Berkeley Odyssey

Total Page:16

File Type:pdf, Size:1020Kb

Berkeley Odyssey BERKELEY ODYSSEY Ten years of BSD history by Marshall Kirk McKusick Ken Thompson and Dennis Ritchie presented the first UNIX paper at the Symposium on Operating Systems Principles at Pur­ due University in November, 1973. Professor Bob Fabry was in attendance and immediately became interested in obtaining a f copy of the system to experiment with at Berkeley. - At the time, Berkeley had only large mainframe computer systems doing batch processing, so the first order of business was to get a PDP-11/45 suitable for running the then current Version 4 of UNIX. The Computer Science Department, together with the Mathematics Department and the Statistics Department were able to jointly purchase a PDP-11/45. In January, 1974, a Version 4 tape was delivered and UNIX was installed by graduate student ¥<~ Keith Standiford. Although Ken Thompson was not involved in the installation — as he had been for most systems up to that time — his exper­ tise was soon needed to determine the cause of several strange system crashes. Because Berkeley had only a 300 baud acoustic- coupled modem without auto answer capability, Thompson would call Standiford in the machine room and have him insert the phone into the modem; in this way Thompson was able to remote­ ly debug crash dumps from New Jersey. 9mm £££ SK wmmMm&?<%?+•*>' '-•fy&Z j?m gis£^t - WMm ^ssg®mmm m^f, ?*S£ SP mm? r^^^m^^S?^^ :%%&m. ':•! '-^SS&^i * Jfjfe BERKELEY ODYSSEY Many of the crashes were project became the first group in immediate interest in the new caused by the disk controller's the Computer Science department system. Initially they began work­ inability to reliably do overlapped to distribute its software. Several ing on a Pascal system that seeks, contrary to the documenta­ hundred Ingres tapes were Thompson had hacked together tion. Berkeley's 11/45 was among shipped over the next six years, while hanging around the 11/70 the first systems that Thompson helping to establish Berkeley's machine room. They expanded had encountered that had two reputation for designing and and improved the interpreter disks on the same controller! building real systems. system to the point that it became Thompson's remote debugging Even with the departure of the programming system of was the first example of the the Ingres project from the 11/45, choice for students because of its cooperation that sprang up be­ there was still insufficient time excellent error recovery scheme tween Berkeley and Bell Labs. The and fast compile and execute willingness of the researchers at time. the Labs to share their work with With the replacement of Berkeley was instrumental in the Model 33 teletypes by ADM-3 r rapid improvement of the softw are Arriving in the Fall screen terminals, Joy and Haley available at Berkeley. began to feel stymied by the con­ Though UNIX was soon of 1975 were two straints of the ed editor. Working reliably up and running, the coa­ from an editor named em that lition of Computer Science, unnoticed graduate they had obtained from Professor Mathematics, and Statistics began George Coulouris at Queen Mary's to run into problems: Math and students, Bill Joy College in London, they worked to Statistics wanted to run DEC's produce the line-at-a-time editor RSTS system. After much debate, and Chuck Haley. ex. a compromise was reached in With Ken Thompson's depar­ which each department would get ture at the end of the Summer of an eight-hour shift: UNIX would 1976, Joy and Haley begin to take run for eight hours followed by 16 an interest in exploring the inter­ hours of RSTS. To promote available for the remaining stu­ nals of the UNIX kernel. Under fairness, the time slices were dents. To alleviate the shortage, Schriebman's watchful eye, they rotated each day. Thus UNIX ran Professors Michael Stonebraker first installed the fixes and im­ 8 am to 4 pm one day, 4 pm to and Bob Fabry set out in June, provements provided on the "fif­ midnight the next day, and mid­ 1974. to get two instructional ty changes" tape from Bell Labs. night to 8 am the third day. 1 l/45s for the Computer Science Having learned to maneuver Despite the bizarre schedule, department's own use. Early in through the source code, they sug­ students taking the Operating 1975. the money was obtained. At gested several small enhance­ Systems course preferred to do nearly the same time DEC an­ ments to streamline certain kernel their projects on UNIX rather than nounced the 11/70, a machine bottlenecks. on the batch machine. that appeared to be much superior Professors Eugene Wong and to the 11/45. Money for the two FIRST DISTRIBUTIOM