garden 3530 Papalina Road, Kalāheo RED LISTED Hawai‘i 96741 USA 12 Tel. (808) 332-7324 Fax (808) 332-9765 THE GREEN THUMB [email protected] 13 www. ntbg.org 16 GARDEN SPROUTS ©2019 National Tropical Botanical Garden News from around the Garden ISSN 1057-3968 All rights reserved. Photographs are the property of NTBG unless otherwise noted.
    [Show full text]
  • Distribution and Ecology of the Conifers of New Caledonia
    I 1 extrait de : EGOLQGY OP THE SOUTHERN CONIFERS Edited by : Neal J. ENRIGHT and Robert S. HILL MELBOW WVERSITY PRESS - 1935 5. - I Distribution and Ecology 8 of the Conifers of - New Caledonia T. JAFFRÉ ESPITE ITS small area (19 O00 km2) New Caledonia possesses a rich and distinctive flora, totalling 3000 species of phanerogams of which 75 to 80 per cent are endemic. Among these are 43 conifers (all endemic) belonging D (1 to four families: Taxaceae (one sp.), Podocarpaceae (18 spp.), Araucariaceae 8 spp.), Cupressaceae (six spp.). \ The sole species of the family Taxaceae belongs to the endemic genus Austrotaxus. The Podocarpaceae is divided among eight genera: Podocarpus (seven ii spp.), Dacrydium (four spp.), Retrophyllum (twospp.), Falcatifolium, Dacrycarpus, Acmopyb, Prumnopitys and Parasitaxus (one sp. each), the last being endemic to New Caledonia (Page 1988). The Araucariaceae comprises two genera, Araucaria (13 spp.) and Agathis (five spp.), and the Cupressaceae the genera Libocedrus (three spp.), Callitris (two spp.), and the monotypic and endemic Neocallitropsis (de Laubenfels 1972). No other region of the world with such a small area possesses such a rich and distinctive conifer flora. Growth forms The majority of New Caledonian conifers are tall trees but there are also small trees and shrubs. The Araucariaceae, all arborescent, includes nine species exploited for their timber (Agatbis corbassonii, A. lanceolata, A. moorei, A. ovata, Araucaria columnaris, A. bernieri, A. laubenfelsii, A. luxurians, A. subulata). The Agatbis species are among the most massive forest trees; some individuals I of the tallest species, Agatbis lanceolata, have trunks more than 2.5 m in diameter and attain a height of 30-40 m.
    [Show full text]
  • Evaluation of Antioxidant Action of Mixed Extracts of Plumeria Pudica and Araucaria Columnaris
    Vol-6 Issue-5 2020 IJARIIE-ISSN(O)-2395-4396 EVALUATION OF ANTIOXIDANT ACTION OF MIXED EXTRACTS OF PLUMERIA PUDICA AND ARAUCARIA COLUMNARIS Anchal Saroj*1, Dr. Parul Mehta2, Vishal Shrivastava3, Kehar Singh Dhakad4 1Department of Pharmacology, School of Pharmacy, LNCT University, Bhopal, MP, India 2Principal, Department of Pharmacology, School of Pharmacy, LNCT University, Bhopal, MP, India 3Associate Professor, Department of Pharmacology, School of Pharmacy, LNCT University, Bhopal, MP, India 4Associate Professor, Department of Pharmacology, School of Pharmacy, LNCT University, Bhopal, MP, India ABSTRACT The leaves of Plumeria pudica grow whirling around the stem and have a sessile base. The branchlets of Araucaria columnaris grow in whorls and are having small green, spirally arranged leaves. The extraction yield in methanol was found to be 39.6 % for Plumeria pudica and 43.7 % for Aruacaria columnaris the findings of preliminary phytochemical analysis suggest the presence of alkaloids, saponin glycosides, phenolics, terpenoids, and flavonoids in the leaf of the Plumeria pudica while alkaloids were not found to be present in Araucaria columnaris. The total phenolic content of the methanolic extracts of P. pudica and A. columnaris were 38.31±1.7 and 54.27±2.1GAE mg/g, respectively. The extracts were individually and in combination (1:1, 1:2 & 2:1) subjected to in vitro determination of antioxidant potential in terms of hydrogen donating or radical scavenging ability using the stable free radical DPPH, reducing power using potassium ferrocyanide, hydroxy radical scavenging using Iron-EDTA and ammonium molybdate method. The IC50 value of the DPPH scavenging potential for P. pudica and A.
