Monascus Fermented Rice and Its Beneficial Aspects: a New Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development and Evaluation of Rrna Targeted in Situ Probes and Phylogenetic Relationships of Freshwater Fungi
Development and evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi vorgelegt von Diplom-Biologin Christiane Baschien aus Berlin Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. sc. techn. Lutz-Günter Fleischer Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: Prof. Dr. rer. nat. Felix Bärlocher Berichter: Dr. habil. Werner Manz Tag der wissenschaftlichen Aussprache: 19.05.2003 Berlin 2003 D83 Table of contents INTRODUCTION ..................................................................................................................................... 1 MATERIAL AND METHODS .................................................................................................................. 8 1. Used organisms ............................................................................................................................. 8 2. Media, culture conditions, maintenance of cultures and harvest procedure.................................. 9 2.1. Culture media........................................................................................................................... 9 2.2. Culture conditions .................................................................................................................. 10 2.3. Maintenance of cultures.........................................................................................................10 -
1 Recurrent Loss of Abaa, a Master Regulator of Asexual Development in Filamentous Fungi
bioRxiv preprint doi: https://doi.org/10.1101/829465; this version posted November 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Recurrent loss of abaA, a master regulator of asexual development in filamentous fungi, 2 correlates with changes in genomic and morphological traits 3 4 Matthew E. Meada,*, Alexander T. Borowskya,b,*, Bastian Joehnkc, Jacob L. Steenwyka, Xing- 5 Xing Shena, Anita Silc, and Antonis Rokasa,# 6 7 aDepartment of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA 8 bCurrent Address: Department of Botany and Plant Sciences, University of California Riverside, 9 Riverside, California, USA 10 cDepartment of Microbiology and Immunology, University of California San Francisco, San 11 Francisco, California, USA 12 13 Short Title: Recurrent loss of abaA across Eurotiomycetes 14 #Address correspondence to Antonis Rokas, [email protected] 15 16 *These authors contributed equally to this work 17 18 19 Keywords: Fungal asexual development, abaA, evolution, developmental evolution, 20 morphology, binding site, Histoplasma capsulatum, regulatory rewiring, gene regulatory 21 network, evo-devo 22 1 bioRxiv preprint doi: https://doi.org/10.1101/829465; this version posted November 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 23 Abstract 24 Gene regulatory networks (GRNs) drive developmental and cellular differentiation, and variation 25 in their architectures gives rise to morphological diversity. -
Elderberry for Flu • African Herb F~.R B,Ronchitis • Tamanu Oil • Herb Qual~Ty
Elderberry for Flu • African Herb f~. r B,ronchitis • Tamanu Oil • Herb Qual~ty ' Number63 USA $6.95 CAN $7.95 7 25274 81379 7 If you think all bilberry extracts are alike, there's something you should know. There are almost 450 species of bilberry. But the only extract with clinically proven efficacy, lndena's Mirtoselect®, has always been made There are from a single species: Vaccinium myrtillus L. bilberries and To prove it, we can supply you with the unmistakable HPLC bilberries. fingerprint of its anthocyanin pattern. It may be tempting to save money using cheap imitations - but it's a slip-up your customers would prefer you avoid. To know more, call lndena today. I dlindena science is our nature™ www.indena.com [email protected] Headquarters: lndena S.p.A.- Viale Ortles, 12-20139 Milan -Italy- tel. +39.02.574961 lndena USA, Inc. - 811 First Avenue, Suite 218- Seattle, WA 98104 - USA- tel. + 1.206.340.6140 Yes, I want Membership Levels & Benefits to join the American Pkase add $20 for addmsli oursitk the U.S. Botanical Council! Individual - $50 Professional - $150 Please detach application and mail to: ~ Subscription to our highly All Academic membership American Botanical Council , P.O. Box 144345, acclaimed journal benefits, plus: Austin, TX 787 14-4345 or join online at www.herbalgram.org Herbal Gram ~5 0 % discount on first order 0 Individual - $50 ~ Access to members-only of single copies of ABC 0 Academic- $100 information on our website, publications from our Herbal 0 Professional - $150 www.herbalgram.org Education Catalog 0 Organization - $250 (Add $20 postage for imernarional delivery for above levels.) • HerbalGram archives ~ Black Cohosh Educational 0 Corporate and Sponsor levels • Complete German Module including free CE and (Comact Wayne Silverman, PhD, 512/926-4900, ext. -