Michael Stonebraker were both 1 l/45s was pooled to buy a single Meanwhile, interest in the er­ stymied by the confinements of 11/70 that arrived in the Fall of ror recovery work in the Pascal the batch environment, so their 1975. Coincident with the arrival compiler brought in requests for Ingres database project was of the 11/70, Ken Thompson copies of the system. Early in among the first groups to move decided to take a one-year sab­ 1977, Joy put together the from the batch machines to the in­ batical as a visiting professor at "Berkeley Software Distribution". teractive environment provided his alma mater. Thompson, This first distribution included the by UNIX. They quickly found the together with Jeff Schriebman Pascal system and — in an shortage of machine time and the and Bob Kridle, brought up the obscure subdirectory of the Pascal odd hours on the 11/45 in­ latest UNIX, Version 6, on the source — the editor ex. Over the tolerable, so in the Spring of 1974, newly installed 11/70. next year, Joy, acting in J.he they purchased an 11/40 running Also arriving in the Fall of capacity of distributiojijsecretary, the newly available Version 5. 1975, were two unnoticed sent out about 30 free copies of the With their first distribution of In­ graduate students. Bill Joy and system. gres in the Fall of 1974, the Ingres Chuck Haley; they both took an With the arrival of some 32 UNIX REVIEW JANUARY 1985 BERKELEY ODYSSEY ADM-3a terminals offering screen- Fateman and 13 other faculty having his group write a virtual addressable cursors, Joy was members put together an NSF memory system for UNIX. Ozalp finally able to write vi, bringing proposal that they combined with Babaoglu, one of Ferrari's stu­ screen-based editing to Berkeley. some departmental funds to pur­ dents, set about to find some way He soon found himself in a quan­ chase a VAX. of implementing a working set dary. As is frequently the case in Initially the VAX ran DEC's paging system on the VAX; his universities strapped for money, operating system VMS, but the task was complicated because the old equipment is never replaced department had gotten used to the VAX lacked reference bits. all at once. Rather than support UNIX environment and wanted to As Babaoglu neared the com­ code for optimizing the updating continue using it. So, shortly after pletion of his first cut at an im­ of several different terminals, he plementation, he approached Bill decided to consolidate the screen Joy for some help in understand­ management by using a small ing the intricacies of the UNIX interpreter to redraw the screen. Initially the VAX kernel. Intrigued by Babaoglu's This interpreter was driven by a approach, Joy joined in helping to description of the terminal char­ ran DEC'S integrate the code into 32/V and acteristics, thus spawning the then with the ensuing debugging. now famous termcap. operating system Unfortunately, Berkeley had By mid-1978, the software only a single VAX for both system distribution clearly needed to be VMS, but the development and general produc­ updated. The Pascal system had tion use. Thus for several weeks, been made markedly more robjast department had the tolerant user community alter­ through feedback from its expand­ nately found themselves logging ing us^_conimjunity, and had gotten used to the into 32/V and "Virtual VAX/ been split intojtwo passes so that UNIX". Often their work on the IF could be run on PDP"-ll/34s. UNIX environment latter system would come to an The result of the update was the abrupt halt, followed several "Second Berkeley Software and wanted to minutes later by a 32/V login Distribution" that was quickly prompt. By January of 1979, most shortened to 2 BSD. Along with continue using it. of the bugs had been worked out, the enhanced Pascal system, vi and 32/V had been relegated to and termcap for several terminals history. was included. Once again, Bill Joy Joy saw that the 32-bit VAX single-handedly put together the arrival of the VAX, Fateman would soon obsolete the 16-bit distributions, answered the obtained a copy of the 32/V port of PDP-11 and began to port the 2 phone, and incorporated user UNIX to the VAX by John Reiser BSD software to the VAX. While feedback into the system. Over the and Tom London of Bell Labs. Peter Kessler and I ported the next year, nearly 75 tapes were Although 32/V provided a Pascal system, Joy ported the shipped. Though Joy moved on to Version 7 UNIX environment on editors ex and vi, the C shell, and other projects the following year, the VAX, it did not take advantage the myriad other smaller pro­ the 2 BSD distribution continued of the virtual memory capability of grams on 2 BSD.