    [Show full text]
  • Phylogenetic Relationships Within Araucariaceae Based on RBCL
    American Journal of Botany 85(11): 1507-1516. 1998. PHYLOGENETICRELATIONSHIPS WITHIN ARAUCARIACEAEBASED ON RBCLGENE SEQUENCES~ HlROAKI SETOGUCHI,2g5,6TAKESHI ASAKAWA OSAWA? JEAN- CHRISTOPHE PINTAUD: TANGUYJAFJXÉ: AND JEAN-MAREvEILLON4 Makino Herbarium, Faculty of Science, Tokyo Metropolitan University, Tokyo 192-03, Japan; Department of Biology, Faculty of Science, Chiba University, Chiba 246, Japan; and Department de Botanique, Centre ORSTOM de Nouméa, BP A5 Nouméa, New Caledonia Phylogenetic relationships were determined in the Araucariaceae, which are now found mainly in the Southern Hemi- sphere. This conifer family was well diversified and widely distributed in both hemispheres during the Mesozoic era. The sequence of 1322 bases of the rbcL gene of cpDNA was determined from 29 species of Araucariaceae, representing almost all the species of the family. Phylogenetic trees determined by the parsimony method indicate that Araucariaceae are well defined by rbcL sequences and also that the monophyly of Agatlzis or Araucaria is well supported by high bootstrap values. The topology of these trees revealed that Wolleiitia had derived prior to Agathis and Araucaria. The rbcL phylogeny agrees well with the present recognition of four sections within Araucaria: Araucaria, Bunya, Eutacta, and bzterinedia. Morpho- logical characteristics of the number of cotyledons, position of male cone, and cuticular micromorphologies were evaluated as being phylogenetically informative. Section Bunya was found to be derived rather than to be the oldest taxon. Infrageneric relationships of Agathis could not be well elucidated because there are few informative site changes in the rbcL gene, suggesting the more recent differentiation of the species as their fossil records indicate. The New Caledonian Araucaria and Agathis species each formed a monophyletic group with very low differentiation in rbcL sequences among them, indicating rapid adaptive radiation to new edaphic conditions, i.e., ultramafic soils, in the post-Eocene era.
    [Show full text]
  • Inventory of Vascular Plants of the Kahuku Addition, Hawai'i
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarSpace at University of Hawai'i at Manoa PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 157 INVENTORY OF VASCULAR PLANTS OF THE KAHUKU ADDITION, HAWAI`I VOLCANOES NATIONAL PARK June 2008 David M. Benitez1, Thomas Belfield1, Rhonda Loh2, Linda Pratt3 and Andrew D. Christie1 1 Pacific Cooperative Studies Unit (University of Hawai`i at Mānoa), Hawai`i Volcanoes National Park, Resources Management Division, PO Box 52, Hawai`i National Park, HI 96718 2 National Park Service, Hawai`i Volcanoes National Park, Resources Management Division, PO Box 52, Hawai`i National Park, HI 96718 3 U.S. Geological Survey, Pacific Island Ecosystems Research Center, PO Box 44, Hawai`i National Park, HI 96718 TABLE OF CONTENTS ABSTRACT.......................................................................................................................1 INTRODUCTION...............................................................................................................1 THE SURVEY AREA ........................................................................................................2 Recent History- Ranching and Resource Extraction .....................................................3 Recent History- Introduced Ungulates...........................................................................4 Climate ..........................................................................................................................4
    [Show full text]
  • In Press, Accepted Manuscript Copyright © 2019, Sociedade Brasileira De Genética
    Genetics and Molecular Biology In Press, Accepted Manuscript Copyright © 2019, Sociedade Brasileira de Genética. DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2018-0213 This manuscript has been approved and it is published as a provisional version while it is copyedit, reviewed and formatted for the final version. Araucaria angustifolia chloroplast genome sequence and its relation to other Araucariaceae José Henrique S. G. Brandão1, Nureyev F. Rodrigues2, Maria Eguiluz1, Frank Guzman2 and Rogerio Margis1,2,3 1PPGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brasil. 2PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brasil. 3Departamento de Biofísica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brasil. Send correspondence to Rogerio Margis, Centro de Biotecnologia, sala 213, prédio 43431, Universidade Federal do Rio Grande do Sul – UFRGS, PO Box 15005, CEP 91501-970, Porto Alegre, RS, Brasil. Tel: 55 (51) 3308-7766 Fax: 55 (51) 3308-6072. E-mail: [email protected] Abstract Araucaria angustifolia is endemic from southern Brazil. Known as Brazilian pine, A. angustifolia is the only native conifer species with economic/social relevance in this country. Due to massive exploitation, this species suffered significant population decline and currently is classified as critically endangered. It encouraged the scientific community to investigate genetic features in Brazilian pine to increase resources for management and preservation. In this work, RNA-Seq data was used to determine the complete nucleotide sequence of the A. angustifolia chloroplast genome (cpDNA). The cpDNA is 146,203 bp in length and contains 122 genes, including 80 protein-coding genes, 5 ribosomal RNA Ingenes, Press, and 37 tRNA genes.Accepted Coding regions compriseManuscript 45.02%; 4.96% correspond to rRNAs and tRNAs, and 50.02% of the genome encompasses non-coding regions.
