Lipid Therapeutics Update - Going Above and Beyond Statin Therapy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(AAV1-LPLS447X) Gene Therapy for Lipoprotein Lipase Deficiency
Gene Therapy (2013) 20, 361–369 & 2013 Macmillan Publishers Limited All rights reserved 0969-7128/13 www.nature.com/gt ORIGINAL ARTICLE Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial D Gaudet1,2,JMe´ thot1,2,SDe´ry1, D Brisson1,2, C Essiembre1, G Tremblay1, K Tremblay1,2, J de Wal3, J Twisk3, N van den Bulk3, V Sier-Ferreira3 and S van Deventer3 We describe the 2-year follow-up of an open-label trial (CT-AMT-011–01) of AAV1-LPLS447X gene therapy for lipoprotein lipase (LPL) deficiency (LPLD), an orphan disease associated with chylomicronemia, severe hypertriglyceridemia, metabolic complications and potentially life-threatening pancreatitis. The LPLS447X gene variant, in an adeno-associated viral vector of serotype 1 (alipogene tiparvovec), was administered to 14 adult LPLD patients with a prior history of pancreatitis. Primary objectives were to assess the long-term safety of alipogene tiparvovec and achieve a X40% reduction in fasting median plasma triglyceride (TG) at 3–12 weeks compared with baseline. Cohorts 1 (n ¼ 2) and 2 (n ¼ 4) received 3 Â 1011 gc kg À 1, and cohort 3 (n ¼ 8) received 1 Â 1012 gc kg À 1. Cohorts 2 and 3 also received immunosuppressants from the time of alipogene tiparvovec administration and continued for 12 weeks. Alipogene tiparvovec was well tolerated, without emerging safety concerns for 2 years. Half of the patients demonstrated a X40% reduction in fasting TG between 3 and 12 weeks. TG subsequently returned to baseline, although sustained LPLS447X expression and long-term changes in TG-rich lipoprotein characteristics were noted independently of the effect on fasting plasma TG. -
Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany). -
Deliverable 5.A Interim Report on the Study Results APPENDIX 2
Deliverable 5.a Interim report on the study results APPENDIX 2: Algorithms used to identify study variables for service contract EMA/2011/38/CN ‐ PIOGLITAZONE November 28th 2012 D5.a Interim report on the study results (Appendix 2) for Service Contract EMA/2011/38/CN PIOGLITAZONE Author(s): Vera Ehrenstein (AUH‐AS) APPENDIX 2. ALGORITHMS USED TO IDENTIFY STUDY VARIABLES Algorithms for AU Database DISEASE/CONDITION ICD-8 CODE (1977-1993) ICD-10 CODE (1994-) Diabetes type 2 250.00; 250.06; 250.07; 250.09 E11.0; E11.1; E11.9 Cancer of bladder 188 C67 Haematuria N/A R31 Haematuria, unspecified B18, K70.0–K70.3, K70.9, K71, K73, Mild hepatic impairment 571, 573.01, 573.04 K74, K76.0 Moderate to severe hepatic 070.00, 070.02, 070.04, 070.06, B15.0, B16.0, B16.2, B19.0, K70.4, impairment 070.08, 573.00, 456.00–456.09 K72, K76.6, I85 Acute myocardial infarction 410 I21-I23 Acute coronary syndrome 410, 413 I20-I24 Ischemic heart disease 410-414 I20-I25 427.09, 427.10, 427.11, 427.19, Congestive heart failure I50, I11.0, I13.0,I13.2 428.99, 782.49; Acute renal failure N/A N17 Diabetic coma N/A E10.0, E11.0, E12.0,E13.0, E14.0 Diabetic acidosis N/A E10.1, E11.1, E12.1,E13.1, E14.1 F10.1-F10.9, G31.2, G62.1, G72.1, Alcoholism 291, 303, 577.10, 571.09, 571.10 I42.6, K29.2, K86.0, Z72.1 Obesity 277.99 E65-E66 D5.a Interim report on the study results (Appendix 2) for Service Contract EMA/2011/38/CN PIOGLITAZONE Author(s): Vera Ehrenstein (AUH‐AS) Algorithms for defining acute events in Denmark, ICD-10 code Event ICD-10 code I21.x, I23.x http://apps.who.int/classifications/icd10/browse/2010/en#/I21 -
Stems for Nonproprietary Drug Names
USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol -
2019 ESC/EAS Guidelines for the Management of Dyslipidaemias