Recommended publications
  • UNIX and Computer Science Spreading UNIX Around the World: by Ronda Hauben an Interview with John Lions
    Winter/Spring 1994 Celebrating 25 Years of UNIX Volume 6 No 1 "I believe all significant software movements start at the grassroots level. UNIX, after all, was not developed by the President of AT&T." Kouichi Kishida, UNIX Review, Feb., 1987 UNIX and Computer Science Spreading UNIX Around the World: by Ronda Hauben An Interview with John Lions [Editor's Note: This year, 1994, is the 25th anniversary of the [Editor's Note: Looking through some magazines in a local invention of UNIX in 1969 at Bell Labs. The following is university library, I came upon back issues of UNIX Review from a "Work In Progress" introduced at the USENIX from the mid 1980's. In these issues were articles by or inter- Summer 1993 Conference in Cincinnati, Ohio. This article is views with several of the pioneers who developed UNIX. As intended as a contribution to a discussion about the sig- part of my research for a paper about the history and devel- nificance of the UNIX breakthrough and the lessons to be opment of the early days of UNIX, I felt it would be helpful learned from it for making the next step forward.] to be able to ask some of these pioneers additional questions The Multics collaboration (1964-1968) had been created to based on the events and developments described in the UNIX "show that general-purpose, multiuser, timesharing systems Review Interviews. were viable." Based on the results of research gained at MIT Following is an interview conducted via E-mail with John using the MIT Compatible Time-Sharing System (CTSS), Lions, who wrote A Commentary on the UNIX Operating AT&T and GE agreed to work with MIT to build a "new System describing Version 6 UNIX to accompany the "UNIX hardware, a new operating system, a new file system, and a Operating System Source Code Level 6" for the students in new user interface." Though the project proceeded slowly his operating systems class at the University of New South and it took years to develop Multics, Doug Comer, a Profes- Wales in Australia.
    [Show full text]
  • Extending Gnu Troff to Produce Html Through The
    G. MULLEY and W.LEMBERG: EXTENDING GNU TROFF TOPRODUCE HTML EXTENDING GNU TROFF TOPRODUCE HTML THROUGH THE TECHNIQUE OF NEXT EVENT SIMULATION GAIUS MULLEY,WERNER LEMBERG School of Computing,University of Glamorgan, CF37 1DL, UK E-Mail: [email protected] Kl. Beurhausstr.1,44137 Dortmund, Germany E-Mail: [email protected] Abstract: This paper reports on a technique used to generate accurate HTML output from GNU Troff. GNU Troff is a typesetting package which reads plain text mixed with formatting commands and produces formatted output. It supports a number of devices and nowsupports the production of HTML.The paper discusses the design of the HTML device driver grohtml and modifications made to GNU Troff. The front end program troff wasmodi- fied to maintain a reduced state machine which is examined each time a glyph is passed to the back end device driver(post-grohtml). Anychange in system state between the production of twoglyphs results in a sequence of events being passed to the device driver. There is a direct correspondence between this technique and creating ascript for a next event simulation queue. Furthermore the device driverreconstructs the system state and for- mats the HTML according to state changes caused when processing the event queue. This technique works well, as it minimises the state information passed from front end to back end device driverwhilst still preserving the high levellayout of the text. Using this technique GNU Troffeffectively translates input source into another mark-up language and thus this technique could be extended to translate GNU Troffdocuments into anyofthe OpenOffice supported formats.