    [Show full text]
  • JOURNAL of the AMERICAN HORTICULTURAL SOCIETY, INC, A.Pril 1966 AMERICAN HORTICULTURAL SOCIETY
    'I'IIE A.:M:ERICAN ~GAZINE JOURNAL OF THE AMERICAN HORTICULTURAL SOCIETY, INC, A.pril 1966 AMERICAN HORTICULTURAL SOCIETY 1600 BLADENSBURG ROAD, NORTHEAST / WASHINGTON, D. c. 20002 For United Horticulture *** to accumu.late, inn-ease, and disseminate horticultuml information Editorial Committee Directors FRANCIS DE VOS, Chainnan Terms ExpiTing 1966 J. HAROLD CLARKE JOHN L . CREECH Washington f 'REDERIC P. LEE W. H . HODGE Maryland CARLTON P. LEES FREDERIC P. LEE Massachusetts RUSSELL J. SEIBERT CONRAD B. LINK Pennsylvania DONALD'VATSON FREDER ICK G. MEYER Hawaii "VII.BUR H. YOUNGMAN T erms Expi?'ing 1967 MRS. ROBERT L. EMERY, J R. Louisiana Officers A. C. HILDRETH Colorado PRESIDENT DAVID LEACH JOHN H . WALKER Pennsylvania A lexandria, Virginia CHARLES G. MEYER New Yo rk MRS. STANLEY ROWE F IRST VI CE- PRESIDENT Ohio FRED C. GALLE Terms ExjJiring 1968 Pine Mountain, Geo?-gia FRANCIS DE VOS Maryland SECOND VICE-PRESIDENT MRS. ELSA U. K NO LL TOM D. THROCKMORTON California Des Moines, Io wa VICTOR RIES Ohio STEWART D . VVI NN ACTING SECRETARY-TREASURER GRACE P. WILSON ROBERT WINTZ Bladensburg, Maryland Illinois The A merican Horticultural Magazine is the official publication of the American Horticultural Society and is issued four times a year during the quarters commencing with January, April, J!lly and October. It is devoted to the dissemination of knowledge in the science and art of growmg ornamental plants, fruits, vegetables, and related subjects. Original papers increasing the historical, varietal, and cultural knowledges of plant mate~ials of economic and aesthetic importance are welcomed and will be published as early as pOSSible.
