Sir Henry Hallet Dale∗ (1875–1968)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Creation of Neuroscience
The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits. -
Francis Crick in Molecular Biology
2019 Asia-Pacific Conference on Emerging Technologies and Engineering (ACETE 2019) Francis Crick in Molecular Biology Sun Yongping College of Physic and Electronic Information, Inner Mongolia Normal University, Hohhot, China Keywords: Crick, DNA, Protein, Genetic Codes, Molecular Biology Abstract: This article is a tribute to Francis crick, a biophysicist who passed away on July 28, 2004. Francis crick, James Watson and Maurice Wilkins were jointly awarded the 1962 Nobel Prize for physiology or medicine for discovering the molecular structure of nucleic acids and its significance for information transfer in living material. It is pointed out that the diverse background and unique sensitivity of crick to science enabled him to have great insights into frontier research. He had a special capacity for prudent and logical thinking, which contributed so much to the development of molecular biology. Based on Francis crick’s academic achievements in molecular biology and by virtue of internal history approaches such as concept analysis and literature research, this paper is aimed at revealing the historical contributions of crick in a condensed way and to commemorate his work. 1. Introduction Francis crick (figure 1) was born on June 8, 1916 as an English citizen, and he left the world, aged 88. With lifelong devotion to scientific research, crick is credited as one of the central figures in the molecular revolution that swept through biology in the latter half of the twentieth century [1]. Keen on seeking after and tackling the profound problems, he developed a passion for biology although crick did research in physics at the beginning of his scientific life [2,3]. -
Bloomsbury Scientists Ii Iii
i Bloomsbury Scientists ii iii Bloomsbury Scientists Science and Art in the Wake of Darwin Michael Boulter iv First published in 2017 by UCL Press University College London Gower Street London WC1E 6BT Available to download free: www.ucl.ac.uk/ ucl- press Text © Michael Boulter, 2017 Images courtesy of Michael Boulter, 2017 A CIP catalogue record for this book is available from the British Library. This book is published under a Creative Commons Attribution Non-commercial Non-derivative 4.0 International license (CC BY-NC-ND 4.0). This license allows you to share, copy, distribute and transmit the work for personal and non-commercial use providing author and publisher attribution is clearly stated. Attribution should include the following information: Michael Boulter, Bloomsbury Scientists. London, UCL Press, 2017. https://doi.org/10.14324/111.9781787350045 Further details about Creative Commons licenses are available at http://creativecommons.org/licenses/ ISBN: 978- 1- 78735- 006- 9 (hbk) ISBN: 978- 1- 78735- 005- 2 (pbk) ISBN: 978- 1- 78735- 004- 5 (PDF) ISBN: 978- 1- 78735- 007- 6 (epub) ISBN: 978- 1- 78735- 008- 3 (mobi) ISBN: 978- 1- 78735- 009- 0 (html) DOI: https:// doi.org/ 10.14324/ 111.9781787350045 v In memory of W. G. Chaloner FRS, 1928– 2016, lecturer in palaeobotany at UCL, 1956– 72 vi vii Acknowledgements My old writing style was strongly controlled by the measured precision of my scientific discipline, evolutionary biology. It was a habit that I tried to break while working on this project, with its speculations and opinions, let alone dubious data. But my old practices of scientific rigour intentionally stopped personalities and feeling showing through. -
Doctorat Honoris Causa
DOCTORAT HONORIS CAUSA Acord núm. 204/2007 del Consell de Govern, pel qual s’aprova la concessió del doctorat Honoris Causa al Professor Sir Michael Atiyah. Document aprovat per la Comissió Permanent del dia 3/12/2007. Document aprovat pel Consell de Govern del dia 17/12/2007. DOCUMENT CG 14/12 2007 Secretaria General Desembre de 2007 PROPOSTA D’ACORD DEL CONSELL DE GOVERN PER A CONCEDIR EL DOCTORAT HONORIS CAUSA PER LA UNIVERSITAT POLITÈCNICA DE CATALUNYA, AL PROFESSOR SIR MICHAEL ATIYAH ANTECEDENTS: 1. El professor Sir Michael Atiyah ha estat guardonat, entre d’altres distincions, amb la Medalla Fields (1966), atorgada per la Unió Matemàtica Internacional, i el Premi Abel (2004), atorgat per l’Acadèmia de Ciències de Noruega, ambdues reconegudes com un Premi Nobel de les Matemàtiques. També ha estat un dels impulsors més decisius de la Societat Matemàtica Europea. 