    [Show full text]
  • Twenty Years of Berkeley Unix : from AT&T-Owned to Freely
    Twenty Years of Berkeley Unix : From AT&T-Owned to Freely Redistributable Marshall Kirk McKusick Early History Ken Thompson and Dennis Ritchie presented the first Unix paper at the Symposium on Operating Systems Principles at Purdue University in November 1973. Professor Bob Fabry, of the University of California at Berkeley, was in attendance and immediately became interested in obtaining a copy of the system to experiment with at Berkeley. At the time, Berkeley had only large mainframe computer systems doing batch processing, so the first order of business was to get a PDP-11/45 suitable for running with the then-current Version 4 of Unix. The Computer Science Department at Berkeley, together with the Mathematics Department and the Statistics Department, were able to jointly purchase a PDP-11/45. In January 1974, a Version 4 tape was delivered and Unix was installed by graduate student Keith Standiford. Although Ken Thompson at Purdue was not involved in the installation at Berkeley as he had been for most systems up to that time, his expertise was soon needed to determine the cause of several strange system crashes. Because Berkeley had only a 300-baud acoustic-coupled modem without auto answer capability, Thompson would call Standiford in the machine room and have him insert the phone into the modem; in this way Thompson was able to remotely debug crash dumps from New Jersey. Many of the crashes were caused by the disk controller's inability to reliably do overlapped seeks, contrary to the documentation. Berkeley's 11/45 was among the first systems that Thompson had encountered that had two disks on the same controller! Thompson's remote debugging was the first example of the cooperation that sprang up between Berkeley and Bell Labs.
    [Show full text]
  • The Strange Birth and Long Life of Unix - IEEE Spectrum Page 1 of 6
    The Strange Birth and Long Life of Unix - IEEE Spectrum Page 1 of 6 COMPUTING / SOFTWARE FEATURE The Strange Birth and Long Life of Unix The classic operating system turns 40, and its progeny abound By WARREN TOOMEY / DECEMBER 2011 They say that when one door closes on you, another opens. People generally offer this bit of wisdom just to lend some solace after a misfortune. But sometimes it's actually true. It certainly was for Ken Thompson and the late Dennis Ritchie, two of the greats of 20th-century information technology, when they created the Unix operating system, now considered one of the most inspiring and influential pieces of software ever written. A door had slammed shut for Thompson and Ritchie in March of 1969, when their employer, the American Telephone & Telegraph Co., withdrew from a collaborative project with the Photo: Alcatel-Lucent Massachusetts Institute of KEY FIGURES: Ken Thompson [seated] types as Dennis Ritchie looks on in 1972, shortly Technology and General Electric after they and their Bell Labs colleagues invented Unix. to create an interactive time- sharing system called Multics, which stood for "Multiplexed Information and Computing Service." Time-sharing, a technique that lets multiple people use a single computer simultaneously, had been invented only a decade earlier. Multics was to combine time-sharing with other technological advances of the era, allowing users to phone a computer from remote terminals and then read e -mail, edit documents, run calculations, and so forth. It was to be a great leap forward from the way computers were mostly being used, with people tediously preparing and submitting batch jobs on punch cards to be run one by one.
    [Show full text]
  • Debates in the Digital Humanities This Page Intentionally Left Blank DEBATES in the DIGITAL HUMANITIES
    debates in the digital humanities This page intentionally left blank DEBATES IN THE DIGITAL HUMANITIES Matthew K. Gold editor University of Minnesota Press Minneapolis London Chapter 1 was previously published as “What Is Digital Humanities and What’s It Doing in English Departments?” ADE Bulletin, no. 150 (2010): 55– 61. Chap- ter 2 was previously published as “The Humanities, Done Digitally,” The Chron- icle of Higher Education, May 8, 2011. Chapter 17 was previously published as “You Work at Brown. What Do You Teach?” in #alt- academy, Bethany Nowviskie, ed. (New York: MediaCommons, 2011). Chapter 28 was previously published as “Humanities 2.0: Promises, Perils, Predictions,” PMLA 123, no. 3 (May 2008): 707– 17. Copyright 2012 by the Regents of the University of Minnesota all rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Published by the University of Minnesota Press 111 Third Avenue South, Suite 290 Minneapolis, MN 55401- 2520 http://www.upress.umn.edu library of congress cataloging-in-publication data Debates in the digital humanities / [edited by] Matthew K. Gold. ISBN 978-0-8166-7794-8 (hardback)—ISBN 978-0-8166-7795-5 (pb) 1. Humanities—Study and teaching (Higher)—Data processing. 2. Humanities —Technological innovations. 3. Digital media. I. Gold, Matthew K.. AZ182.D44 2012 001.3071—dc23 2011044236 Printed in the United States of America on acid- free paper The University of Minnesota is an equal- opportunity educator and employer.
