Camille Dreyfus Teacher-Scholar Awards Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The-Chemical-Biologist.Pdf
Chunxiao Song LUDWIG WORKING FROM HOME “Basically, everything around us can be represented in this very simple and elegant way. It seemed like the whole world could be written in simple formulas.” 38 The chemical biologist IN 2008, CHUNXIAO SONG WAS JUST A dozen years on, that lost feeling is a beginning his graduate studies in chemistry pleasantly dim memory for Song, who is at the University of Chicago. It was not going now an assistant member of the Oxford well. A foreign student from China, Song Branch of the Ludwig Institute for Cancer had never traveled outside his country, and Research. In 2019, Song, in collaboration the pressure and loneliness were starting to with his Ludwig Oxford colleague Benjamin get to him. “Graduate studies, especially for Schuster-Boeckler, published a study in the foreigners, can be tough,” Song says. journal Nature Biotechnology that detailed a greatly improved method for mapping a He was professionally adrift as well. During key chemical—or “epigenetic”—modification college at Peking University, Song had made to DNA known as methylation. majored in organic chemistry. Now, eager Epigenetic modifications play a critical to harness chemistry to probe the natural role in controlling gene expression, and world, he had switched his focus to chemical aberrant methylation across the genome biology. He was adept at designing reactions has long been known to be a hallmark of to create synthetic molecules without cancer. In 2020, Song and his colleagues concern for their immediate utility. But in launched a company named Base Genomics the biological world, chemistry is only useful to commercialize their new technology to the extent that it explains or enables and apply it to minimally invasive cancer discovery. -
Our Choice from the Recent Literature
research highlights OPTICAL CLOAKING layer that increases the overall reflectivity of rather than by the Stark effect. It is, in A phase compensation trick their metasurface. This design, which can in fact, known that in charged nanocrystals, Science 349, 1310–1314 (2015) principle be scaled up, works for incoming the recombination of electrons and holes light within 30° angles with respect to the happens primarily through a non-radiative perpendicular direction. AM phenomenon known as the Auger effect. Delehanty and colleagues also simulated NANOCRYSTALS a realistic neuron firing event by applying Getting on your nerves to the device an electric voltage pulse Nano Lett. 15, 6848–6854 (2015) recorded independently from a murine cortical neuron. The intensity of the Semiconductor nanocrystals could luminescence followed the voltage profile potentially be used to study the electrical accurately, with a total variation of up to 5% activity of neurons by monitoring their in luminescence. FP luminescence during a firing event. The basic principle is that an electric field affects CONTRAST AGENTS AAAS the spatial separation of electrons and holes Nanobubbles that don’t pop in nanocrystals (a phenomenon known as Angew. Chem. Int. Ed. http://doi.org/f3ggns (2015) A cloak is a device that makes objects the quantum confined Stark effect) and, invisible to an external observer. The first therefore, affects the time it takes for these Microbubbles, which are typically made cloaks that could work with visible light charges to recombine and ultimately the up of a lipid or protein shell and contain air used bulky containers with special optical intensity of the luminescence emitted. -
“Highly Crystalline Multimetallic Nanoframes with Three
Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces Chen Chen et al. Science 343, 1339 (2014); DOI: 10.1126/science.1249061 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of June 10, 2014 ): Updated information and services, including high-resolution figures, can be found in the online on June 10, 2014 version of this article at: http://www.sciencemag.org/content/343/6177/1339.full.html Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2014/02/26/science.1249061.DC1.html A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/content/343/6177/1339.full.html#related www.sciencemag.org This article cites 38 articles, 9 of which can be accessed free: http://www.sciencemag.org/content/343/6177/1339.full.html#ref-list-1 This article has been cited by 1 articles hosted by HighWire Press; see: http://www.sciencemag.org/content/343/6177/1339.full.html#related-urls This article appears in the following subject collections: Chemistry http://www.sciencemag.org/cgi/collection/chemistry Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. -
SEMINAR Peidong Yang