2. En relació amb Catalunya i Barcelona, i més concretament, amb la UPC, el professor Sir Michael Atiyah ha estat president del Comitè Científic del 3r Congrés Europeu de Matemàtiques celebrat a Barcelona l’any 2000. 3. El prestigi internacional del professor Sir Michael Atiyah el fa un candidat idoni com a primer doctor honoris causa per la UPC en un àrea en la qual la nostra Universitat compta amb una comunitat nombrosa i amb un gran prestigi i reconeixement internacionals. 4. El rector ha rebut una proposta formal per a investir el professor Sir Michael Atiyah com a doctor honoris causa per la Universitat Politècnica de Catalunya, signada pel degà de la Facultat de Matemàtiques i Estadística, el director del departament de Matemàtica Aplicada I, el director del departament de Matemàtica Aplicada II, el director del departament de Matemàtica Aplicada III, el director del departament de Matemàtica Aplicada IV, i el director del departament d’Estadística i Investigació Operativa. -
Introduction and Historical Perspective
Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful -
Williams Dissertation 4.17.12
ACTIVATION, DESENSITIZATION AND POTENTIATION OF ALPHA7 NICOTINIC ACETYLCHOLINE RECEPTORS: RELEVANCE TO ALPHA7-TARGETED THERAPEUTICS By DUSTIN KYLE WILLIAMS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2012 1 CHAPTER 1 ANIMAL ELECTRICITY: HISTORICAL INTRODUCTION For many centuries the prevailing theories of neurotransmission had no concept of electricity. “Animal spirits”, an immeasurable force thought to be the source of animation, imagination, reason, and memory, was believed to be contained within the fluid stored in the ventricles and distributed throughout the body via the nerves which acted as conduits of this vital fluid [1, 2]. This fundamental hypothesis was upheld and propagated for more than 1,500 years by many well-known and influential philosophers, physicians, and scientists including Aristotle, Galen, Descartes, Borelli, and Fontanta, each contributing unique variations to the basic idea [2-4]. It was not until the late 18th century that Luigi Galvani discovered electricity as the currency of the nervous system, and even then this important discovery was not readily accepted. Understanding bioelectricity as we do today was truly a multi-national effort that took place over hundreds of years. Pre-Galvani to Hodgkin & Huxley By the 1660s, Jan Swammerdam (The Netherlands; 1637-1680) had shown that muscles could contract without any physical connection to the brain, providing perhaps the first evidence against the fallacious animal spirits hypothesis [4]. He devised an isolated nerve-muscle preparation from the frog and showed that mechanical stimulation of the nerve resulted in muscle contraction. -
Otto Loewi (1873–1961): Dreamer and Nobel Laureate
Singapore Med J 2014; 55(1): 3-4 M edicine in S tamps doi:10.11622/smedj.2014002 Otto Loewi (1873–1961): Dreamer and Nobel laureate Alli N McCoy1, MD, PhD, Siang Yong Tan2, MD, JD ronically, Otto Loewi is better known for the way in barely passed the end-of-year examination, requiring a year which he came upon the idea that won him the Nobel of remediation before he was able to complete his medical Prize than for the discovery itself. Loewi’s prize-winning degree in 1896. experiment came to him in a dream. According to Loewi, Loewi’s first job as an assistant in the city hospital at I“The night before Easter Sunday of [1920] I awoke, turned on the Frankfurt proved frustrating, as he could not provide effective light and jotted down a few notes on a tiny slip of thin paper. treatment for patients with tuberculosis and pneumonia. Then I fell asleep again. It occurred to me at 6.00 o’clock in Disheartened, he decided to leave clinical medicine for a the morning that during the night I had written down something basic science research position in the laboratory of prominent important, but I was unable to decipher the scrawl. The next German pharmacologist, Hans Meyer, at the University of night, at 3.00 o’clock, the idea returned. It was the design of Marburg an der Lahn. While Loewi would eventually win an experiment to determine whether or not the hypothesis of international acclaim for his contribution to neuroscience, his chemical transmission that I had uttered 17 years ago was correct. -