    [Show full text]
  • The Strange Birth and Long Life of Unix - IEEE Spectrum
    The Strange Birth and Long Life of Unix - IEEE Spectrum http://spectrum.ieee.org/computing/software/the-strange-birth-and-long-li... COMPUTING / SOFTWARE FEATURE The Strange Birth and Long Life of Unix The classic operating system turns 40, and its progeny abound By WARREN TOOMEY / DECEMBER 2011 They say that when one door closes on you, another opens. People generally offer this bit of wisdom just to lend some solace after a misfortune. But sometimes it's actually true. It certainly was for Ken Thompson and the late Dennis Ritchie, two of the greats of 20th-century information technology, when they created the Unix operating system, now considered one of the most inspiring and influential pieces of software ever written. A door had slammed shut for Thompson and Ritchie in March of 1969, when their employer, the American Telephone & Telegraph Co., withdrew from a collaborative project with the Photo: Alcatel-Lucent Massachusetts Institute of KEY FIGURES: Ken Thompson [seated] types as Dennis Ritchie looks on in 1972, shortly Technology and General Electric after they and their Bell Labs colleagues invented Unix. to create an interactive time-sharing system called Multics, which stood for "Multiplexed Information and Computing Service." Time-sharing, a technique that lets multiple people use a single computer simultaneously, had been invented only a decade earlier. Multics was to combine time-sharing with other technological advances of the era, allowing users to phone a computer from remote terminals and then read e-mail, edit documents, run calculations, and so forth. It was to be a great leap forward from the way computers were mostly being used, with people tediously preparing and submitting batch jobs on punch cards to be run one by one.
    [Show full text]
  • Reflections on Software Research
    TURING AWARD LECTURE Reflections on Software Research Can the circumstances that existed in Bell Labs that nurtured the UNIX project be produced again? DENNIS M. RITCHIE The UNIX 1 operating system has suddenly become System V is a supported product on several different news, but it is not new. It began in 1969 when Ken hardware lines, most recently including the 3B systems Thompson discovered a little-used PDP-7 computer and designed and built by AT&T. set out to fashion a computing environment that he UNIX is in wide use, and is now even spoken of as a liked. His work soon attracted me; I joined in the enter- possible industry standard. How did it come to suc- prise, though most of the ideas, and most of the work ceed? for that matter, were his. Before long, others from our There are, of course, its technical merits. Because the group in the research area of AT&T Bell Laboratories system and its history have been discussed at some were using the system; Joe Ossanna, Doug McIlroy, and length in the literature [6, 7, 11], I will not talk about Bob Morris were especially enthusiastic critics and con- these qualities except for one; despite its frequent sur- tributors. In 1971, we acquired a PDP-11, and by the face inconsistency, so colorfully annotated by Don Nor- end of that year we were supporting our first real users: man in his Datamation article [4] and despite its rich- three typists entering patent applications. In 1973, the ness, UNIX is a simple, coherent system that pushes a system was rewritten in the C language, and in that few good ideas and models to the limit.