Atherosclerosis 290 (2019) 140–205 Contents lists available at ScienceDirect Atherosclerosis journal homepage: www.elsevier.com/locate/atherosclerosis 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid ☆ T modification to reduce cardiovascular risk ∗ ∗∗ Authors/Task Force Members (François Macha, ,2, Colin Baigentb, ,2, ∗∗∗ Alberico L. Catapanoc, ,1,2, Konstantinos C. Koskinasd, Manuela Casulae,f,1, Lina Badimong, M. John Chapmanh,i,cm,1, Guy G. De Backerj, Victoria Delgadok, Brian A. Ferencel, Ian M. Grahamm, Alison Hallidayn, Ulf Landmessero,p,q, Borislava Mihaylovar,s, Terje R. Pedersent, Gabriele Riccardiu,1, Dimitrios J. Richterv, Marc S. Sabatinew, Marja-Riitta Taskinenx,1, Lale Tokgozogluy,1, Olov Wiklundz), ESC National Cardiac Societies (Djamaleddine Nibouchean, Parounak H. Zelveianao, Peter Siostrzonekap, Ruslan Najafovaq, Philippe van de Bornear, Belma Pojskicas, Arman Postadzhiyanat, Lambros Kyprisau, Jindřich Špinarav, Mogens Lytken Larsenaw, Hesham Salah Eldinax, Margus Viigimaaay, Timo E. Strandbergaz, Jean Ferrièresba, Rusudan Agladzebb, Ulrich Laufsbc, Loukianos Rallidisbd, László Bajnokbe, Thorbjörn Gudjónssonbf, Vincent Maherbg, Yaakov Henkinbh, Michele Massimo Guliziabi, Aisulu Mussagaliyevabj, Gani Bajraktaribk, Alina Kerimkulovabl, Gustavs Latkovskisbm, Omar Hamouibn, Rimvydas Slapikasbo, Laurent Visserbp, Philip Dinglibq, Victoria Ivanovbr, Aneta Boskovicbs, Mbarek Nazzibt, Frank Visserenbu, Irena Mitevskabv, Kjetil Retterstølbw, Piotr Jankowskibx, Ricardo Fontes-Carvalhoby, Dan Gaitabz, Marat Ezhovca, -
Consumer Medicine Information
NEW ZEALAND DATA SHEET PRAVASTATIN MYLAN 1. Product Name Pravastatin Mylan, 10 mg, 20 mg and 40 mg, tablets 2. Qualitative and Quantitative Composition Each tablet contains either 10 mg, 20 mg or 40 mg of pravastatin sodium. Excipient with known effect: lactose. For the full list of excipients, see section 6.1. 3. Pharmaceutical Form Tablet. 10 mg: Yellow coloured, rounded, rectangular shaped, biconvex uncoated tablet debossed with ‘PDT’ on one side and ‘10’ on the other side. 20 mg: Yellow coloured, rounded, rectangular shaped, biconvex uncoated tablet debossed with ‘PDT’ on one side and ‘20’ on the other side. 40 mg: Yellow coloured, rounded, rectangular shaped, biconvex uncoated tablet debossed with ‘PDT’ on one side and ‘40’ on the other side. 4. Clinical Particulars 4.1 Therapeutic indications • In hypercholesterolaemic patients without clinically evident coronary heart disease, Pravastatin Mylan is indicated as an adjunct to diet to reduce the risk of fatal and non-fatal myocardial infarction, need for myocardial revascularisation procedures, and to improve survival by reducing cardiovascular deaths. • Pravastatin Mylan is indicated for the reduction of elevated total and LDL-cholesterol levels in patients with primary hypercholesterolaemia when the response to diet and other non- pharmacological measures alone have been inadequate. • Pravastatin Mylan is indicated as an adjunct to diet to slow the progressive course of atherosclerosis and reduce the incidence of clinical cardiovascular events in hypercholesterolaemic men under 75 years of age with coronary artery disease. • Coronary Artery Disease: In patients with a history of either a myocardial infarction or unstable angina pectoris, Pravastatin Mylan is indicated to reduce the risk for total mortality, CHD death, recurrent coronary event (including myocardial infarction), need for myocardial revascularisation procedures, and need for hospitalisation. -
PCSK9 Inhibition in Familial Hypercholesterolemia: a Revolution in Treatment
PCSK9 inhibition in familial hypercholesterolemia: A revolution in treatment Frederick Raal FCP(SA), FRCP, FCRPC, Cert Endo, MMED, PHD Head, Division of Endocrinology & Metabolism Director, Carbohydrate and Lipid Metabolism Research Unit Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa A case of severe hypercholesterolemia Mrs. TDK 50 year old female. Well. Non smoker and no other risk factors for cardiovascular disease. Serum cholesterol measured because of positive family history of coronary artery disease, her father having undergone coronary bypass surgery at age 52. On examination she had arcus cornealis as well as marked thickening of her tendo-Achilles. Mrs TDK, a case of severe hypercholesterolemia Fasting lipid profile Total cholesterol: 15.6 mmol/L Triglycerides: 1.34 mmol/L HDL-cholesterol: 1.8 mmol/L LDL-cholesterol 13.2 mmol/L Heterozygous vs Homozygous FH Heterozygous FH Homozygous FH Prevalence 1:200- 500 Prevalence 1:300 000 -1000 000 LDL-cholesterol LDL-cholesterol 5.0-12 mmol/L 12-20 mmol/L (190-500mg/dL) (500–1000 mg/dL) CHD onset usually age 30-60 yrs CHD onset in