HUMAN GENE MAPPING WORKSHOPS C.1973–C.1991
HUMAN GENE MAPPING WORKSHOPS c.1973–c.1991 The transcript of a Witness Seminar held by the History of Modern Biomedicine Research Group, Queen Mary University of London, on 25 March 2014 Edited by E M Jones and E M Tansey Volume 54 2015 ©The Trustee of the Wellcome Trust, London, 2015 First published by Queen Mary University of London, 2015 The History of Modern Biomedicine Research Group is funded by the Wellcome Trust, which is a registered charity, no. 210183. ISBN 978 1 91019 5031 All volumes are freely available online at www.histmodbiomed.org Please cite as: Jones E M, Tansey E M. (eds) (2015) Human Gene Mapping Workshops c.1973–c.1991. Wellcome Witnesses to Contemporary Medicine, vol. 54. London: Queen Mary University of London. CONTENTS What is a Witness Seminar? v Acknowledgements E M Tansey and E M Jones vii Illustrations and credits ix Abbreviations and ancillary guides xi Introduction Professor Peter Goodfellow xiii Transcript Edited by E M Jones and E M Tansey 1 Appendix 1 Photographs of participants at HGM1, Yale; ‘New Haven Conference 1973: First International Workshop on Human Gene Mapping’ 90 Appendix 2 Photograph of (EMBO) workshop on ‘Cell Hybridization and Somatic Cell Genetics’, 1973 96 Biographical notes 99 References 109 Index 129 Witness Seminars: Meetings and publications 141 WHAT IS A WITNESS SEMINAR? The Witness Seminar is a specialized form of oral history, where several individuals associated with a particular set of circumstances or events are invited to meet together to discuss, debate, and agree or disagree about their memories. The meeting is recorded, transcribed, and edited for publication. -
Front Matter (PDF)
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON Series A CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER. VOL. G LONDON: P rinted for THE ROYAL SOCIETY and Sold by HARRISON AND SONS, Ltd., ST. MARTIN’S LANE,. PRINTERS in ordinary to h is m a jesty . March, 1922. LONDON : HARRISON AND SONS, LTD., PRINTERS IN ORDINARY TO HIS MAJESTY, ST. MARTIN^ LANE. CONTENTS ---------------- SERIES A. VOL. C. i PAGE Minutes of Meetings, November 3, 1021—February 23, 1922 .................................. i No. A 702.—October 4, 1921. On the Velocity of Sound in Gases at High Temperatures, and the Ratio of the Specific Heats. By Harold B. Dixon, C.B.E., F.R.S., Colin Campbell, D.Sc., and A. Parker, D.Sc....................................................................................................... 1 The Ratio of the Specific Heats of Air and of Carbon Dioxide. By J. R. Partington, D.Sc. Communicated by Dr. J. A. Harker, F.R.S............................ 27 On the Currents induced in a Conductor by the Passage of a Mass of Magnetic Material over it. By E. S. Bieler, M.Sc., 1851 Scholar of McGill University. Communicated by Sir E. Rutherford, F.R.S. (Plate 1 ) ............. ................ 1.......... 50 On some New Formuke for the Numerical Calculation of the Mutual Induction of Coaxial Circles. By Louis V. King, D.Sc., Macdonald Professor of Physics, McGill University, Montreal. Communicated by Prof. A. S. Eve, F.R.S......... 60 Gaseous Combustion at High Pressures. Part II.—The Explosion of Hydrogen-Air and Carbon Monoxide-Air Mixtures. By William A rthur Bone, D.Sc., Ph.D., F.R.S.,'and the late William Arthur Haward, M.Sc., Salters’Research Fellow.. -
E Neurobiology of Learning and Memory – As Related in the Memoirs of Eric R
www.surgicalneurologyint.com Surgical Neurology International Editor-in-Chief: Nancy E. Epstein, MD, Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook. SNI: Socioeconomics, Politics, and Medicine Editor James A Ausman, MD, PhD University of California at Los Angeles, Los Angeles, CA, USA Open Access Book Review e neurobiology of learning and memory – as related in the memoirs of Eric R. Kandel Miguel A. Faria Clinical Professor of Surgery (Neurosurgery, ret.) and Adjunct Professor of Medical History (ret.), Mercer University School of Medicine, United States. E-mail: *Miguel A. Faria - [email protected] Author : Eric R. Kandel Published by : W.W. Norton & Co., New York, NY, USA Price : $19.95 ISBN-13 : 978-0393329377 ISBN-10 : 9780393329377 Year : 2006 *Corresponding author: Miguel A. Faria, MD Clinical Professor of Surgery (Neurosurgery, ret.) and Adjunct Professor of Medical History (ret.), Mercer