Phylogeny of Penicillium and the Segregation of Trichocomaceae Into Three Families
available online at www.studiesinmycology.org StudieS in Mycology 70: 1–51. 2011. doi:10.3114/sim.2011.70.01 Phylogeny of Penicillium and the segregation of Trichocomaceae into three families J. Houbraken1,2 and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: Jos Houbraken, [email protected] Abstract: Species of Trichocomaceae occur commonly and are important to both industry and medicine. They are associated with food spoilage and mycotoxin production and can occur in the indoor environment, causing health hazards by the formation of β-glucans, mycotoxins and surface proteins. Some species are opportunistic pathogens, while others are exploited in biotechnology for the production of enzymes, antibiotics and other products. Penicillium belongs phylogenetically to Trichocomaceae and more than 250 species are currently accepted in this genus. In this study, we investigated the relationship of Penicillium to other genera of Trichocomaceae and studied in detail the phylogeny of the genus itself. In order to study these relationships, partial RPB1, RPB2 (RNA polymerase II genes), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences were obtained. The Trichocomaceae are divided in three separate families: Aspergillaceae, Thermoascaceae and Trichocomaceae. The Aspergillaceae are characterised by the formation flask-shaped or cylindrical phialides, asci produced inside cleistothecia or surrounded by Hülle cells and mainly ascospores with a furrow or slit, while the Trichocomaceae are defined by the formation of lanceolate phialides, asci borne within a tuft or layer of loose hyphae and ascospores lacking a slit. -
Phylogeny of Chrysosporia Infecting Reptiles: Proposal of the New Family Nannizziopsiaceae and Five New Species
CORE Metadata, citation and similar papers at core.ac.uk Provided byPersoonia Diposit Digital 31, de Documents2013: 86–100 de la UAB www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X669698 Phylogeny of chrysosporia infecting reptiles: proposal of the new family Nannizziopsiaceae and five new species A.M. Stchigel1, D.A. Sutton2, J.F. Cano-Lira1, F.J. Cabañes3, L. Abarca3, K. Tintelnot4, B.L. Wickes5, D. García1, J. Guarro1 Key words Abstract We have performed a phenotypic and phylogenetic study of a set of fungi, mostly of veterinary origin, morphologically similar to the Chrysosporium asexual morph of Nannizziopsis vriesii (Onygenales, Eurotiomycetidae, animal infections Eurotiomycetes, Ascomycota). The analysis of sequences of the D1-D2 domains of the 28S rDNA, including rep- ascomycetes resentatives of the different families of the Onygenales, revealed that N. vriesii and relatives form a distinct lineage Chrysosporium within that order, which is proposed as the new family Nannizziopsiaceae. The members of this family show the mycoses particular characteristic of causing skin infections in reptiles and producing hyaline, thin- and smooth-walled, small, Nannizziopsiaceae mostly sessile 1-celled conidia and colonies with a pungent skunk-like odour. The phenotypic and multigene study Nannizziopsis results, based on ribosomal ITS region, actin and β-tubulin sequences, demonstrated that some of the fungi included Onygenales in this study were different from the known species of Nannizziopsis and Chrysosporium and are described here as reptiles new. They are N. chlamydospora, N. draconii, N. arthrosporioides, N. pluriseptata and Chrysosporium longisporum. Nannizziopsis chlamydospora is distinguished by producing chlamydospores and by its ability to grow at 5 °C. -
New Xerophilic Species of Penicillium from Soil
Journal of Fungi Article New Xerophilic Species of Penicillium from Soil Ernesto Rodríguez-Andrade, Alberto M. Stchigel * and José F. Cano-Lira Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, Reus, 43201 Tarragona, Spain; [email protected] (E.R.-A.); [email protected] (J.F.C.-L.) * Correspondence: [email protected]; Tel.: +34-977-75-9341 Abstract: Soil is one of the main reservoirs of fungi. The aim of this study was to study the richness of ascomycetes in a set of soil samples from Mexico and Spain. Fungi were isolated after 2% w/v phenol treatment of samples. In that way, several strains of the genus Penicillium were recovered. A phylogenetic analysis based on internal transcribed spacer (ITS), beta-tubulin (BenA), calmodulin (CaM), and RNA polymerase II subunit 2 gene (rpb2) sequences showed that four of these strains had not been described before. Penicillium melanosporum produces monoverticillate conidiophores and brownish conidia covered by an ornate brown sheath. Penicillium michoacanense and Penicillium siccitolerans produce sclerotia, and their asexual morph is similar to species in the section Aspergilloides (despite all of them pertaining to section Lanata-Divaricata). P. michoacanense differs from P. siccitol- erans in having thick-walled peridial cells (thin-walled in P. siccitolerans). Penicillium sexuale differs from Penicillium cryptum in the section Crypta because it does not produce an asexual morph. Its ascostromata have a peridium composed of thick-walled polygonal cells, and its ascospores are broadly lenticular with two equatorial ridges widely separated by a furrow. All four new species are xerophilic. -