Institute for Collaborative Biotechnologies SEMINAR Tuesday, May 22, 2007 3:00 pm / Refreshments at 2:45 pm 1001 Engineering Science Building Peidong Yang Associate Professor, Department of Chemistry and Materials Science and Engineering, University of California, Berkeley Nanowire Photonics The manipulation of optical energy in structures smaller than the wavelength of light is key to the development of integrated photonic devices for computing, communications and sensing. Wide band gap semiconductor nanostructures with near-cylindrical geometry and large dielectric constants exhibit two- dimensional ultraviolet and visible photonic confinement (i.e. waveguiding). Combined with optical gain, the waveguiding behavior facilitates highly directional lasing at room temperature in controlled-growth nanowires with suitable resonant feedback. We have further explored the properties and functions of individual ultralong crystalline oxide nanoribbons that act as subwavelength optical waveguides, nonlinear frequency converter and assess their applicability as nanoscale photonic elements and scanning probes. Semiconductor nanowires offer a versatile photonic platform due to the ability to specify material size, shape, and composition. The integration of multiple unique materials with distinct thermal, optoelectronic, and mechanical properties promises to enable advances for several applications ranging from information processing to biochemical sensing. Biography Professor Peidong Yang received a B.S. in chemistry from University of Science and Technology of China in 1993 and a Ph.D. in chemistry from Harvard University in 1997 for work on flux line pinning in the laboratory of Professor Charles Lieber. He then did postdoctoral research in the area of mesoporous materials with Professor Galen Stucky at University of California, Santa Barbara. He began his faculty appointment in the Department of Chemistry at the University of California, Berkeley on July 1, 1999. -
Public Lecture
Queensland Micro- and Nanotechnology Centre PUBLIC LECTURE Speaker: Professor Peidong Yang Department of Chemistry and Department of Materials Science Engineering, University of California, Berkeley; Materials Science Division, Lawrence Berkeley National Lab, Berkeley CA, USA http://nanowires.berkeley.edu/ Date: Friday 15 December 2017 Time: 11:00 am – 12:00 pm Venue: Sir Samuel Griffith Centre (N78) Room 1.19, Griffith University, Nathan Campus Title: CO2 + H2O + Sunlight = Chemical Fuels + O2 Abstract Solar-to-chemical (STC) production using a fully integrated system is an attractive goal, but to-date there has yet to be a system that can demonstrate the required efficiency, durability, or be manufactured at a reasonable cost. One can learn a great deal from the natural photosynthesis where the conversion of carbon dioxide and water to carbohydrates is routinely carried out at a highly coordinated system level. There are several key features worth mentioning in these systems: spatial and directional arrangement of the light-harvesting components, charge separation and transport, as well as the desired chemical conversion at catalytic sites in compartmentalized spaces. In order to design an efficient artificial photosynthetic materials system, at the level of the individual components: better catalysts need to be developed, new light-absorbing semiconductor materials will need to be discovered, architectures will need to be designed for effective capture and conversion of sunlight, and more importantly, processes need to be developed for the efficient coupling and integration of the components into a complete artificial photosynthetic system. In this talk, I will begin by discussing the challenges associated with fixing CO2 through traditional chemical catalytic means, contrasted with the advantages and strategies that biology employs through enzymatic catalysts to produce more complex molecules at higher selectivity and efficiency. -
Artificial Photosynthesis for Sustainable Fuel and Chemical Production Dohyung Kim, Kelsey K
Angewandte. Minireviews P. Yang et al. DOI: 10.1002/anie.201409116 Heterogeneous Catalysis Special Issue 150 Years of BASF Artificial Photosynthesis for Sustainable Fuel and Chemical Production Dohyung Kim, Kelsey K. Sakimoto, Dachao Hong, and Peidong Yang* artificial photosynthesis · carbon dioxide reduction · heterogeneous catalysis · sustainable chemistry · water splitting The apparent incongruity between the increasing consumption of fuels and chemicals and the finite amount of resources has led us to seek means to maintain the sustainability of our society. Artificial photo- synthesis, which utilizes sunlight to create high-value chemicals from abundant resources, is considered as the most promising and viable method. This Minireview describes the progress and challenges in the field of artificial photosynthesis in terms of its key components: developments in photoelectrochemical water splitting and recent progress in electrochemical CO2 reduction. Advances in catalysis, face require an efficient method to concerning the use of renewable hydrogen as a feedstock for major convert raw materials into useful fuels chemical production, are outlined to shed light on the ultimate role of and chemicals, to make the flow of energy and matter bidirectional, and artificial photosynthesis in achieving sustainable chemistry. help maintain a balance between pro- duction and consumption. For the efficient and sustainable 1. Introduction production of fuels and chemicals, the method to be developed has to utilize energy and resources that are In every aspect of our lives, we rely on fuels and chemicals, naturally abundant and easily renewable. Artificial photo- whose usefulness is typically exhausted once consumed. With synthesis uses solar power, which can provide up to 105 TW of the growing population and technological advances, this energy, to convert raw materials like water and CO2 to useful [3] unidirectional flow of energy and matter has grown signifi- chemicals, e.g., H2, CO, and hydrocarbons. -