University School of Medicine, United States. [email protected] is magnificent tome by Eric R. Kandel, M.D., a psychoanalyst and neuroscience researcher, Received : 22 July 2020 is both a delightful autobiography and a scrupulously detailed history of the neurobiology of Accepted : 22 July 2020 learning and memory, a relatively new area of neuroscience that Kandel refers to as a “new [7] Published : 15 August 2020 science of mind.” His own fundamental work in this area made him a recipient of a Nobel Prize in Physiology or Medicine in 2000, which he shared with two other distinguished investigators, DOI Drs. Arvid Carlsson (for elucidating the effects of dopamine in Parkinson’s disease) and Paul 10.25259/SNI_458_2020 Greengard (for the discovery of signal transduction in neurons). -
Sir Frederick Gowland Hopkins O.M., M.A., M.B., D.Sc., Hon. Sc.D., Hon. LL.D., Hon. D.Sc., F.R.C.P., F.R.S
Downloaded from https://doi.org/10.1079/BJN19470004 VOl. I Obituary 3 Barcroft‘s interest in the science of nutrition arose not only from the catholicity of his physiological outlook, but also more directly from the fact that since 1937 he had https://www.cambridge.org/core been Chairman of the Food Investigation Board, and hence intimately concerned in their activities relating to such matters as the processing of food and the conservation of its nutritive value. Barcroft married, in 1903, Mary A. Ball, daughter of the late Sir Robert Ball, the celebrated astronomer. One of their sons is Henry Barcroft, Professor of Physiology at Queen’s University, Belfast. LESLIE J. HARRIS . IP address: SIR FREDERICK GOWLAND HOPKINS, O.M., M.A., M.B., D.Sc., 170.106.202.58 Hon. Sc.D., Hon. LL.D., Hon. D.Sc., F.R.C.P., F.R.S. Ry the death of Sir Frederick Hopkins, which occurred in Cambridge on 16 May in his 86th year, Nutritional Science lost one of its great pioneers, and its doyen. He had , on long been recognized as the leading biochemist of his time; he was also greatly beloved 29 Sep 2021 at 04:37:19 as a man. In discussing his life’s work in another place,* I wrote that Hopkins’s scientific renown was based on his explorations into at least four or five different avenues of biochemistry: lactic acid in muscle activity; the discovery of the amino-acid tryptophan, and the demonstration of its ‘specific biological value’; his classical experiments on , subject to the Cambridge Core terms of use, available at the need for accessory factors in normal diets (by which he is best known to the man in the street); and his isolation of the cell-catalyst, glutathione (which will perhaps prove scientifically the most significant of all his contributions). -
In Search of Memory
In Search of Memory (The emergence of a new science of mind) Eric R. Kandel (Book review by Carles Sierra. Published in AI Journal 2010, vol 174) This book is a passionate praise of scientific inquiry. The initial biography of the author, from a childhood in nazi-occupied Vienna to a youth of liberal education in the USA, set the character of Eric Kandel as a determined person. His family escaped, when he was 9 years old, the nazi prosecution of Jews in 1939. The book accounts for his personal biography at large put in the context of the research of his time and his contribution to neurosciences. He accounts also for the results of many other European researchers that unfortunately had to leave their countries during WWII. The book is hard to put down, Kandel masters scientific writing and gives a clear and chronological history of the fascinating discoveries of the neurosciences in the twentieth century, The book also accounts for the personal quest of the author to find the ultimate biological explanation of human behaviour, that is, how learning processes and memory are sustained by neurological mechanisms, electrical, chemical and genetic. Memory is the essence of all of us. When we lose our memory we fade away. As Kandel puts it: ‘we are who we are because of what we learn and what we remember.’ The book is organised along three different types of content. On the one hand the personal biography of the author that allows the reader to enjoy the motives, illusions and emotions of a researcher, a detailed explanation of research findings that introduce the reader to the big names in neuroscience during the nineteenth and twentieth centuries, and a chronological description of the research focus of Eric Kandel.