early childhood Most patients respond to drug therapy, but individual response Poorly responsive to quite variable lipid-lowering drug therapy Nordestgaard B.G. et al. Eur Heart J 2013;34:3478-3490 Diagnostic definition of homozygous familial hypercholesterolemia . Genetic confirmation of 2 mutant alleles at the LDL receptor, APOB, PCSK9, or ARH adaptor protein gene locus OR . An untreated LDL cholesterol of 13 mmol/L (>500 mg/dL) or treated LDL cholesterol 7.8 mmol/L (≥300 mg/dL) or treated non-HDL cholesterol 8.5 mmol/L (≥330 mg/dL) together with either: - Cutaneous or tendonous xanthoma before age 10 years OR - Elevated LDL cholesterol levels before lipid-lowering therapy consistent with heterozygous FH in both parents* * Except in the case of ARH Raal FJ, Santos RD. -
Small Dense Low-Density Lipoprotein: Biomarker Or Potential Drug Target?
Published online: 02.10.2019 THIEME 92 SmallReview Dense Article Low-Density Lipoprotein Samanta Small Dense Low-Density Lipoprotein: Biomarker or Potential Drug Target? Basabdatta Samanta1 1Department of Biochemistry, Burdwan Medical College, West Address for correspondence Basabdatta Samanta, MBBS, MD, Bengal, India DNB, Department of Biochemistry, Burdwan Medical College, Burdwan 713104, West Bengal, India (e-mail: [email protected]). Ann Natl Acad Med Sci (India) 2019;55:92–97 Abstract Ischemic heart disease is currently an epidemic affecting individuals worldwide. Increased incidence along with earlier onset of disease has led to the constant search for biomarkers that will help in earlier identification and treatment of at risk individuals. Small dense low-density lipoprotein (sdLDL) is the atherogenic subtype of low-densi- ty lipoprotein (LDL). It is smaller in size and higher in density in comparison to other LDL subtypes. Higher levels of sdLDL have been found to be associated with increased incidence of ischemic heart disease and adverse outcomes. Properties including decreased resistance to oxidative stress and prolonged residence time in the circula- tion account for its increased atherogenic potential. Hence intervention approaches targeting sdLDL directly in at risk individuals may be beneficial. Genetic, lifestyle, and environmental factors affect sdLDL levels. But the main deter- mining factor is the level of triglycerides (TGs). Higher TG levels are associated with higher levels of very low density lipoprotein (VLDL) 1 and sdLDL. Various drugs Keywords have been used for targeting sdLDL with varying outcomes; drugs tried out include ► ischemic heart disease statins, fibrates, niacin, cholesterol ester transfer protein inhibitors and sodium-glu- ► small dense low - cose co-transporter-2 inhibitors. -
Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research
Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Garabedian, Laura Faden. 2013. Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11156786 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research A dissertation presented by Laura Faden Garabedian to The Committee on Higher Degrees in Health Policy in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Health Policy Harvard University Cambridge, Massachusetts March 2013 © 2013 – Laura Faden Garabedian All rights reserved. Professor Stephen Soumerai Laura Faden Garabedian Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research Abstract This dissertation consists of two empirical papers and one methods paper. The first two papers use quasi-experimental methods to evaluate the impact of universal health insurance reform in Massachusetts (MA) and Thailand and the third paper evaluates the validity of a quasi- experimental method used in comparative effectiveness research (CER). My first paper uses interrupted time series with data from IMS Health to evaluate the impact of Thailand’s universal health insurance and physician payment reform on utilization of medicines for three non-communicable diseases: cancer, cardiovascular disease and diabetes. -
Regulation of Pharmaceutical Prices: Evidence from a Reference Price Reform in Denmark