UNIVERSIDAD TÉCNICA DEL NORTE INSTITUTO DE POSTGRADO MAESTRIA EN GESTIÓN SUSTENTABLE DE RECURSOS NATURALES “Desarrollo De U
UNIVERSIDAD TÉCNICA DEL NORTE INSTITUTO DE POSTGRADO MAESTRIA EN GESTIÓN SUSTENTABLE DE RECURSOS NATURALES “Desarrollo de un proceso a escala de laboratorio para el aislamiento, conservación y producción de cepas nativas de Monascus spp. a partir de la biodiversidad fúngica ecuatoriana”. Trabajo de Investigación previo a la obtención del Título de Magister en Gestión Sustentable de Recursos Naturales Director: Pineda Insuasti, Julio Amílcar, PhD Autor: Ayala Pastaz, Kléver Bayardo Ibarra - Ecuador 2017 APROBACION DEL TUTOR En calidad de tutor del Trabajo de Grado, presentado por el Ingeniero Kléver Bayardo Ayala Pastaz, para optar por el grado de Magíster en Gestión Sustentable de los Recursos Naturales, doy fe de que dicho trabajo reúne los requisitos y méritos suficientes para ser sometido a presentación (pública o privada) y evaluación por parte del jurado examinador que se designe. En la ciudad de Ibarra, a 7 días del mes de Julio del 2017. 1 Desarrollo de un proceso a escala de laboratorio para el aislamiento, conservación y producción de cepas nativas de Monascus spp. a partir de la biodiversidad fúngica ecuatoriana. Por: Kléver Bayardo Ayala Pastaz Trabajo de Grado de Maestría aprobado en nombre de la Universidad Técnica del Norte, por el siguiente jurado, a los 4 días del mes agosto del 2017. 2 DEDICATORIA El presente trabajo está dedicado a todas las personas que representan el espíritu de superación en mi vida: a mi esposa Margoth por el apoyo incondicional durante mis estudios, a mis hijos Jorge y Bryan por ser el incentivo de superación personal, a mis padres Jorge Ayala y Blanca Pastaz por ser mi ejemplo de trabajo y perseverancia, a mis hermanos Willan y Xavier que en su momento supieron brindarme su voz de aliento y a todos mis buenos amigos por augurarme sus deseos éxito. -
Duke University Dissertation Template
Systematics, Phylogeography and Ecology of Elaphomycetaceae by Hannah Theresa Reynolds Department of Biology Duke University Date:_______________________ Approved: ___________________________ Rytas Vilgalys, Supervisor ___________________________ Marc Cubeta ___________________________ Katia Koelle ___________________________ François Lutzoni ___________________________ Paul Manos Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology in the Graduate School of Duke University 2011 iv ABSTRACTU Systematics, Phylogeography and Ecology of Elaphomycetaceae by Hannah Theresa Reynolds Department of Biology Duke University Date:_______________________ Approved: ___________________________ Rytas Vilgalys, Supervisor ___________________________ Marc Cubeta ___________________________ Katia Koelle ___________________________ François Lutzoni ___________________________ Paul Manos An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology in the Graduate School of Duke University 2011 Copyright by Hannah Theresa Reynolds 2011 Abstract This dissertation is an investigation of the systematics, phylogeography, and ecology of a globally distributed fungal family, the Elaphomycetaceae. In Chapter 1, we assess the literature on fungal phylogeography, reviewing large-scale phylogenetics studies and performing a meta-data analysis of fungal population genetics. In particular, we examined -
(Milk Thistle) By
Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle) By: Huzefa A. Raja, Amninder Kaur, Tamam El-Elimat, Mario Figueroa, Rahul Kumar, Gagan Deep, Rajesh Agarwal, Stanley H. Faeth, Nadja B. Cech & Nicholas H. Oberlies* Raja H.A., Kaur A., El-Elimat T., Figueroa M.S., Kumar R., Deep, G., Agarwal R., Faeth S.H., Cech N.B., and Oberlies N.H. 2015. Phylogenetic and Chemical Diversity of Fungal Endophytes isolated from Silybum marianum (L.) Gaertn. (Milk thistle). Mycology, 106 (1), 8-27. http://dx.doi.org/10.1080/21501203.2015.1009186 This is an Accepted Manuscript of an article published by Taylor & Francis in Mychology: an International Journal on Fungal Biology on February, 23, 2015 available online: http://www.tandfonline.com/doi/full/10.1080/21501203.2015.1009186. Abstract: Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. -
Phylogenetic Analysis of Monascus and New Species from Honey, Pollen and Nests of Stingless Bees