    [Show full text]
  • Carpel – Fruit in a Coniferous Genus Araucaria and the Enigma of Angiosperm Origin
    Journal of Plant Sciences 2014; 2(5): 159-166 Published online September 30, 2014 (http://www.sciencepublishinggroup.com/j/jps) doi: 10.11648/j.jps.20140205.13 ISSN: 2331-0723 (Print); ISSN: 2331-0731 (Online) Carpel – fruit in a coniferous genus Araucaria and the enigma of angiosperm origin Valentin Krassilov *, Sophia Barinova Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel Email address: [email protected] (V. Krassilov), [email protected] (V. Krassilov) To cite this article: Valentin Krassilov, Sophia Barinova. Carpel – Fruit in a Coniferous Genus Araucaria and the Enigma of Angiosperm Origin. Journal of Plant Sciences. Vol. 2, No. 5, 2014, pp. 159-166. doi: 10.11648/j.jps.20140205.13 Abstract: Reproductive morphology of araucarian samara is revised revealing a carpellate structure of the stone. In A. columnaris it is formed by a supercoiled spermophyll (‘seed scale’), with a stigmatic apical lobe. This structure is analogous to the ‘classical’ peltate carpel of flowering plants. Stone opens with two apical pores. Pollen germinates on the apical stigmatic crest, with extracellular matter exuded from a stigmatic gland and its opposite on the bract apophysis. Ovulate structures are of the same basic type in the allied genera Wollemia and Pararaucaria . Neither of these genera is morphologically ‘transitional’ at the generic as well as familial levels thus setting araucarians apart from the rest of conifers no longer conceivable as a uniquely derived clade of gymnospermous plants. Araucarians thus deserve the status of a separate order anticipating the major evolutionary advancements of angiospermy in flowering plants. Keywords: Plant Morphology, Paleobotany, Conifers, Araucariaceae, Carpel, Angiosperm Origin, Fossil Gymnosperms, Evolutionary Parallelism This paper is on the carpellate structures in Araucaria for 1.
    [Show full text]
  • Morphology and Identification of the World's Conifer Genera
    Morphology and identification of the world’s conifer genera VEIT MARTIN DÖRKEN & HUBERTUS NIMSCH Kessel Publishing House www.forstbuch.de, www.forestrybooks.com Authors Dr. rer. nat. Veit Martin Dörken Universität Konstanz Fachbereich Biologie Universitätsstraße 10 78457 Konstanz Germany Dipl.-Ing. Hubertus Nimsch Waldarboretum Freiburg-Günterstal St. Ulrich 31 79283 Bollschweil Germany Copyright 2019 Verlag Kessel Eifelweg 37 53424 Remagen-Oberwinter Tel.: 02228-493 Fax: 03212-1024877 E-Mail: [email protected] Internet: www.forstbuch.de, www.forestrybooks.com Druck: Business-Copy Sieber, Kaltenengers www.business-copy.com ISBN: 978-3-945941-53-9 3 Acknowledgements We thank the following Botanic Gardens, Institu- Kew (UK) and all visited Botanical Gardens and tions and private persons for generous provision Botanical Collections which gave us free ac- of research material: Arboretum Tervuren (Bel- cess to their collections. We are also grateful to gium), Botanic Garden Atlanta (USA), Botanic Keith Rushforth (Ashill, Collumpton, Devon, UK) Garden and Botanic Museum Berlin (Germany), and to Paula Rudall (Royal Botanic Gardens Botanic Garden of the Ruhr-University Bochum Kew, Richmond, UK) for their helpful advice (Germany), Botanic Garden Bonn (Germany), and critical comments on an earlier version of Botanic Garden of the Eberhard Karls Univer- the manuscript and and Robert F. Parsons (La sity Tübingen (Germany), Botanic Garden of the Trobe University, Australia) for his great support University of Konstanz (Germany), Botanic Gar- in
    [Show full text]
  • Phytochemical and Ethno-Pharmacological Review of the Genus Araucaria – Review
    Aslam et al Tropical Journal of Pharmaceutical Research August 2013; 12 (4): 651-659 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v12i4.31 Review Article Phytochemical and Ethno-Pharmacological Review of the Genus Araucaria – Review M Shahzad Aslam*, Bashir A Choudhary, M Uzair and A Subhan Ijaz Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan. *For correspondence: Email: [email protected] Received: 24 August 2012 Revised accepted: 1 June 2013 Abstract Distribution, traditional uses, isolated chemical constituents and pharmacological activities of some common species of the genus Araucaria are reviewed in this paper. Almost 19 species belong to the genus, Araucaria. It is indigenous to North America. Biflavanoid, diterpene, phenyl propanoid and lignans are abundant in the genus. The most common pharmacological activity of Araucaria in modern medicines is anti-inflammatory. It also possesses other pharmacological activities such as anti- ulcer, antiviral, neuro-protective, anti-depressant and anti-coagulant. The aim of the present paper is to present an extensive review of the plants in this genus including their traditional uses, chemical constituents and pharmacology. Keywords: Araucaria, Ethnopharmacology, Phytochemistry, Biflavanoids, Diterpene Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus, International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts INTRODUCTION species, several of which are used for ornamental and timber purposes.
    [Show full text]