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Kaiser, Ulrich; Mendez, Susan J.; Rønde, Thomas Working Paper Regulation of pharmaceutical prices: Evidence from a reference price reform in Denmark ZEW Discussion Papers, No. 10-062 Provided in Cooperation with: ZEW - Leibniz Centre for European Economic Research Suggested Citation: Kaiser, Ulrich; Mendez, Susan J.; Rønde, Thomas (2010) : Regulation of pharmaceutical prices: Evidence from a reference price reform in Denmark, ZEW Discussion Papers, No. 10-062, Zentrum für Europäische Wirtschaftsforschung (ZEW), Mannheim This Version is available at: http://hdl.handle.net/10419/41440 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Dis cus si on Paper No. 10-062 Regulation of Pharmaceutical Prices: Evidence from a Reference Price Reform in Denmark Ulrich Kaiser, Susan J. -
Colesevelam Hydrochloride (Cholestagel) a New, Potent Bile Acid Sequestrant Associated with a Low Incidence of Gastrointestinal Side Effects
ORIGINAL INVESTIGATION Colesevelam Hydrochloride (Cholestagel) A New, Potent Bile Acid Sequestrant Associated With a Low Incidence of Gastrointestinal Side Effects Michael H. Davidson, MD; Maureen A. Dillon; Bruce Gordon, MD; Peter Jones, MD; Julie Samuels, MD; Stuart Weiss, MD; Jonathon Isaacsohn, MD; Phillip Toth, MD; Steven K. Burke, MD Objectives: To compare colesevelam hydrochloride mg/dL) (19.1%) in the 3.75-g/d colesevelam treatment (Cholestagel), a nonabsorbed hydrogel with bile acid– group. Low-density lipoprotein cholesterol concentra- sequestering properties, with placebo for its lipid- tions at the end of treatment were significantly reduced lowering efficacy, its effects on laboratory and clinical from baseline levels in the 3.0- and 3.75-g/d colesevelam safety parameters, and the incidence of adverse events. treatment groups (P = .01 and P,.001, respectively). To- tal cholesterol levels demonstrated a similar response to Methods: Following diet and placebo lead-in periods, colesevelam treatment, with an 8.1% decrease from base- placebo or colesevelam was administered at 4 dosages (1.5, line in the 3.75-g/d treatment group (P<.001). High- 2.25, 3.0, or 3.75 g/d) for 6 weeks with morning and density lipoprotein cholesterol levels rose significantly evening meals to men and women with hypercholester- in the 3.0- and 3.75-g/d colesevelam treatment groups, olemia (low-density lipoprotein cholesterol level .4.14 by 11.2% (P = .006) and 8.1% (P = .02), respectively. mmol/L [.160 mg/dL]). Patients returned to the clinic Median triglyceride levels did not change from baseline, every 2 weeks throughout the treatment period for lipid nor were there any significant differences between parameter measurements and adverse event assess- treatment groups. -
LAI Expert Consensus Statement
st st 8 Supplement to Journal of The Association of Physicians of India ■ Published on 1 of Every Month 1 November, 2020 Lipid Association of India Expert Consensus Statement on Management of Dyslipidemia in Indians 2020: Part III Expert Consensus Panel: Raman Puri, Chairman1, Vimal Mehta, Co-Chair2, SS Iyengar, Co-Chair3, SN Narasingan, Co-Chair4, P Barton Duell5, GB Sattur6, Krishnaswami Vijayaraghavan7, JC Mohan8, SK Wangnoo9, Jamshed Dalal10, D Prabhakar11, Rajeev Agarwal12, Manish Bansal13, Jamal Yusuf2, Saibal Mukhopadhyay2, Sadanand Shetty14, Prabhash Chand Manoria15, Avishkar Sabharwal16, Akshayaya Pradhan17, Rahul Mehrotra18, Sundeep Mishra19, Sonika Puri20, A Muruganathan21, Abdul Hamid Zargar22, Rashida Melinkari Patanwala23, Soumitra Kumar24, Neil Bardoloi25, KK Pareek26, Aditya Kapoor27, Ashu Rastogi28, Devaki R Nair29, Altamash Shaikh30, Chandra Mani Adhikari31, Muhammad Shoaib Momen Majumder32, Dheeraj Kapoor33, Madhur Yadav34, MR Mubarak35, AK Pancholia36, Rakesh Kumar Sahay37, Rashmi Nanda38, Nathan D Wong39 Introduction proposed by Lipid Association of India regarding various interventions based (LAI),8 identification and application on scientific evidence. The section on ndia is in the middle of an epidemic of lipid markers like lipoprotein (a) low LDL-C levels sums the evidence to Iof atherosclerotic cardiovascular [Lp(a)] and apolipoprotein B (apo the present date and gives justification disease (ASCVD) which is showing B) for risk stratification and control for lower proposed LDL-C goals. Since no signs of abating.1,2