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 86: 29–51 (2017). Phylogenetic analysis of Monascus and new species from honey, pollen and nests of stingless bees R.N. Barbosa1,2, S.L. Leong3, O. Vinnere-Pettersson3,4, A.J. Chen1,5, C.M. Souza-Motta2, J.C. Frisvad6, R.A. Samson1, N.T. Oliveira2, and J. Houbraken1* 1Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Bioci^encias, Cidade Universitaria, CEP: 50670-901 Recife, PE, Brazil; 3Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box 7015, SE-750 07 Uppsala, Sweden; 4National Genomics Infrastructure-Sweden, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, BMC, Box 815, SE-752 37 Uppsala, Sweden; 5Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; 6Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark *Correspondence: J. Houbraken, [email protected] Abstract: The genus Monascus was described by van Tieghem (1884) to accommodate M. ruber and M. mucoroides, two species with non-ostiolate ascomata. Species delimitation in the genus is still mainly based on phenotypic characters, and taxonomic studies that include sequence data are limited. The genus is of economic importance. Species are used in fermented Asian foods as food colourants (e.g. ‘red rice’ (ang-kak, angka)) and found as spoilage organisms, and recently Monascus was found to be essential in the lifecycle of stingless bees. -
Coprophilous Ascomycetes with Passive Ascospore Liberation from Brazil
Phytotaxa 295 (2): 159–172 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.295.2.4 Coprophilous ascomycetes with passive ascospore liberation from Brazil ROGER FAGNER RIBEIRO MELO1*, LEONOR COSTA MAIA1 & ANDREW NICHOLAS MILLER2 1Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Micologia, Av. da Engenharia, s/n, 50740‒600, Recife, Pernambuco, Brazil 2University of Illinois at Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, IL 61820, USA Correspondence: [email protected] Abstract Ascomycetes with passive ascospore liberation fruiting on herbivore dung are discussed. A total of 270 samples of cattle, goat and horse dung were collected for 20 months along an edaphic and climatic gradient from the Atlantic Forest complex to the semi-arid Caatinga complex in Pernambuco, northeastern Brazil. Thirteen species were identified and described. Lophot- richus bartlettii and Kernia nitida were the most frequently recorded species. Corynascus sepedonium, Leuconeurospora pulcherrima, Melanospora damnosa, M. zamiae, Mycoarachis inversa, Zopfiella erostrata and Zopfiella longicaudata are reported for the first time in Brazil. Descriptions, a photographic plate and an identification key to the studied species, along with a table with key characters of the most common genera of coprophilous ascomycetes with passive ascospore liberation are provided. Key words: Ascomycota, coprophilous fungi, Microascales, non-ostiolate ascomycetes Introduction Coprophilous fungi form a collective group of saprobes able to live, feed and reproduce in dung, especially from herbivores (Webster 1970, Krug et al. 2004, Kirk et al. 2008). These fungi are associated with various animals (most notably mammals), domesticated or wild (Richardson 2001), presenting an array of morphologic and physiologic life strategies to efficiently exploit their substrate (Ingold 1961, Dix & Webster 1995, Kirschner et al. -
Phylogeny of Penicillium and the Segregation of Trichocomaceae Into Three Families
available online at www.studiesinmycology.org StudieS in Mycology 70: 1–51. 2011. doi:10.3114/sim.2011.70.01 Phylogeny of Penicillium and the segregation of Trichocomaceae into three families J. Houbraken1,2 and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: Jos Houbraken, [email protected] Abstract: Species of Trichocomaceae occur commonly and are important to both industry and medicine. They are associated with food spoilage and mycotoxin production and can occur in the indoor environment, causing health hazards by the formation of β-glucans, mycotoxins and surface proteins. Some species are opportunistic pathogens, while others are exploited in biotechnology for the production of enzymes, antibiotics and other products. Penicillium belongs phylogenetically to Trichocomaceae and more than 250 species are currently accepted in this genus. In this study, we investigated the relationship of Penicillium to other genera of Trichocomaceae and studied in detail the phylogeny of the genus itself. In order to study these relationships, partial RPB1, RPB2 (RNA polymerase II genes), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences were obtained. The Trichocomaceae are divided in three separate families: Aspergillaceae, Thermoascaceae and Trichocomaceae. The Aspergillaceae are characterised by the formation flask-shaped or cylindrical phialides, asci produced inside cleistothecia or surrounded by Hülle cells and mainly ascospores with a furrow or slit, while the Trichocomaceae are defined by the formation of lanceolate phialides, asci borne within a tuft or layer of loose hyphae and ascospores lacking a slit.