Curriculum Vitae-Chuan He
Curriculum Vitae-Chuan He Position John T. Wilson Distinguished Service Professor of Chemistry Director of Institute for Biophysical Dynamics Howard Hughes Medical Institute Investigator The University of Chicago Address GCIS E319B, 929 East 57th Street Department of Chemistry The University of Chicago Chicago, IL 60637 USA Tel: 773-702-5061. Fax: 773-702-0805. Email: [email protected] Born Feb. 25, 1972, in P. R. China Education University of Science and Technology of China, Bachelor of Science in Chemistry, June, 1994. Massachusetts Institute of Technology, Ph.D. in Chemistry, August, 2000 (Adviser, Professor Stephen J. Lippard) Harvard University, Postdoc in Chemical Biology, 2000-2002 (Adviser, Professor Gregory L. Verdine) Employment Massachusetts Institute of Technology, Teaching Assistant, 1995-1996 Massachusetts Institute of Technology, Research Assistant, 1996-1997 Massachusetts Institute of Technology, Merck/MIT Graduate Fellow, 1997-1999 Massachusetts Institute of Technology, Research Assistant, 1999-2000 Harvard University, Damon Runyon Cancer Foundation Postdoctoral Fellow, 2000-2002 The University of Chicago, Assistant Professor, 2002-2008 The University of Chicago, Associate Professor, 2008-2010 The University of Chicago, Professor, 2010- The University of Chicago, Director of Institute for Biophysical Dynamics, 2012- Investigator of Howard Hughes Medical Institute, 2014- The University of Chicago, John T Wilson Distinguished Service Professor, 2014- Director of the Synthetic and Functional Biomolecules Center (SFBC) at Peking University, 2011- Awards Merck/MIT Graduate Fellowship, MIT, 1997-1999. The Fourth Annual Davison Prize for the Best Thesis in Inorganic Chemistry, MIT, 2001. Postdoctoral Fellowship from the Damon Runyon Cancer Research Foundation, 2000-2002. Searle Scholar Award, 2003 Research Corporation Research Innovation Award, 2003 G&P Foundation for Cancer Research Young Investigation Award, 2004 W. -
Nano and Energy: Powerful Things from a Tiny World
and ENERGY POWERFUL Things from a TINY WORLD Think big. Really BIG. Think about all the people on Earth— over 7 billion of them and counting. Think about all the energy those people use every day: to light, heat, and cool homes, schools, and office buildings—to refrigerate and cook food—to power computers and communications—to fuel cars, buses, trains, and airplanes—to make fertilizer for increasing the yield of crops—and to manufacture products. Because of the promise of nanotechnology to improve lives and to contribute to economic growth and energy independence, the Federal Government is supporting research in nanotechnology through the guiding efforts of the U.S. National Nanotechnology Initiative (NNI). As a result of these efforts, the United States is a global leader in nanotechnology development. iStockphoto iStockphoto We use a LOT of energy, estimated to amount to over 1.3 quadrillion British Thermal Units (BTUs) or about 1.4 million terajoules per day from all sources. In the U.S. alone, energy costs run about $1 trillion per year, almost 10 percent of the Gross Domestic Product (GDP). Today, most energy comes from fossil fuels: crude oil, coal, and natural gas. Fossil fuels are refined into gasoline, diesel, or other fuels, or converted into other forms of energy such as electricity, which in turn power motors, lights, furnaces, air conditioners, vehicles, and manufacturing equipment. Projected Global Energy Demand 50 Renewables Nuclear 40 Coal Petroleum 30 Natural Gas 20 (Terawatts) Primary Power 10 0 2100 2090 2080 2070 2060 2050 2040 2030 2020 2010 2000 1990 Year Projected global energy demand through the year 2100 is based on scenarios developed by the International Panel on Climate Change. -
Semiconductor Nanowire Building Blocks: from fl Ux Line Pinning to Artifi Cial Photosynthesis Peidong Yang
Semiconductor nanowire building blocks: From fl ux line pinning to artifi cial photosynthesis Peidong Yang The following article is an edited transcript of the MRS Medal Lecture presented by Peidong Yang on November 30, 2011 at the 2011 Materials Research Society Fall Meeting in Boston. The MRS Medal is awarded for a specifi c outstanding recent discovery or advancement that has a major impact on the progress of a materials-related fi eld. Yang received the award for “outstanding contributions in the creative synthesis and assembly of semiconductor nanowires and their heterostructures, and innovations in nanowire-based photonics, thermoelectrics, solar energy conversion, and nanofl uidic applications. ” Semiconductor nanowires, by defi nition, typically have nanoscale cross-sectional dimensions, with lengths spanning from hundreds of nanometers to millimeters. These subwavelength structures represent a new class of semiconductor materials for investigating light generation, propagation, detection, amplifi cation, and modulation. After more than a decade of research, nanowires can now be synthesized and assembled with specifi c compositions, heterojunctions, and architectures. This has led to a host of nanowire photonic and electronic devices, including photodetectors, chemical and gas sensors, waveguides, LEDs, microcavity lasers, and nonlinear optical converters. Nanowires also represent an important class of nanostructure building blocks for photovoltaics as well as direct solar-to-fuel conversion because of their high surface area, tunable bandgap, and effi cient charge transport and collection. This article gives a brief history of nanowire research for the past two decades and highlights several recent examples in our lab using semiconductor nanowires and their heterostructures for the purpose of solar energy harvesting and waste heat recovery. -