    [Show full text]
  • Cannibal Code
    KIll it with Fire © 2021 by Marianne Bellotti 2 CANNIBAL CODE f technology advances in cycles, you might assume the best legacy I modernization strategy is to wait a decade or two for paradigms to shift back and leapfrog over. If only! For all that mainframes and clouds might have in common in general, they have a number of significant dif- ferences in the implementation that block easy transitions. While the architectural philosophy of time-sharing has come back in vogue, other components of technology have been advancing at a different pace. You can divide any single product into an infinite number of elements: hard- ware, software, interfaces, protocols, and so on. Then you can add specific techniques within those categories. Not all cycles are in sync. The odds of a modern piece of technology perfectly reflecting an older piece of tech- nology are as likely as finding two days where every star in the sky had the exact same position. So, the takeaway from understanding that technology advances in cycles isn’t that upgrades are easier the longer you wait, it’s that you should avoid upgrading to new technology simply because it’s new. KIll it with Fire © 2021 by Marianne Bellotti Alignable Differences and User Interfaces Without alignable differences, consumers can’t determine the value of the technology in which they are being asked to invest. Completely innovative technology is not a viable solution, because it has no refer- ence point to help it find its market. We often think of technology as being streamlined and efficient with no unnecessary bits without a clear purpose, but in fact, many forms of technology you depend on have ves- tigial features either inherited from other older forms of technology or imported later to create the illusion of feature parity.
    [Show full text]
  • Introduction
    Introduction J. M. P. Alves Laboratory of Genomics & Bioinformatics in Parasitology Department of Parasitology, ICB, USP BMP0260 / ICB5765 / IBI5765 ● Introduction to computers and computing (UNIX) ● Linux basics ● Introduction to the Bash shell ● Connecting to this course’s virtual machine J.M.P. Alves 2 / 82 BMP0260 / ICB5765 / IBI5765 TuxThe Linux mascot “TUXedo”... By Larry Ewing, 1996 ...or Torvalds UniX Tux's ancestor J.M.P. Alves 3 / 82 BMP0260 / ICB5765 / IBI5765 Linux (Unix) & science Why so popular together? ● Historical reasons (programs made for Unix/Linux) ● Available on any kind of computer, especially powerful servers ● Works efficiently with humongous text files (head, tail, sort, cut, paste, grep, etc.) ● Complicated tasks can be made easy by concatenating simpler commands (piping) ● Creating new programs is easy – tools just one or two commands (or clicks) away (gcc, g++, python, perl) ● Stable, efficient, open (free software), no cost (software for free) J.M.P. Alves 4 / 82 BMP0260 / ICB5765 / IBI5765 What IS this Linux, anyway? J.M.P. Alves 5 / 82 BMP0260 / ICB5765 / IBI5765 Operating system J.M.P. Alves 6 / 82 BMP0260 / ICB5765 / IBI5765 An operating system is a collection of programs that initialize the computer's hardware, providing basic instructions for the control of devices, managing and scheduling tasks, and regulating their interactions with each other. J.M.P. Alves 7 / 82 BMP0260 / ICB5765 / IBI5765 You WhatsApp Android Phone J.M.P. Alves 8 / 82 BMP0260 / ICB5765 / IBI5765 You MUSCLE Linux Computer J.M.P. Alves 9 / 82 BMP0260 / ICB5765 / IBI5765 formerly: J.M.P. Alves 10 / 82 BMP0260 / ICB5765 / IBI5765 History J.M.P.
    [Show full text]
  • The Evolution of the Unix Time-Sharing System*
    The Evolution of the Unix Time-sharing System* Dennis M. Ritchie Bell Laboratories, Murray Hill, NJ, 07974 ABSTRACT This paper presents a brief history of the early development of the Unix operating system. It concentrates on the evolution of the file system, the process-control mechanism, and the idea of pipelined commands. Some attention is paid to social conditions during the development of the system. NOTE: *This paper was first presented at the Language Design and Programming Methodology conference at Sydney, Australia, September 1979. The conference proceedings were published as Lecture Notes in Computer Science #79: Language Design and Programming Methodology, Springer-Verlag, 1980. This rendition is based on a reprinted version appearing in AT&T Bell Laboratories Technical Journal 63 No. 6 Part 2, October 1984, pp. 1577-93. Introduction During the past few years, the Unix operating system has come into wide use, so wide that its very name has become a trademark of Bell Laboratories. Its important characteristics have become known to many people. It has suffered much rewriting and tinkering since the first publication describing it in 1974 [1], but few fundamental changes. However, Unix was born in 1969 not 1974, and the account of its development makes a little-known and perhaps instructive story. This paper presents a technical and social history of the evolution of the system. Origins For computer science at Bell Laboratories, the period 1968-1969 was somewhat unsettled. The main reason for this was the slow, though clearly inevitable, withdrawal of the Labs from the Multics project. To the Labs computing community as a whole, the problem was the increasing obviousness of the failure of Multics to deliver promptly any sort of usable system, let alone the panacea envisioned earlier.