Chemist Peidong Yang — 2007 Winner of the Taigen Names Dr
www.asiabiotech.com People Profile Chemist Peidong Yang — 2007 winner of the National Science Foundation’s Alan T. Waterman Award The National Science Foundation (NSF) has chosen Peidong Yang, a chemist at the University of California, Berkeley, to receive the 2007 Alan T. Waterman Award. Peidong Yang was born and raised in the Chinese city of Suzhou, leaving to study chemistry at the University of science and Technology of China in Hefei in 1988. Earning his Ph.D. degeree from Harvard in 1997, Yang then traveled to UC, Santa Barbara in 1997, and arrived at UC-Berkeley in 1999. In a short time, Yang has established himself as a rising star, publishing widely and receiving such awards as the NSF CAREER Award, the Alfred P. Sloan research fellowship, the Arnold and Mabel Beckman Young Investigator Award, the MRS Young Investigator Award, the Julius Springer Prize for Applied Physics, and the American Chemical Society’s Pure Chemistry Award. A nanotechnology expert, Yang has pioneered research on nanowires, strings of atoms that show promise for a range of high-technology devices, from tiny lasers and computer circuits to inexpensive solar panels and biological sensors. The annual Waterman award recognizes an outstanding young researcher in any field of science or engineering supported by NSF. Candidates may not be more than 35 years old, or seven years beyond receiving a doctorate and must stand out for their individual achievements. In addition to a medal, the awardee receives a grant of US$500 000 over a 3-year period for scientific research or advanced study in their field. -
View Sourcebook
Alpha Chi Sigma Sourcebook A Repository of Fraternity Knowledge for Reference and Education ACADEMIC YEAR {2021-2022} EDITION ALPHA CHI SIGMA Sourcebook {2021 - 2022} l 1 This Sourcebook is the property of: _________________________________________ ________________________________________ Full Name Chapter Name ___________________________________________________ Pledge Class ___________________________________________________ ___________________________________________________ Date of Pledge Ceremony Date of Initiation ___________________________________________________ ___________________________________________________ Master Alchemist Vice Master Alchemist ___________________________________________________ ___________________________________________________ Master of Ceremonies Reporter ___________________________________________________ ___________________________________________________ Recorder Treasurer ___________________________________________________ ___________________________________________________ Alumni Secretary Other Officer Members of My Pledge Class ________________________________________________________________________________________________________________________ ________________________________________________________________________________________________________________________ ________________________________________________________________________________________________________________________ ________________________________________________________________________________________________________________________ -
Welcome and Opening Coffee Break 15 Min Immunology and Immune
Signing Ceremony of Peking University- Boehringer Ingelheim Strategic Partnership and the 1st Peking University- Boehringer Ingelheim Joint Symposium on Biomedical Research 16 May 2017, 9:00-17:30, 4+6 Hall B1 Lakeview Hotel Welcome and Opening 9:00-9:15 Peking University Jie Wang, Vice President of Peking University 9:15-9:30 Boehringer Ingelheim Clive Wood, Head, Discovery Research, BI 9:30-10:00 Signing Ceremony 10:00-10:10 Institute of Molecular Medicine Rui-Ping Xiao, Director, Institute of Molecular Medicine 10:10-10:20 College of Chemistry and Molecular Engineering Yiqin Gao, Dean, College of Chemistry and Molecular Engineering 10:20-10:30 School of Life Sciences Chenjian Li, Vice Dean, School of Life Sciences; Vice Provost, PKU Coffee break 15 min 10:45-11:00 Jonathon Sedgewick, Global Head, Cancer Cancer Immunology and Immune Modulation Immunology and Immune Modulation, BI 11:00-11:20 Zemin Zhang, Principle Investigator, School of Characteristics of tumor infiltrating lymphocytes revealed by Life Sciences, PKU single cell sequencing 11:20-11:40 Jiazhi Hu, Principle Investigator, School of Life Revealing antibody repertoires and evaluating off-target activities Sciences, PKU of engineered nucleases by next-generation sequencing 11:40-12:00 Zhengfan Jiang, Principle Investigator, School of Innate immunity and related cell signaling Life Sciences, PKU 12:00-13:00 Lunch 13:00-13:15 Henri Doods, Global Head, Research Beyond A global BI approach to capture external innovation Borders, BI 13:15-13:35 Hongkui Deng, Principle Investigator,