    [Show full text]
  • Open Geospatial Consortium
    Open Geospatial Consortium Submission Date: 2016-08-23 Approval Date: 2016-11-29 Publication Date: 2016-01-31 External identifier of this OGC® document: http://www.opengis.net/doc/geosciml/4.1 Internal reference number of this OGC® document: 16-008 Version: 4.1 Category: OGC® Implementation Standard Editor: GeoSciML Modelling Team OGC Geoscience Markup Language 4.1 (GeoSciML) Copyright notice Copyright © 2017 Open Geospatial Consortium To obtain additional rights of use, visit http://www.opengeospatial.org/legal/. IUGS Commission for the Management and Application of Geoscience Information, Copyright © 2016-2017. All rights reserved. Warning This formatted document is not an official OGC Standard. The normative version is posted at: http://docs.opengeospatial.org/is/16-008/16-008.html This document is distributed for review and comment. This document is subject to change without notice and may not be referred to as an OGC Standard. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. Document type: OGC® Standard Document subtype: Document stage: Approved for Publis Release Document language: English i Copyright © 2016 Open Geospatial Consortium License Agreement Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this Agreement.
    [Show full text]
  • Kratka Povijest Unixa Od Unicsa Do Freebsda I Linuxa
    Kratka povijest UNIXa Od UNICSa do FreeBSDa i Linuxa 1 Autor: Hrvoje Horvat Naslov: Kratka povijest UNIXa - Od UNICSa do FreeBSDa i Linuxa Licenca i prava korištenja: Svi imaju pravo koristiti, mijenjati, kopirati i štampati (printati) knjigu, prema pravilima GNU GPL licence. Mjesto i godina izdavanja: Osijek, 2017 ISBN: 978-953-59438-0-8 (PDF-online) URL publikacije (PDF): https://www.opensource-osijek.org/knjige/Kratka povijest UNIXa - Od UNICSa do FreeBSDa i Linuxa.pdf ISBN: 978-953- 59438-1- 5 (HTML-online) DokuWiki URL (HTML): https://www.opensource-osijek.org/dokuwiki/wiki:knjige:kratka-povijest- unixa Verzija publikacije : 1.0 Nakalada : Vlastita naklada Uz pravo svakoga na vlastito štampanje (printanje), prema pravilima GNU GPL licence. Ova knjiga je napisana unutar inicijative Open Source Osijek: https://www.opensource-osijek.org Inicijativa Open Source Osijek je član udruge Osijek Software City: http://softwarecity.hr/ UNIX je registrirano i zaštićeno ime od strane tvrtke X/Open (Open Group). FreeBSD i FreeBSD logo su registrirani i zaštićeni od strane FreeBSD Foundation. Imena i logo : Apple, Mac, Macintosh, iOS i Mac OS su registrirani i zaštićeni od strane tvrtke Apple Computer. Ime i logo IBM i AIX su registrirani i zaštićeni od strane tvrtke International Business Machines Corporation. IEEE, POSIX i 802 registrirani i zaštićeni od strane instituta Institute of Electrical and Electronics Engineers. Ime Linux je registrirano i zaštićeno od strane Linusa Torvaldsa u Sjedinjenim Američkim Državama. Ime i logo : Sun, Sun Microsystems, SunOS, Solaris i Java su registrirani i zaštićeni od strane tvrtke Sun Microsystems, sada u vlasništvu tvrtke Oracle. Ime i logo Oracle su u vlasništvu tvrtke Oracle.
    [Show full text]